999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

2017-09-15 05:55:57ZOUMinCHENRongsanLIUAnping
數學雜志 2017年5期
關鍵詞:振動

ZOU Min,CHEN Rong-san,LIU An-ping

(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

ZOU Min,CHEN Rong-san,LIU An-ping

(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

In this paper,we mainly deal with the oscillation problems of nonlinear impulsive hyperbolic equation with functional arguments.By using integral averaging method and a generalized Riccati technique,a sufficient condition for oscillation of the solutions of nonlinear impulsive hyperbolic equation with functional arguments is obtained.We can make better use of some existing conclusions about oscillation of the solutions of impulsive ordinary dif f erential equations with delay.

oscillation;impulsive;delay;hyperbolic equation;Riccati inequality

1 Introduction

The theories of nonlinear partial functional di ff erential equations are applied in many fi elds.In recent years the research of oscillation to impulsive partial di ff erential systems caught more and more attention.In this paper,we study the oscillation properties of the solutions to impulsive delay hyperbolic equation

The following is the boundary conditionwhere G is a bounded domain of Rnwith the smooth boundary?G and n is the unit exterior normal vector to?G.

Following are the basic hypothesis

(H1)r(t)∈C([0,+∞);(0,+∞)),a(t),bi(t)∈PC([0,+∞);[0,+∞)),i=1,2,···,n.j=1,2,···,m,where PC denotes the class of functions which are piecewise continuous in t with discontinuities of the fi rst kind only at t=tk,k=1,2,···.

(H2)τi(t)∈C([0,+∞);R)=+∞,i=1,2,···,n.

(H3)h(u),hi(u)∈C(R,R),uh(u)≥0,uh′(u)≥0,≥0,i=1,2,···,n;φj(s)∈C(R,R),=const.>0 for s 6=0.αk,βk=const.>-1,0<t1<t2<···<tk<

We introduce the notations

De fi nition 1.1The solution u(x,t)of the problems(1.1)-(1.4)is said to be nonoscillatory in domain Ω if it is either eventually positive or eventually negative.Otherwise,it is called oscillatory.

Def i nition 1.2We say that functions Hi,i=1,2,belong to a function class H,if Hi∈C(D;[0,+∞)),i=1,2,satisfy

1.Hi(t,s)=0,i=1,2 for t=s, 2.Hi(t,s)>0,i=1,2 for t>s,

where D={(t,s):0<s≤t<+∞}.Moreover,the partial derivatives?H1/?s and?H2/?s exist on D such that

where h1,h2∈Cloc(D;R).

In recent years,there was much research activity concerning the oscillation theory of nonlinear hyperbolic equations with functional arguments by employing Riccati technique. Riccati techniques were used to obtain various oscillation results.Recently,Shoukaku and Yoshida[2]derived oscillation criteria by using oscillation criteria of Riccati inequality.In this work,we study the hyperbolic equation with impulsive.

2 Main Results

Theorem 2.1If for each T≥0,there exist(H1,H2)∈H and a,b,c∈R such that T≤a<c<b and

then every solution of the problems(1.1)-(1.4)oscillates in Ω,where

ProofSuppose to the contrary that there is a nonoscillatory solution u(x,t)of the problems(1.1)-(1.4).Without loss of generality we may assume that u(x,t)>0 in G× [t0,+∞)for some t0>0 because the case where u(x,t)<0 can be treated similarly.Since (H2)holds,we see that u(x,τi(t))>0(i=1,2,···n)in G×[t1,+∞)for some t1≥t0.

(1)For t≥t1,t 6=tk,k=1,2,···,integrating(1)with respect to x over G,we obtain

that is

Thus we obtain that the functions U(t)is a eventually positive solution of the impulsive dif f erential inequality

Multiplying(2.4)by H2(t,s)and integrating over[c,t]for t∈[c,b),we have

which contradicts condition(2.1).

[1]Lakshmikantham V,Bainov D,Simeonov P S.Theory of impulsive dif f erential equations[M].Singapore:World Scientif i c,1989.

[2]Yutaka Shoukaku,Norio Yoshida.Oscillations of nonlinear hyperbolic equations with functional arguments via Riccati method[J].Appl.Math.Comput.,2010,217:143-151.

[3]Luo Zhiguo,Shen Jianhua.Oscillations of second linear dif f erential equations with impulses[J].Appl. Math.Lett.,2007,20:75-81.

[4]Bainov D D,Minchev E.Oscillation of the solutions of impulsive parabolic equations[J].J.Comput. Appl.Math.,1996,69:207-214.

[5]Liu Anping,Liu Ting,Zou Min.Oscillation of nonlinear impulsive parabolic dif f erential equations of neutral type[J].Rocky Mount.J.Math.,2011,41:833-850.

[6]Chen Rongsan,Zou Min,Liu Anping.Comparison of several numerical schemes for scalar linear advaction equation[J].J.Math.,2015,35(4):977-982.

里卡蒂方法研究帶泛函參數的非線性脈沖時滯雙曲方程的振動性

鄒敏,陳榮三,劉安平

(中國地質大學(武漢)數學與物理學院,湖北武漢430074)

本文研究了帶泛函參數的非線性脈沖時滯雙曲方程的振動性問題.利用積分平均法和里卡蒂方法得到了這類方程解的振動性的一個充分條件,對非線性時滯雙曲方程解的震動性進行了推廣,能更好地利用一些現有的脈沖時滯常微分方程解的振動性的結論.

振動;脈沖;時滯;雙曲方程;Riccati不等式

O175.27

A

0255-7797(2017)05-1007-06

?Received date:2015-11-25Accepted date:2016-03-04

Supported by National Natural Science Foundation of China(11201436).

Biography:Zou min(1981-),female,born at Xiantao,Hubei,lecturer,major in partial dif f erential equation.

2010 MR Subject Classif i cation:58J45;35B05

猜你喜歡
振動
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
某調相機振動異常診斷分析與處理
大電機技術(2022年5期)2022-11-17 08:12:48
振動與頻率
天天愛科學(2020年6期)2020-09-10 07:22:44
This “Singing Highway”plays music
具非線性中立項的廣義Emden-Fowler微分方程的振動性
中立型Emden-Fowler微分方程的振動性
基于ANSYS的高速艇艉軸架軸系振動響應分析
船海工程(2015年4期)2016-01-05 15:53:26
主回路泵致聲振動分析
UF6振動激發態分子的振動-振動馳豫
計算物理(2014年2期)2014-03-11 17:01:44
帶有強迫項的高階差分方程解的振動性
主站蜘蛛池模板: 91年精品国产福利线观看久久| 久久网综合| 久久久久久高潮白浆| 久久精品这里只有精99品| 99re在线免费视频| 亚洲中文在线看视频一区| 欧美黄网站免费观看| 在线欧美a| 国产美女一级毛片| 丁香五月亚洲综合在线| 美女毛片在线| 福利一区在线| 国产成人免费| 欧美无遮挡国产欧美另类| 国产精品开放后亚洲| 一级高清毛片免费a级高清毛片| 亚洲男女在线| 国产成人做受免费视频| www.亚洲天堂| 精品国产成人高清在线| 国产91久久久久久| 国产91视频观看| 在线国产你懂的| 全免费a级毛片免费看不卡| 国产成人精品午夜视频'| 国产乱子伦手机在线| 91在线国内在线播放老师| 一区二区三区毛片无码| 在线观看欧美精品二区| 凹凸国产分类在线观看| 人人爽人人爽人人片| 欧美A级V片在线观看| 在线亚洲小视频| 欧美精品亚洲精品日韩专区| 国产一区免费在线观看| 国产爽妇精品| 黄片在线永久| 亚洲国产高清精品线久久| 国产视频一二三区| 手机在线看片不卡中文字幕| 特级精品毛片免费观看| 亚洲第一黄色网址| 在线国产三级| 国产精品久久久久久久久久久久| swag国产精品| 亚洲男人在线| 久久精品嫩草研究院| av一区二区无码在线| 999国产精品永久免费视频精品久久| 十八禁美女裸体网站| 老司机久久99久久精品播放| 高清欧美性猛交XXXX黑人猛交| 欧美色香蕉| 亚洲精品无码AⅤ片青青在线观看| 青青草国产免费国产| 99在线观看免费视频| 激情综合图区| 亚洲va在线观看| 中文字幕有乳无码| 欧美一区二区啪啪| 40岁成熟女人牲交片免费| 婷婷六月综合网| 精品视频福利| 4虎影视国产在线观看精品| 亚洲天堂色色人体| 高清免费毛片| 一区二区三区国产| 久久婷婷综合色一区二区| 日本精品视频一区二区| 色哟哟精品无码网站在线播放视频| 一区二区理伦视频| 成人精品亚洲| 国产丝袜91| 久久国产精品娇妻素人| 国产成人高精品免费视频| 亚洲欧美日韩成人在线| 国产精品久久精品| 日韩毛片免费观看| 无码中字出轨中文人妻中文中| 久久综合九色综合97网| 亚洲一区二区约美女探花| 亚洲一欧洲中文字幕在线|