駱靖宇,李學艷,李青松,姚寧波,陸保松,李國新,陳國元,廖文超,高乃云(.蘇州科技大學環境科學與工程學院,江蘇 蘇州 5009;.廈門理工學院水資源環境研究所,福建 廈門 604;.同濟大學污染控制與資源化研究國家重點實驗室,上海 0009;4.浙江工業大學建筑工程學院,浙江 杭州 004)
紫外活化過硫酸鈉去除水體中的三氯卡班
駱靖宇1,2,李學艷1,李青松2*,姚寧波1,2,陸保松2,4,李國新2,陳國元2,廖文超2,高乃云3(1.蘇州科技大學環境科學與工程學院,江蘇 蘇州 215009;2.廈門理工學院水資源環境研究所,福建 廈門 361024;3.同濟大學污染控制與資源化研究國家重點實驗室,上海 200092;4.浙江工業大學建筑工程學院,浙江 杭州 310014)
采用紫外活化過硫酸鈉(UV/PS)降解三氯卡班(TCC).考察了UV、PS和UV/PS聯用工藝去除TCC的效果,研究了PS投加量、反應初始pH值和腐殖酸(HA)等因素對UV/PS降解TCC的影響,推測了UV/PS工藝中TCC可能的降解途徑,并對比了UV/PS和UV/H2O2工藝對TCC的去除效果和經濟性.研究表明:UV與PS聯用能夠高效去除TCC,其降解過程符合擬一級動力學模型(R2≥0.95);擬一級反應速率常數k隨著PS投加量的增加先增大再減小,在PS投加量為250μmol/L時,k達到最大值0.0810min-1;偏酸性條件(pH=6.0)有利于TCC的降解;HA對TCC的降解有抑制作用,抑制作用與HA的濃度呈正相關; GC/MS鑒定表明, TCC降解過程中主要的中間產物有異氰酸4-氯苯酯和對氯苯胺,其可能的降解途徑為 TCC分子結構中與酮羰基相連的 C-N鍵斷裂,脫氯,經過一系列的反應形成對氯苯胺和異氰酸 4-氯苯酯;UV/PS降解TCC過程中溶液中脫氯反應導致Cl-濃度增加;與UV/H2O2工藝相比, 相同條件下UV/PS工藝中k值增大了96.65%,單位電能消耗量提高了97%.
UV/PS;三氯卡班;硫酸根自由基;中間產物
三氯卡班(triclocarban, TCC)是一種典型的藥品和個人護理用品(PPCPs),廣泛應用于抗菌香皂、洗手液、化妝品和消毒劑中[1].其親水性低,親脂性強(pH=7.0時,logKow為4.9)[2],物理化學性質穩定,自然環境中較難降解.研究表明 TCC對一些藻類和老鼠、魚類、蝸牛具有慢性毒性影響,還會導致人類癌癥、生殖功能障礙和發育異常等健康問題[3-8].近年來,不同水體中均檢測出了TCC[9-15].我國五大水系的TCC檢出率達到了的100%[16-17].目前,水體中的TCC已引起國內外學者專家廣泛關注.
Gledhill[18]和Ying等[19]分別對TCC的生物降解做了相關的研究,發現生物去除TCC的效果不佳,且耗時長、條件嚴格;Sirés等[20]探究了電芬頓法對TCC的去除,去除效果受pH值影響大.傳統的水處理技術難以有效地去除水中的TCC[13,21-24],因此,亟待探尋水體中TCC經濟有效去除的方法.UV活化PS具有反應條件溫和、自由基產生快速、氧化性強且穩定、無選擇性、操作簡單等特點,逐步受到廣大學者的關注.
實驗采用UV活化PS的工藝來去除水中的TCC,對比了UV、PS和UV/PS聯用三種工藝對TCC的去除效果,考察了 PS投加量、反應初始pH值、腐殖酸(HA)和溫度等因素的影響,探討了TCC在UV/PS工藝中可能的降解途徑,以期為實際應用中UV/PS降解水中TCC提供理論指導和實驗基礎.
1.1 試劑與儀器
三氯卡班(TCC)(德國 Dr.Ehrenstorfer公司,純度>99.5%);過硫酸鈉(PS)(AR,≥98.0%);腐殖酸(HA)(Tech,美國 Sigma-Aldrich);異氰酸 4-氯苯酯(德國 Dr.Ehrenstorfer公司,99.5%);對氯苯胺(德國Dr.Ehrenstorfer公司,≥98.0%),HCl、NaOH均為分析純;甲醇、乙腈(HPLC級,德國 Merck); 30%過氧化氫(H2O2)(AR)實驗室用水為 Mili-Q超純水(≤18.2M?).
LC-20A高效液相色譜儀(Shimadzu,日本),自動進樣器(SIL-20A),檢測器(SPD-M20A);氣相色譜質譜聯用儀(GCMS-QP2010Ultra,日本島津);GC/MS自動進樣器(AOC-5000,日本島津),色譜柱(Rxi?-5ms: 30m×0.32mm×0.25μm,日本島津);離子色譜儀(戴安 ICS-1100);pH計(Eutevch,美國);HJ-6A型磁力恒溫攪拌器(江蘇金壇崢嶸儀器);HC-C18小柱(Anpel);紫外線光源(主波長254nm,楊紫特種紫外線光源,低壓汞燈,9W),紫外線強度計(TN-2365A,臺灣泰納).
1.2 實驗方法
實驗前開啟紫外燈預熱5min,然后置于燒杯中,保持紫外燈的位置相對燒杯固定,燒杯邊緣位置(圖中距離燒杯底部 8cm處的燒杯壁)的光強為11.5μW/cm2;投加一定量的PS溶液后打開紫外燈開始反應,分別在0、5、10、20、30、45、60min時取樣,隨即加入適量甲醇淬滅,經0.45μm的玻璃纖維濾膜過濾后分析.GC/MS產物鑒定前用固相萃取對樣品進行富集.反應裝置見圖1.

圖1 實驗裝置示意Fig.1 Schematic description of the reactor
1.3 分析方法
HPLC 條件:色譜柱為 Inertsil?ODS-SP(250mm×4.6mm,5μm);流動相為乙腈:水=65:35 (V:V),流動相流速為 1.0mL/min;檢測波長為265nm;進樣體積為10μL; S/N>3.
GC/MS條件:載氣為高純度氦氣,90kPa;進樣量為1μL;無分流進樣方式;進樣口溫度為280℃;爐溫控制:初始溫度為60℃,保留時間安3min,然后以 5℃/min升溫至 150℃,持續 5min,然后以10℃/min升溫至280℃,持續3min;MS離子化溫度為 250℃;接口溫度為 280℃;采用 Scan掃描:質荷比 m/z起始為 50,終止為 600,掃描時間為0~40min.
2.1 UV、PS和UV/PS工藝對TCC的降解
UV、PS和UV/PS工藝對TCC的降解結果如圖2所示.

圖2 PS、UV和UV/PS對TCC的降解效果Fig.2 Removal of TCC by direct UV irradiation, PS oxidation alone, and UV/PS process [TCC]=400μg/L, [PS]=0.25mmol/L, pH=6.0
實驗表明,60min內單獨PS對TCC的去除率小于 14%;單獨 UV對 TCC的去除增加至61.52%;相同條件下,UV/PS聯用對TCC的去除可達99.95%,表明UV/PS聯用工藝具有協同作用,可以更有效地降解TCC.TCC降解曲線的擬一級動力學擬合結果表明,UV/PS工藝中擬一級動力學常數k比單獨UV光降解的增大了4.6倍.
PS分子中含有過氧基且在水中可電離產生S2O82-,其氧化還原電位為2.01V,具有一定的氧化能力[25],因此,單獨PS對TCC有一定的降解能力;單獨 UV照射下,對 TCC降解起主要作用的是·O2[26].UV/PS工藝中,PS在UV的照射下,其中的O-O鍵會因吸收能量而斷裂,產生含有孤電子對的·SO4-,·SO4-不僅具有超強氧化性,還可以與水(H2O)或者氫氧根(OH-)反應生成羥基自由基(·OH),增加溶液中自由基的濃度,使得TCC能夠高效降解,其反應過程如方程(1)-(3)所示:

2.2 PS投加量的影響
實驗中考察了PS投加量對UV/PS降解TCC的影響,不同PS投加量下TCC的降解曲線的擬一級動力學擬合結果見圖3.

圖3 PS投加量對UV/PS降解TCC的影響Fig.3 Effect of PS concentration on TCC degradation by UV/PS process [TCC]=400μg/L, pH=6.0
由圖3可知,在實驗范圍內,TCC的降解符合擬一級動力學(R2≥0.91).PS投加量從 0增加到0.25mmol/L,擬一級動力學常數k由0.0151min-1增大為0.0810min-1,PS投加量為0.25mmol/L時,實驗中60min TCC的降解率可達99.44%;繼續增加至0.75mmol/L,擬一級動力學常數k反而減小為0.0344min-1.因此,UV/PS工藝中TCC的去除并不是隨著PS投加量的增加而越高.

由式(1)~(3)可知,PS濃度的增加可以提高溶液中自由基·SO4-和·OH的穩態濃度,從而加速TCC的降解,因此,在投加量0~0.25mmol/L范圍內TCC的去除隨著PS濃度的增加而增加;但有研究表明PS也會消耗·SO4-和·OH,生成氧化性較弱的·S2O8-[式(5)和(6)],影響 TCC的降解(PS與·SO4-和·OH 反應的速率常數分別是 5.5× 105M-1s-1[27]和 1.4×107M-1s-1[28]),故實驗中當 PS投加量較大(0.5mmol/L和 0.75mmol/L)時 TCC的降解效果反而下降.
2.3 初始pH的影響
pH是影響高級氧化(AOPs)處理效果的重要參數.實驗中考察了pH對TCC去除的影響.不同pH值時TCC的去除擬合結果見圖4.

圖4 pH對UV/PS降解TCC的影響Fig.4 Effect of initial pH on TCC degradation by UV/PS process
實驗中 pH值為 4.0、6.0、7.0、8.0和 9.5時,60min內 TCC的去除率分別為 76.50%、99.44%、91.20%、91.71%和 74.74%.pH=6.0時TCC的去除率最高.
由圖 4可知,實驗范圍內,隨著 pH的增大,k先增大后減小,在 pH=6.0時,k達到最大值0.0810min-1.這與Saien等在考察pH對UV/PS去除水楊酸的影響時的研究結果相一致[29-31].
過硫酸根離子非催化反應的活化能為33.5Kcal,而酸催化反應的活化能為26.0Kcal[32],酸性條件下S2O82-會與H+發生酸催化反應[33-34],因此過硫酸根在酸催化反應中更易轉化為硫酸根自由基,產生更多的·SO4-[式(7)和(8)],促進TCC的降解.但強酸條件下,更易發生式9和10的反應,反而消耗·SO4-產生氧化性更弱的自由基[35],導致TCC的降解速率降低.因此,相比于中性和強酸條件,偏酸性條件更有利于TCC的降解.

堿性條件下·SO4-會與 OH-反應生成·OH(式3),但堿性環境中·OH的氧化性較弱[36],因此盡管堿性條件下有·OH產生,但效果沒有偏酸性和中性條件下好.有研究表明,堿性環境中大量生成的SO42-[式(3)]對·SO4-和·OH 均有抑制作用[31,37].因此,在一定 pH范圍內,偏酸性條件(本實驗為pH=6.0)下TCC的降解效果更好.
2.4 腐殖酸的影響
腐殖酸(HA)是天然水體中主要的有機物,因此本實驗采用 HA來模擬天然水體中的有機物(NOM),考察了HA對TCC去除的影響,結果如圖5所示.
實驗中 HA 濃度為 0,0.5,1.0,3.0,5.0mg/L時,TCC的去除率分別為 99.45%、96.99%、96.36%、89.03%和63.78%;另外由圖4可知,TCC降解的動力學常數 k隨著 HA濃度的增加由0.0810min-1減小到 0.0158min-1.表明 HA 對UV/PS降解TCC有著的抑制作用.
基于UV的高級氧化體系中HA有兩方面的影響,一方面,UV激發下NOM可以產生·OH、·O等活性自由基,促進污染物的降解;另一方面NOM中的各種不飽和官能團對UV有一定的吸收能力,削弱光的透射能力,同時會與目標污染物競爭自由基[38].
實驗中HA一直起抑制作用,原因可能是HA屏蔽了UV光輻射,降低了UV的活化作用;HA分子中的酚羥基、胺基、羧基等活性基團與目標污染物TCC競爭·SO4-和·OH等自由基,導致自由基的穩態濃度降低[39].

圖5 腐植酸對UV/PS降解TCC的影響Fig.5 Effect of humic acid on TCC degradation by UV/PS process
2.5 UV/PS降解TCC的反應途徑分析
TCC的初始濃度為 900μg/L, PS投加量0.25mmol/L,反應60min后取出溶液固相萃取富集500倍后經GC/MS鑒定,發現在9.97min和11.9min有兩個明顯的出峰(圖 6),特征離子碎片的質荷比分別為 m/z=63,90,125,153和 m/z= 65,92,127.經譜庫檢索鑒定為異氰酸 4-氯苯酯(1-chloro-4-isocyanato-benzen)和對氯苯胺(4-chloroaniline).
據此推斷出TCC的降解產物可能有異氰酸4-氯苯酯和對氯苯胺.TCC在UV/PS系統中可能的光降解途徑如圖7所示.

圖6 總離子色譜Fig.6 Total ion chromatogram (TIC)

圖7 TCC可能的光降解途徑Fig.7 Proposed reaction pathway for TCC degradation by UV/PS process
根據降解過程中中間產物的生成及Cl-濃度的增加,可以推測TCC的降解路徑:TCC分子結構中酮羰基左側的C—N鍵(與二氯苯胺環相連)斷裂,形成異氰酸4-氯苯酯和3,4-二氯苯胺,然后3,4-二氯苯胺脫掉一個Cl形成對氯苯胺,這條降解途徑與丁世玲[26]的研究結果相似.還有一種可能的途徑:酮羰基兩側的 C-N鍵(分別與二氯苯胺環和對氯苯胺環相連)斷裂,經過一系列的反應形成主要中間產物對氯苯胺.TCC的降解過程中兩種降解途徑可能同時存在,異氰酸 4-氯苯酯和對氯苯胺等中間產物繼續被降解,生成其他物質,最終苯環開環轉化為CO2、H2O等[40-43].
2.6 TCC降解過程中主要成分的變化
實驗考察了TCC的去除和降解產物的生成情況,結果見圖8.
TCC的快速降解發生在前30min,去除率達到 95.34%,之后反應速率逐漸減小,在 60min時TCC濃度已經低于檢出限.TCC降解產生異氰酸4-氯苯酯和對氯苯胺.在前15min異氰酸4-氯苯酯和對氯苯胺穩定增加至 142.45μg/L 和169.55μg/L,然后開始緩慢減少,在 60min時濃度降低至70.30μg/L和100.55μg/L.從TCC的降解路徑分析,對氯苯胺的產生量應該比異氰酸4-氯苯酯多,但其在反應過程中的濃度一直比后者低,這可能是因為TCC分子結構中的對氯苯胺環比二氯苯胺環降解更快[18]導致的.實驗中隨著反應的進行,TCC分子結構中的3個氯不斷脫離形成異氰酸 4-氯苯酯和對氯苯胺及大量 Cl-等,部分異氰酸4-氯苯酯和對氯苯胺降解也會有Cl-脫離,導致溶液中Cl-的濃度增大,在前15minCl-快速增加至242.73μg/L,之后Cl-的增加速率較之前有所下降,60min時 Cl-濃度達到 429.19μg/L,這表明UV/PS可以快速降解TCC并脫氯,進而可以降低溶液的毒性[44-45].

圖8 TCC降解過程中主要物質的濃度變化Fig.8 Concentration changes of main products during TCC degradation by UV/PS process
在降解過程中TCC與異氰酸4-氯苯酯和對氯苯胺的摩爾比并不是 1:1.可能是因為在異氰酸 4-氯苯酯和對氯苯胺形成的同時一部分已經被反應消耗;可能有其它反應途徑產生其它的中間產物,馮振濤等[46]的研究表明,有更為復雜的降解產物產生.
2.7 與UV/H2O2工藝比較
實驗中對比考察了UV/PS與典型的高級氧化工藝UV/H2O2去除TCC的效能,結果見圖9.

圖9 UV/PS、UV/H2O2對TCC處理效果比較Fig.9 Removal of TCC by UV/PS and UV/H2O2processes
H2O2與 PS的投加量均為 250mmol/L時, TCC的去除均遵循自由基反應的擬一級動力學,反應速率常數k分別是0.04117min-1(UV/ H2O2)和 0.08096min-1(UV/PS),相比 UV/H2O2, UV/PS降解TCC的k增加了96.65%.

表1 不同體系的單位電能消耗量和氧化劑成本Table 1 The electrical energy per order and oxidant costs in different systems

采用單位電能消耗量(EE/O)來評價兩種工藝的電能利用效率,其公式如下[47]:式中:EE/O:單位電能消耗量,kW·h/m3;P:紫外燈的功率,kW;V為時間t內處理溶液的體積,L;k為反應速率常數,min-1.
EE/O值越低,體系中的電能利用率越高,效率也越高[48].
將反應速率常數 k帶入公式得到兩個體系的單位電能消耗表1所示,可以看出,UV/PS具有更高的電能利用率.另外,氧化劑的成本方面, UV/PS也略低于UV/H2O2.
3.1 UV活化PS工藝能有效去除水體中的TCC,降解過程符合擬一級反應動力學模型,UV輻射強度為 11.5μW·cm-2,PS投加量為 250μmol·L-1, pH=6.0時,60min的后,初始濃度為 400μg·L-1的TCC去除率可達99.44%.
3.2 TCC的去除隨PS投加量的增加和pH值的升高,先增強后減弱,偏酸性環境更有利于 TCC的降解,腐殖酸對 TCC的去除有抑制作用,且抑制作用與腐殖酸濃度呈線性關系.
3.3 UV/PS降解TCC的中間產物主要有異氰酸4-氯苯酯和對氯苯胺,可能是TCC分子結構中酮羰基兩側的C-N鍵斷裂產生的.
3.4 UV/PS聯用工藝比UV/H2O2工藝更加有優勢,其動力學常數k提高了96.65%.
[1]紀 春.三氯卡班研究現狀與展望 [J]. 山西農業科學, 2010, 38(10):82-87.
[2]孫 靜.環境介質中三氯生和三氯卡班的分析研究 [D]. 青島:山東輕工業學院, 2011.
[3]Nolen G, Dierckman T. Reproduction and teratogenic studies of a 2:1mixture of 3,4,4'-trichlorocarbanilide and 3-trifluoromethyl-4,4'-dichlorocarbanilide in rats and rabbits [J]. Toxicology & Applied Pharmacology, 1979,51(3):417-425.
[4]Pone C, Richard J, Bonte C. Methemoglobinemia in the newborn. Discussion of the etiologic role of trichlorocarbanilide [J]. Semaine Des Hopitaux, 1974,50:359-365.
[5]Johnson R, Navone R, Larson E. An Unusual Epidemic of Methemoglobinemia [J]. Pediatrics, 1963,31(31):222-225.
[6]Coogan MA, Point TWL. Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a north texas, usa, stream affected by wastewater treatment plant runoff [J]. Environmental Toxicology and Chemistry, 2008,27(8):1788-1793.
[7]Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, S M, et al. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens [J]. Environmental Health Perspectives, 2008, 116(9):1203-1210.
[8]Chen J, Ahn K C, Gee N A, et al. Triclocarban enhances testosterone action: a new type of endocrine disruptor? [J]. Endocrinology, 2008,149(3):1173-1179.
[9]Heidler J, Halden R U. Fate of organoha- logens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling [J]. Journal of Environmental Monitoring, 2009,11(12):2207-2215.
[10]Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihista- mines and lipid regulators in a wastewater treatment plant [J]. Chemosphere, 2014,111(111C):418-426.
[11]Li X, Zheng W, Kelly W. Occurrence and removal of pharmaceutical and hormone contaminants in rural wastewater treatment lagoons [J]. Science of the Total Environment, 2013, 445-446:22-28.
[12]W. Kolpin D, T.Furlong E, T.Meyer M, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999~2000: a national reconnaissance [J]. Environmental Science & Technology, 2002,36(6):1202-1211.
[13]Sapkota A, Heidler J, Halden RU. Dete- ction of triclocarban and two cocontaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry [J]. Environmental Research, 2007,103(1):21-29.
[14]Cha J, Cupples A M. Detection of the antimicrobials triclocarban and triclosan in agricultural soils following land application of municipal biosolids [J]. Water Research, 2009,43(9):2522-2530.
[15]Miller T R, Heidler J, Chillrud S N, et al. Fate of Triclosan and Evidence for Reductive Dechlorination of Triclocarban in Estuarine Sediments [J]. Environmental Science & Technology, 2008,42(12):4570-4576.
[16]Zhao J L, Zhang Q Q, Chen F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: Implications for controlling of urban domestic sewage discharge [J]. Water Research, 2013,47(1):395-405.
[17]Dai G, Wang B, Huang J, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China [J]. Chemosphere, 2015,119: 1033-1039.
[18]Gledhill W E. Biodegradation of 3,4,4′-trichlorocarbanilide, TCC, in sewage and activated sludge [J]. Water Research, 1975, 9(7):649-654.
[19]Ying G-G, Yu X-Y, Kookana RS. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobicconditions and comparison with environmental fate modelling [J]. Environmental Pollution, 2007,150(3):300-305.
[20]Sirés I, Oturan N, Oturan M A, et al. Electro-Fenton degradation of antimicrobials triclosan and triclocarban [J]. Electrochimica Acta, 2007,52(17):5493-5530.
[21]A. Coogan M, Edziyie R E, Point T W L, et al. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream [J]. Che- mosphere, 2007,67(10):1911-1918.
[22]Halden R U, Paull D H. Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectro- metry [J]. Environmental Science & Technology, 2004, 38(18):4849-4855.
[23]Halden R U, Paull D H. Co-Occurrence of Triclocarban and Triclosan in U.S. Water Resources [J]. Environmental Science & Technology, 2005,39(6):1420-1426.
[24]Young T A, Heidler J, Matos-Pérez C R, et al. Ab Initio and in Situ Comparison of Caffeine, Triclosan, and Triclocarban as Indicators of Sewage-Derived Microbes in Surface Waters [J]. Environmental Science & Technology, 2008,42(9):3335-3340.
[25]Monteagudo J M, Durán A, González R, et al. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ions, and H2O2[J]. Applied Catalysis B: Environmental, 2015,176-177: 120-129.
[26]丁世玲.三氯卡班的光降解行為的研究 [D]. 濟南:齊魯工業大學, 2013.
[27]Xiao-Ying Yu, Zhen-Chun Bao, John R. Barker. Free radical reactions involving Cl·, Cl2-·, and SO4-· in the 248nm photolysis of aqueous solutions containing S2O82-and Cl-[J]. Journal of Physical Chemistry A, 2004,35(14):295-308.
[28]Buxton G V, Greenstock C L, Helman W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988,17(2):513-886.
[29]Saien J, Osali M, Soleymani A R. UV/persulfate and UV/ hydrogen peroxide processes for the treatment of salicylic acid: effect of operating parameters, kinetic, and energy consumption [J]. Des- alination and Water Treatment, 2015,56(11):3087-3095.
[30]Salari D, Niaei A, Aber S, et al. The photooxidative destruction of C.I. Basic Yellow 2using UV/S2O82-process in a rectangular continuous photoreactor [J]. Journal of Hazardous Materials, 2009,166(1):61-66.
[31]Saien J, Soleymani A R, Sun J H. Parametric optimization of individual and hybridized AOPs of Fe2+/H2O2and UV/S2O82-for rapid dye destruction in aqueous media [J]. Desalination, 2011, 279(1-3):298-305.
[32]Leea Y-C, Loa S-L, Kuob J, Lin Y-L. Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20~40℃ [J]. Chemical Engineering Journal, 2012,198-199:27-32.
[33]高乃云,朱延平,談超群,等.熱激活過硫酸鹽氧化法降解敵草隆[J]. 華南理工大學學報, 2013,12:36-42.
[34]張乃東,張曼霞,彭永臻.S2O82-派生氧化法催化降解水中的甲基橙 [J]. 催化學報, 2000,27(5):445-448.
[35]郭洪光,劉 楊,張永麗.紫外激活過硫酸鈉降解環境雌激素17β-雌二醇分析 [J]. 東北大學學報, 2016,37(6):880-885.
[36]WU Y. The research on advanced oxidation processes with hydroxyl radical (HO·) and ssulfate radical (SO4·-) [D]. 上海:復旦大學, 2014.
[37]E. Lipczynska-Kochany, G. Sprah, S. Harms. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction [J]. Chemosphere, 1995,30(1):9-20.
[38]謝鵬超.紫外/過硫酸鹽氧化除嗅并控制消毒副產物生成的效能研究 [D]. 哈爾濱:哈爾濱工業大學, 2015.
[39]姚寧波,李學艷,李青松,等. Fe( )Ⅱ活化過硫酸鈉去除水中三氯生 [J]. 環境工程學報, 2016,10(9):4737-4744.
[40]熊重鐸,程 強,施 薇,等.微波無極紫外光催化降解茜素綠的性能研究及產物分析 [J]. 環境工程學報, 2014,8(12):5185-5190.
[41]徐 蕾.基于硫酸根自由基反應的 2,4,6-三氯苯酚氧化降解的研究 [D]. 上海:東華大學, 2012.
[42]Geeta S, Rao B, Mohan H, Mittal J. Radiation-induced oxidation of substituted benzaldehydes: A pulse radiolysis study [J]. Journal of Physical Organic Chemistry, 2004,17(17):194-198.
[43]Singh T, Gejji S, Rao B, et al. Radiation chemical oxidation of aniline derivatives [J]. Journal of the Chemical Society Perkin Transactions, 2001,7(7):1205-1211.
[44]魏 杰,王麗莎,寧大亮,等.脫氯對降低消毒污水致生物毒性的作用 [J]. 中國給排水, 2004,20(4):16-19.
[45]吳德禮,王紅武,馬魯銘.催化鐵還原去除含氯有機物生物毒性的研究 [C]//持久性有機污染物論壇暨持久性有機污染物全國學術研討會論文集, 2006:203-207.
[46]馮振濤.UV光照和UV/H2O2聯用法降解三氯卡班的研究 [D].新鄉:河南師范大學, 2015.
[47]Bricher K G, Bolton J R. Figures-of- merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report) [J]. Pure and App. Chem., 2001,73(4):627-637.
[48]程麗華,倪福祥.UV/草酸鐵/H2O2法降解苯系物的研究 [J]. 環境科學與技術, 2006,29(2):89-90.
Degradation of triclocarban aqueous solution through UV irradiation-activated sodium persulfate process.
LUO Jing-yu1,2, LI Xue-yan1, LI Qing-song2*, YAO Ning-bo1,2, LU Bao-song2,4, LI Guo-xin2, CHEN Guo-yuan2, LIAO Wen-chao2, GAO Nai-yun3(1.School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;2.Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361024, China;3.National Key Laboratory of Pollution Control and Reuse, Tongji University, Shanghai 200092, China;4.College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China). China Environmental Science, 2017,37(9):3324~3331
Triclocarban (TCC) in aqueous solution was degraded by UV-activated persulfate. The removal efficiency of TCC by direct UV irradiation, PS oxidation alone, and UV/PS process was compared in this experiment. The effect of PS dosage, initial pH and HA on TCC degradation by UV/PS was investigated. The possible degradation approach and intermediates was proposed, meanwhile, the effect of degradation and economical efficiency for UV/PS were compared with UV/H2O2. The results showed that UV irradiation-activated sodium persulfate process could remove TCC efficiently and TCC degradation followed the pseudo-first order kinetic model well (R2≥0.95). The pseudo-first-order-constant k increased firstly and then decreased with the increase of PS dosage. The value of k reached a maximum of 0.0810min-1when the dosage of PS was 250μmol/L. Slightly acidic condition (pH=6.0) was better for TCC degradation. The removal of TCC was inhibited in the presence of HA, and the effect of inhibition was significantly positively correlated with the concentration of HA. 1-chloro-4-isocyanato-benzen and 4-chloroaniline were identified as the main intermediates by GC/MS. The possible degradation approach is that the C-N chemical bonds of the keto carbonyl group were broken during the degradation process, and thus 1-chloro-4-isocyanato-benzen and 4-chloroaniline was generated via the dechlorinationand other reactions. The concentration of Cl-was increased through the degradation process of TCC by UV/PS. Compared with UV/H2O2process, the pseudo-first-order-constant k and the electrical energy per order of UV/PS process increased by 96.65% and 97%, respectively.
UV/PS;triclocarban;sulfate radical;intermediates
X703
A
1000-6923(2017)09-3324-08
2017-02-28
國家自然科學基金項目(51378446,51678527,51408518);福建省科技計劃引導性項目(2017Y0079);福建省高校新世紀優秀人才支持計劃項目(JA14227);福建省自然科學基金項目(2016J01695);江蘇省企業研究生工作站合作項目;廈門市科技局項目(3502Z20131157,3502Z20150051)
* 責任作者, 副研究員, leetsingsong@sina.com
駱靖宇(1992-),男,江蘇南通人,蘇州科技大學碩士研究生,主要研究方向為水處理理論與技術.