盧家鋒,張鳳林,楊志峰,周玉梅
自蔓延燃燒合成法制備分層及梯度結(jié)構(gòu)的Ni-Al/金剛石復(fù)合材料研究
盧家鋒,張鳳林,楊志峰,周玉梅
(廣東工業(yè)大學(xué)機(jī)電工程學(xué)院,廣州 510006)
采用自蔓延燃燒合成法制備了分層及梯度結(jié)構(gòu)的Ni-Al/金剛石復(fù)合材料。研究了多層及金剛石粒度梯度結(jié)構(gòu)對(duì)Ni-Al/金剛石復(fù)合材料其自蔓延反應(yīng)過(guò)程及微觀相貌的影響。結(jié)果表明:隨著分層數(shù)的增加,自蔓延反應(yīng)的燃燒波速度下降;自蔓延反應(yīng)在金剛石粒度梯度結(jié)構(gòu)的燃燒波速率比其在金剛石分層結(jié)構(gòu)的速率快。微觀形貌分析表明,自蔓延反應(yīng)使得釬料合金Ni-Cr與金剛石生成了強(qiáng)碳化合物Cr3C2和Cr7C3,增強(qiáng)了金剛石和合金粉末基體的結(jié)合力。
自蔓延燃燒合成;分層SHS結(jié)構(gòu);梯度SHS結(jié)構(gòu);Ni-Al金屬間化合物;金剛石
金剛石具有硬度高,熱導(dǎo)率高,耐腐蝕性能良好等優(yōu)點(diǎn),使得其被廣泛地應(yīng)用于各種超硬材料工具制備中[11]。金剛石工具常用的制造方法有:真空熱壓燒結(jié)法,電鍍法以及高溫釬焊法等。[7,16,17]其中高溫釬焊法能使金剛石與Ni-Cr或者Cu-Sn-Ti釬料合金產(chǎn)生高強(qiáng)度的化學(xué)結(jié)合[4,5],所制備的金剛石工具有較高的出刃高度,大大提高了金剛石工具的工作效率[8]。
自蔓延高溫合成法(SHS)可以在短時(shí)間內(nèi)對(duì)材料進(jìn)行快速致密化。此外,自蔓延高溫合成法適合于制備具有多層結(jié)構(gòu)的材料。如以TiC或MoC為粘結(jié)劑制備的梯度金剛石復(fù)合材料[1,9],以Ti-B和金剛石制備的具有多層功能梯度結(jié)構(gòu)的材料(FGM)[12-14]。在我們之前的研究中,基于Ni-Al金屬間化合物體系,用自蔓延的方法制備了一個(gè)金剛石磨具,但是通過(guò)磨削實(shí)驗(yàn)發(fā)現(xiàn),自蔓延反應(yīng)后金剛石磨粒的抗壓強(qiáng)度下降了約20%[24]。此外,我們還發(fā)現(xiàn)在Ni-Al金屬間化合物體系中加入Ni-Cr-P, Cu合金粉末和B元素能降低自蔓延反應(yīng)中燃燒波的速率,使得反應(yīng)更穩(wěn)定,并且能改善反應(yīng)產(chǎn)物的微觀結(jié)構(gòu)形貌[10,15,23]。
在本試驗(yàn)中用自蔓延方法制備了分層和梯度結(jié)構(gòu)的Ni-Al/金剛石復(fù)合材料,并且研究了分層數(shù)量和梯度結(jié)構(gòu)對(duì)自蔓延反應(yīng)過(guò)程和復(fù)合材料微觀形貌的影響,為優(yōu)化金剛石工具的結(jié)構(gòu)和材料設(shè)計(jì)提供了依據(jù)。
本文所用的原料如表1所示,其中Ni、Al、B粉末采購(gòu)于北京中金研新材料有限公司。金剛石采購(gòu)于ElementSix公司,粒徑為60/70目、120/140目、325/400目。

表1 試驗(yàn)原料的特性Table 1 Characteristics of the raw materials
多層結(jié)構(gòu)分為Ni-Al層和金剛石層。其中Ni-Al層的成分包括Ni粉、Al粉(化學(xué)計(jì)量比為Ni∶Al =1∶1),以及60 wt.%的稀釋劑,稀釋劑的成分為60 wt.%Ni-Cr,35wt.%Cu和5wt.%B。金剛石層的成分:目數(shù)為325/400的金剛石,60 wt.%的稀釋劑。將Ni-Al層和金剛石層材料分別用行星式球磨機(jī)進(jìn)行球磨混合,其中球磨機(jī)的轉(zhuǎn)速為150 r/min,時(shí)間為6 h,球料比為5∶1。Ni-Al/金剛石復(fù)合材料多層結(jié)構(gòu)如圖1所示,具體分層參數(shù)如表2所示。

圖1 自蔓延反應(yīng)多層結(jié)構(gòu)示意圖Fig.1 Schematic diagram of multilayer design of self-propagating reaction

表2 分層結(jié)構(gòu)具體參數(shù)Table 2 The specific parameters of layered structure
如圖2所示,金剛石粒度梯度結(jié)構(gòu)分為四個(gè),每個(gè)梯度高度為5 mm,最上面為Ni-Al層;其余的為金剛石層,金剛石層金剛石的濃度為5wt.%。將多層結(jié)構(gòu)和梯度結(jié)構(gòu)的Ni-Al/金剛石混合料放到Φ8 ×15mm的圓柱形磨具中冷壓成型,壓強(qiáng)為60 MPa。最后,自蔓延反應(yīng),反應(yīng)通過(guò)一根直徑為0.28 mm的鎢絲引燃,并在一個(gè)真空度為0.1 Pa的爐內(nèi)進(jìn)行,反應(yīng)如圖3所示。

圖2 自蔓延反應(yīng)粒度梯度結(jié)構(gòu)示意圖Fig.2 Schematic diagram of particle gradient structure of self-propagating reaction

圖3 自蔓延反應(yīng)合成和冷壓模具示意圖Fig.3 The schematic diagram of SHS and the cold pressing mold
SHS反應(yīng)速率通過(guò)彩色攝像機(jī)以25 frames/s拍攝并計(jì)算。將反應(yīng)后的樣品表面及縱切面用金剛石砂紙和研磨膏進(jìn)行拋光,然后用體積分?jǐn)?shù)為1∶1∶1的硝酸,鹽酸,酒精腐蝕液進(jìn)行腐蝕。采用型號(hào)為HITACH S3400的電子掃面顯微鏡分析樣品的斷口形貌,并利用X射線能譜儀對(duì)SHS基體、金剛石與SHS基體界面等做元素的線分布分析。
2.1 多層結(jié)構(gòu)對(duì)SHS過(guò)程的影響
如圖4所示,隨著Ni-Al/金剛石層數(shù)的增加, SHS過(guò)程的燃燒波速率下降。這是因?yàn)閷訑?shù)越多,稀釋劑的含量就越多,稀釋劑中Ni-Cr合金融化時(shí)吸收了大部分Ni-Al自蔓延反應(yīng)的熱量,使得燃燒波速率下降,反應(yīng)變得更慢。B、TiC和VN也能在自蔓延反應(yīng)中產(chǎn)生相似的效果[20-22]。

圖4 層數(shù)對(duì)燃燒波速率的影響Fig.4 Inflence of the number of layer on combustion velocity
3、4、6和10層結(jié)構(gòu)的SHS過(guò)程如圖5、6、7、8所示??梢园l(fā)現(xiàn),對(duì)于3層結(jié)構(gòu)的SHS過(guò)程其平均燃燒波速率為15 mm/s。在0.48 s到0.88 s之間的速率是不均勻的,越往后面其速率越快,這可能是因?yàn)殡S著反應(yīng)的進(jìn)行,底部的物料得到了一定的預(yù)加熱作用。

圖5 3層結(jié)構(gòu)樣品的SHS過(guò)程Fig.5 Images of SHS process of three-layer structure sample
從圖6可以看出,4層結(jié)構(gòu)樣品的SHS過(guò)程穩(wěn)定,燃燒波的速率為14.42 mm/s,反應(yīng)后樣品的形狀保持良好。如圖7所示,6層結(jié)構(gòu)樣品的燃燒波速率為13.89 mm/s,此外可以明顯地看出燃燒波在金剛石層的速率要比在Ni-Al層的速率小。圖8是10層結(jié)構(gòu)樣品的SHS過(guò)程,其反應(yīng)時(shí)間為1.52 s,燃燒波的速率為9.87mm/s,反應(yīng)火焰呈淡黃色。
2.2 多層結(jié)構(gòu)Ni-Al/金剛石微觀結(jié)構(gòu)
多層結(jié)構(gòu)Ni-Al/金剛石微觀相貌如圖9(b)所示。在Ni-Al層可以看到自蔓延高溫合成反應(yīng)常見的微孔結(jié)構(gòu);而在金剛石層,可以看到Ni-Cr釬料合金和Ni-Al緊緊的包覆著金剛石,為金剛石提供了較大的把持力。

圖6 4層結(jié)構(gòu)樣品的SHS過(guò)程Fig.6 Images of SHS process of four-layer structure sample

圖7 6層結(jié)構(gòu)樣品的SHS過(guò)程Fig.7 Images of SHS process of six-layer structure sample

圖8 10層結(jié)構(gòu)樣品的SHS過(guò)程Fig.8 Images of SHS process of ten-layer structure sample

圖9 4層結(jié)構(gòu)示意圖及微觀形貌(a),Ni-Al層微觀相貌,(b)金剛石層微觀形貌(c)Fig.9 The schematic diagram of four-layer structure and microscopic appearance(a),SEM images of Ni-Al layer, (b)microscopic appearance of diamond layer(c)
圖10為多層結(jié)構(gòu)Ni-Al/金剛石復(fù)合材料的X射線衍射圖,圖中主峰為NiAl、Ni-Cr、Cr3C2和Cr7C3。因?yàn)镹i-Al自蔓延高溫合成反應(yīng)在溫度達(dá)到750℃時(shí),鋁已經(jīng)融化而鎳還沒有,反應(yīng)屬于過(guò)鋁的狀態(tài),首先生成NiAl3,隨著反應(yīng)的進(jìn)行,溫度不斷升高,然后出現(xiàn)Ni2Al3,最后才生成NiAl,這表明反應(yīng)已完全進(jìn)行[2]。
2.3 金剛石粒度梯度結(jié)構(gòu)對(duì)SHS過(guò)程的影響
金剛石粒度梯度結(jié)構(gòu)SHS過(guò)程如圖11所示。可以看到自蔓延反應(yīng)為穩(wěn)態(tài)燃燒模式,燃燒波的速率為55.56 mm/s。燃燒波在梯度結(jié)構(gòu)反應(yīng)中速度比在多層結(jié)構(gòu)中傳播的速度要快。這是因?yàn)榻饎偸6忍荻冉Y(jié)構(gòu)中稀釋劑相對(duì)于多層結(jié)構(gòu)少,故燃燒波的傳播受到的影響較小。
2.4 金剛石粒度梯度結(jié)構(gòu)Ni-Al/金剛石微觀結(jié)構(gòu)
每個(gè)梯度的微觀形貌如圖12所示??梢钥吹浇饎偸度氲絅i-Al基體中,被Ni-Al緊緊地包覆著,表明金剛石與Ni-Al結(jié)合強(qiáng)度較好。從圖13的線掃描可以看到Cr元素富集在金剛石的表面,這和其他釬焊金剛石工具的研究發(fā)現(xiàn)一致[3,6,19]。這是因?yàn)樵诟邷貤l件下金剛石易與Cr元素形成強(qiáng)碳化合物如Cr3C2和Cr7C3[18]。同時(shí)也解釋了圖10出現(xiàn)Cr3C2和Cr7C3物相的原因。

圖10 3層結(jié)構(gòu)樣品的X射線衍射圖Fig.10 X-ray diffraction patterns of three-layer structure sample

圖11 金剛石粒度梯度結(jié)構(gòu)SHS過(guò)程Fig.11 Images of SHS process of diamond particle gradient structure

圖12 金剛石粒度梯度結(jié)構(gòu)示意圖及微觀形貌(a),金剛石和合金基體SEM,325/400目、(b)120/140目(c)、60/70目(c)Fig.12 The schematic diagram of diamond particle gradient structure and microscopic appearance(a),SEM images of the diamond and alloy matrix,325/400 meshs(b),120/140 meshs(c),60/70 meshs(d)

圖13 金剛石粒度梯度(325/400)EDX線掃描區(qū)域SEM(a),EDX線掃描區(qū)域BSEM(b), EDX碳的線掃描結(jié)果(c)、鉻(d)、鎳(e)、鋁(f)Fig.13 SEM of EDX line scanning area of diamond particle gradient(325/400)(a),BSEM images of EDX line scanning area(b),line scanning result of EDX of C(c),Cr(d),Ni(e),Al(f)
多層結(jié)構(gòu)及金剛石粒度梯度結(jié)構(gòu)的Ni-Al/金剛石自蔓延反應(yīng)是穩(wěn)態(tài)燃燒的過(guò)程。在多層結(jié)構(gòu)中,隨著層數(shù)的增加,燃燒波的速率降低,燒波在Ni-Al層中的傳播速度比在金剛石層中快;金剛石與Ni-Al的結(jié)合良好,自蔓延反應(yīng)使得釬料合金Ni-Cr與金剛石生成了強(qiáng)碳化合物Cr3C2和Cr7C3。
[1] Biswas A.and S.K.Roy,Comparison between the microstructural evolutions of two modes of SHS of NiAl:key to a common reaction mechanism[J].Acta Materialia,2004.52(2):257-270.
[2] Biswas A.,S.K.Roy,K.R.Gurumurthy,N.Prabhu,and S.Banerjee.A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode[J].Acta Materialia, 2002.50(4):757-773.
[3] Chattopadhyay A.K.,L.Chollet,and H.E.Hintermann. Containing papers presented at the European Materials Research Society 1990 Spring Meeting on Metallurgical Coatings and Materials Surface ModificationsInduction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere[J].Surface and Coatings Technology,1991.45(1):293-298.
[4] Duan Duan-Zhi,Bing Xiao,Bo Wang,Peng Han,Wen-Jie Li, and Si-Wei Xia.Microstructure and mechanical properties of pre-brazed diamond abrasive grains using Cu-Sn-Ti alloy [J].International Journal of Refractory Metals and Hard Materials,2015.48:427-432.
[5] Duan Duan-Zhi,Bing Xiao,Wei Wang,Zi-Yu Zhang,Bo Wang,Peng Han,and Xiao-Yang Ding.Interface characteristics and performance of pre-brazed diamond grains with Ni-Cr composite alloy[J].Journal of Alloys and Compounds, 2015.644:626-631.
[6] Feng Jicai,Xiangyu Dai,Dong Wang,Rui Li,and Jian Cao. Microstructure evolution and mechanical properties of Zr O2/ TiAl joints vacuum brazed by Ag-Cu filler metal[J].Materials Science and Engineering:A,2015.639:739-746.
[7] Islak S.and H.Celik.Effect of Sintering Temperature and Boron Carbide Content on the Wear Behavior of Hot Pressed Diamond Cutting Segments[J].Science Of Sintering,2015.47 (2):131-143.
[8] Kir Durmus,Serkan Islak,Halis Celik,and Ertugrul Celik. Effect of the cBN Content and Sintering Temperature on the Transverse Rupture Strength and Hardness of cBN/Diamond Cutting Tools[J].Science Of Sintering,2012.44(2):235-243.
[9] Levashov E.A.,I.P.Borovinskaya,A.V.Yatsenko,M. Ohyanagi,S.Hosomi,and M.Koizumi.SHS-A New Technological Approach for Creation of Novel Multilayered Diamond-Containing Materials With Graded Structure,in Functionally Graded Materials 1996[M],I.S.Miyamoto,Editor.1997, Elsevier Science B.V.:Amsterdam.283-288.
[10] Li Y.X.,J.D.Hu,Y.H.Liu,and Z.X.Guo.Effect of Cu addition and heat treatment self-propagating high temperature synthesis reaction in Al-Ti-C system[J].Science Of Sintering,2008.40(2):207-214.
[11] Loginov Pavel,Leon Mishnaevsky Jr,Evgeny Levashov,and
Mikhail Petrzhik.Diamond and cBN hybrid and nanomodified cutting tools with enhanced performance:Development,testing and modelling[J].Materials&Design,2015.88:310-319.
[12] Michalski Andrzej and Konrad Cymerman.Ni3Al/diamond composites produced by pulse plasma sintering(PPS)with the participation of the SHS reaction[J].Journal of Alloys and Compounds,2015.636:196-201.
[13] Ohyanagi M Yoshikava T,Koizumi M,Hosomi S,Levashov Ea,Borovinskaya Ip.Fabrication of diamond dispersed cermets by SHS,in Dynamic Pseudo IsostaticCompaction (DPIC).Int J SHS.2015.387-394.
[14] Padyukov Konstantin L.and Evgeny A.Levashov,Self-propagating high-temperature synthesis:a new method for the production of diamond-containing materials[J].Diamond and Related Materials,1993.2(2-4):207-210.
[15] Qin L.,J.Hu,C.Cui,H.Wang,and Z.Guo.Effect of Al Content on Reaction Laser Sintering of Ni-Al Powder[J].Science Of Sintering,2008.40(3):295-301.
[16] Sung C.M.Brazed diamond grid:a revolutionary design for diamond saws[J].Diamond and Related Materials,1999.8(8 -9):1540-1543.
[17] Sung James C.and Michael Sung.The brazing of diamond[J]. International Journal of Refractory Metals and Hard Materials, 2009.27(2):382-393.
[18] Wang C.Y.,Y.M.Zhou,F.L.Zhang,and Z.C.Xu.Interfacial microstructure and performance of brazed diamond grits with Ni-Cr-P alloy[J].Journal of Alloys and Compounds,2009.476(1-2):884-888.
[19] Wang Tianpeng,Toni Ivas,Christian Leinenbach,and Jie Zhang.Microstructural characterization of Si3N4/42Cr Mo joint brazed with Ag-Cu-Ti+TiNp composite filler[J]. Journal of Alloys and Compounds,2015.651:623-630.
[20] Yeh C.L.,H.C.Chuang,E.W.Liu,and Y.C.Chang. Effects of dilution and preheating on SHS of vanadium nitride [J].Ceramics International,2005.31(1):95-104.
[21] Yeh C.L.,S.H.Su,and H.Y.Chang.Effects of TiCaddition on combustion synthesis of NiAl in SHS mode[J].Journal of Alloys and Compounds,2005.398(1-2):85-93.
[22] Yeh C.L.and W.Y.Sung.Combustion synthesis of Ni3Al by SHS with boron additions[J].Journal of Alloys and Compounds,2005.390(1-2):74-81.
[23] Zhang F.L.,Z.F.Yang,Y.M.Zhou,C.Y.Wang,and H.P.Huang.Fabrication of grinding tool material by the SHS of Ni-Al/diamond/dilute[J].International Journal of Refractory Metals and Hard Materials,2011.29(3):344-350.
[24] Zhou Y.M.,F.L.Zhang,and C.Y.Wang.Effect of Ni-Al SHS reaction on diamond grit for fabrication of diamond tool material[J].International Journal of Refractory Metals and Hard Materials,2010.28(3):416-423.
Study of Layered and Gradient Structural Ni-Al/Diamond Composite Prepared by SHS Method
LU Jia-feng,ZHANG Feng-lin,YANG Zhi-feng,ZHOU Yu-mei
(School of Mechanical and Electronic Engineering,Guangdong University of Technology,Guangzhou,China 510006)
The layered and gradient structural Ni-Al/diamond composite has been prepared by SHS method.The influence of the multilayer nature and the diamond particle size gradient structure on the self-propagating reaction process and microscopic appearance of Ni-Al/diamond composite has been studied.Result shows that as the number of layers increases,the combustion wave velocity of the self-propagating reaction decreases;the combustion wave velocity of the self-propagating reaction in the diamond particle gradient structure is higher than that in the diamond layered structure.The microscopic appearance analysis result shows that strong carbon compounds,Cr3C2and Cr7C3,were created by solder alloy Ni-Cr and diamond through self-propagating reaction,which strenghens the adhesion of diamond and the alloy powder matrix.
SHS;Layered SHS structure;gradient SHS structure;Ni-Al intermetallics; diamond
TQ164
A
1673-1433(2017)04-0019-08
2016-11-15
項(xiàng)目獲得國(guó)家自然科學(xué)基金(51275096)、廣東省自然科學(xué)基金(2015A030313491)和廣東省科技計(jì)劃(2013B010204025)資助
盧家鋒(1988-),男,在讀研究生,從事超硬材料及磨料磨具研究。
張鳳林(1972-),男,博士,教授,主要研究方向?yàn)槌膊牧瞎ぞ咧圃煊泊嗖牧霞庸ぜ胺抡妗-mail:zhangfl@gdut.edu
盧家鋒,張鳳林,楊志峰,等.自蔓延燃燒合成法制備分層及梯度結(jié)構(gòu)的Ni-Al/金剛石復(fù)合材料研究[J].超硬材料工程,2017,29(4):19-26.