999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

2017-09-15 05:55:57ZOUMinCHENRongsanLIUAnping
數學雜志 2017年5期
關鍵詞:振動

ZOU Min,CHEN Rong-san,LIU An-ping

(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

ZOU Min,CHEN Rong-san,LIU An-ping

(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

In this paper,we mainly deal with the oscillation problems of nonlinear impulsive hyperbolic equation with functional arguments.By using integral averaging method and a generalized Riccati technique,a sufficient condition for oscillation of the solutions of nonlinear impulsive hyperbolic equation with functional arguments is obtained.We can make better use of some existing conclusions about oscillation of the solutions of impulsive ordinary dif f erential equations with delay.

oscillation;impulsive;delay;hyperbolic equation;Riccati inequality

1 Introduction

The theories of nonlinear partial functional di ff erential equations are applied in many fi elds.In recent years the research of oscillation to impulsive partial di ff erential systems caught more and more attention.In this paper,we study the oscillation properties of the solutions to impulsive delay hyperbolic equation

The following is the boundary conditionwhere G is a bounded domain of Rnwith the smooth boundary?G and n is the unit exterior normal vector to?G.

Following are the basic hypothesis

(H1)r(t)∈C([0,+∞);(0,+∞)),a(t),bi(t)∈PC([0,+∞);[0,+∞)),i=1,2,···,n.j=1,2,···,m,where PC denotes the class of functions which are piecewise continuous in t with discontinuities of the fi rst kind only at t=tk,k=1,2,···.

(H2)τi(t)∈C([0,+∞);R)=+∞,i=1,2,···,n.

(H3)h(u),hi(u)∈C(R,R),uh(u)≥0,uh′(u)≥0,≥0,i=1,2,···,n;φj(s)∈C(R,R),=const.>0 for s 6=0.αk,βk=const.>-1,0<t1<t2<···<tk<

We introduce the notations

De fi nition 1.1The solution u(x,t)of the problems(1.1)-(1.4)is said to be nonoscillatory in domain Ω if it is either eventually positive or eventually negative.Otherwise,it is called oscillatory.

Def i nition 1.2We say that functions Hi,i=1,2,belong to a function class H,if Hi∈C(D;[0,+∞)),i=1,2,satisfy

1.Hi(t,s)=0,i=1,2 for t=s, 2.Hi(t,s)>0,i=1,2 for t>s,

where D={(t,s):0<s≤t<+∞}.Moreover,the partial derivatives?H1/?s and?H2/?s exist on D such that

where h1,h2∈Cloc(D;R).

In recent years,there was much research activity concerning the oscillation theory of nonlinear hyperbolic equations with functional arguments by employing Riccati technique. Riccati techniques were used to obtain various oscillation results.Recently,Shoukaku and Yoshida[2]derived oscillation criteria by using oscillation criteria of Riccati inequality.In this work,we study the hyperbolic equation with impulsive.

2 Main Results

Theorem 2.1If for each T≥0,there exist(H1,H2)∈H and a,b,c∈R such that T≤a<c<b and

then every solution of the problems(1.1)-(1.4)oscillates in Ω,where

ProofSuppose to the contrary that there is a nonoscillatory solution u(x,t)of the problems(1.1)-(1.4).Without loss of generality we may assume that u(x,t)>0 in G× [t0,+∞)for some t0>0 because the case where u(x,t)<0 can be treated similarly.Since (H2)holds,we see that u(x,τi(t))>0(i=1,2,···n)in G×[t1,+∞)for some t1≥t0.

(1)For t≥t1,t 6=tk,k=1,2,···,integrating(1)with respect to x over G,we obtain

that is

Thus we obtain that the functions U(t)is a eventually positive solution of the impulsive dif f erential inequality

Multiplying(2.4)by H2(t,s)and integrating over[c,t]for t∈[c,b),we have

which contradicts condition(2.1).

[1]Lakshmikantham V,Bainov D,Simeonov P S.Theory of impulsive dif f erential equations[M].Singapore:World Scientif i c,1989.

[2]Yutaka Shoukaku,Norio Yoshida.Oscillations of nonlinear hyperbolic equations with functional arguments via Riccati method[J].Appl.Math.Comput.,2010,217:143-151.

[3]Luo Zhiguo,Shen Jianhua.Oscillations of second linear dif f erential equations with impulses[J].Appl. Math.Lett.,2007,20:75-81.

[4]Bainov D D,Minchev E.Oscillation of the solutions of impulsive parabolic equations[J].J.Comput. Appl.Math.,1996,69:207-214.

[5]Liu Anping,Liu Ting,Zou Min.Oscillation of nonlinear impulsive parabolic dif f erential equations of neutral type[J].Rocky Mount.J.Math.,2011,41:833-850.

[6]Chen Rongsan,Zou Min,Liu Anping.Comparison of several numerical schemes for scalar linear advaction equation[J].J.Math.,2015,35(4):977-982.

里卡蒂方法研究帶泛函參數的非線性脈沖時滯雙曲方程的振動性

鄒敏,陳榮三,劉安平

(中國地質大學(武漢)數學與物理學院,湖北武漢430074)

本文研究了帶泛函參數的非線性脈沖時滯雙曲方程的振動性問題.利用積分平均法和里卡蒂方法得到了這類方程解的振動性的一個充分條件,對非線性時滯雙曲方程解的震動性進行了推廣,能更好地利用一些現有的脈沖時滯常微分方程解的振動性的結論.

振動;脈沖;時滯;雙曲方程;Riccati不等式

O175.27

A

0255-7797(2017)05-1007-06

?Received date:2015-11-25Accepted date:2016-03-04

Supported by National Natural Science Foundation of China(11201436).

Biography:Zou min(1981-),female,born at Xiantao,Hubei,lecturer,major in partial dif f erential equation.

2010 MR Subject Classif i cation:58J45;35B05

猜你喜歡
振動
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
某調相機振動異常診斷分析與處理
大電機技術(2022年5期)2022-11-17 08:12:48
振動與頻率
天天愛科學(2020年6期)2020-09-10 07:22:44
This “Singing Highway”plays music
具非線性中立項的廣義Emden-Fowler微分方程的振動性
中立型Emden-Fowler微分方程的振動性
基于ANSYS的高速艇艉軸架軸系振動響應分析
船海工程(2015年4期)2016-01-05 15:53:26
主回路泵致聲振動分析
UF6振動激發態分子的振動-振動馳豫
計算物理(2014年2期)2014-03-11 17:01:44
帶有強迫項的高階差分方程解的振動性
主站蜘蛛池模板: 毛片视频网址| 国产91小视频在线观看| 一本大道AV人久久综合| 伊人AV天堂| 亚洲成人在线播放 | 欧美 亚洲 日韩 国产| 91激情视频| a级毛片免费在线观看| 久久不卡精品| 国产成人综合日韩精品无码不卡| 波多野结衣中文字幕一区| 老司机精品99在线播放| 国产欧美日韩视频怡春院| 手机精品视频在线观看免费| 欧美国产日韩在线观看| 亚洲男女天堂| 国产欧美精品一区aⅴ影院| 国产乱人伦AV在线A| 69av在线| 伊在人亞洲香蕉精品區| 国产精品人成在线播放| 香蕉蕉亚亚洲aav综合| 最新加勒比隔壁人妻| 欧美一区国产| 不卡国产视频第一页| 亚洲欧美日韩高清综合678| 欧美伦理一区| 亚洲成年人网| 国产男女XX00免费观看| 天天视频在线91频| 色综合色国产热无码一| 欧美激情首页| 午夜a视频| 尤物精品国产福利网站| 一级成人a毛片免费播放| 亚洲视频影院| 精品综合久久久久久97超人| 精品视频在线观看你懂的一区| 欧美日韩专区| 在线亚洲小视频| 国产av无码日韩av无码网站 | 久久6免费视频| 国产亚洲一区二区三区在线| 国产成人午夜福利免费无码r| 97精品久久久大香线焦| 欧美日韩第三页| 无码 在线 在线| 性69交片免费看| 天天摸夜夜操| 亚洲愉拍一区二区精品| 久久黄色免费电影| 呦视频在线一区二区三区| 99久久精品无码专区免费| 久久人人爽人人爽人人片aV东京热| 被公侵犯人妻少妇一区二区三区| 亚洲区视频在线观看| 青青国产成人免费精品视频| 天堂成人av| 国产精品福利尤物youwu| 99久久99这里只有免费的精品| 人妻免费无码不卡视频| yjizz视频最新网站在线| 日本一区二区三区精品视频| 国产精品网曝门免费视频| 亚洲综合狠狠| a色毛片免费视频| 欧美人在线一区二区三区| 91亚洲影院| 久久77777| 四虎成人免费毛片| 四虎影视无码永久免费观看| 爱色欧美亚洲综合图区| 国产欧美日韩91| 美臀人妻中出中文字幕在线| 黄色网页在线观看| 日韩欧美国产综合| 国产一区二区三区在线观看视频| 免费观看成人久久网免费观看| 无码中字出轨中文人妻中文中| 亚洲欧美日韩精品专区| 青青操视频在线| 亚洲国产成人麻豆精品|