李麗, 繆中緯,辛清武,朱志明, 章琳俐,莊曉東,鄭嫩珠,3
(1福建省農業科學院畜牧獸醫研究所,福州 350013;2福建昌龍集團,福建漳州 363000;3福建農林大學食品科學學院,福州351100)
畜牧·獸醫·資源昆蟲
半番鴨與番鴨精巢組織差異表達轉錄組測序分析
李麗1, 繆中緯1,辛清武1,朱志明1, 章琳俐1,莊曉東2,鄭嫩珠1,3
(1福建省農業科學院畜牧獸醫研究所,福州 350013;2福建昌龍集團,福建漳州 363000;3福建農林大學食品科學學院,福州351100)
【目的】研究半番鴨與番鴨精巢組織轉錄組差異表達基因,為進一步闡明半番鴨不育的遺傳機制奠定理論基礎。【方法】利用轉錄組測序方法對半番鴨和番鴨的精巢組織進行研究,篩選其差異表達基因,并對其功能進行注釋和熒光定量PCR(quantitative real-time PCR, QRT-PCR)驗證。【結果】測序共獲得43.84Gb Clean Data,組裝后共獲得193 535條Unigene。DESeq分析發現3 597個基因在兩個鴨品種間差異表達,其中上調基因1 194個和下調基因2 403個,包括與生殖功能相關的基因,如成纖維細胞生長因子(fibroblast growth factor, FGF)、蛋白激酶A(protein kinaseA, PKA)、絲裂原活化蛋白激酶7(mitogen-activated protein kinase 7-like, partial, BMK)、生長因子受體結合蛋白2(growth factor receptor-bound protein 2, GRB2)、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)和腫瘤壞死因子受體超家族成員6(tumor necrosis factor receptor superfamily member 6, FAS)等。GO (gene Ontology)分析發現382個差異基因獲得功能注釋,其中97個基因涉及發育繁殖生物學過程。KEGG (kyoto Encyclopedia of Genes and Genomes)通路分析表明差異表達基因共富集到 50 條信號通路中,其中 17個通路顯著富集,包括絲裂原活化蛋白激酶信號轉導通路(mitogen-activated protein kinase signaling pathway, MAPK)、甘油酯代謝(glycerolipid metabolism)以及鈣信號途徑 (calcium signaling pathway)信號通路等,與生殖功能密切相關的有促性腺激素釋放激素信號通路(gonadotropin releasing hormone (GnRH) signaling pathway)和MAPK信號轉導通路。經QRT-PCR驗證,差異基因表達變化模式與轉錄組測序結果一致,測序結果可靠。【結論】在轉錄組水平上篩選出半番鴨和番鴨精巢組織差異表達基因,揭示了GnRH和MAPK信號通路在鴨的生殖活動中發揮了重要作用,為進一步探索半番鴨生殖系統的分化機理提供可靠的參考依據。
半番鴨;番鴨;精巢組織;差異表達基因;轉錄組
Abstract:【Objective】 The purpose of this study is to analyze the transcriptome differential gene expression of mule duck and muscovy duck testis, results of the study will lay a theoretical foundation for the further elucidation of the mechanisms of genetic sterility of mule duck. 【Method】 Transcriptome sequencing of testis from mule duck and muscovy duck was performed using the Illumina HiSeq 2500 platform with 2 biological replicates per duck breed, and verified by quantitative real-time PCR(QRT-PCR). 【Result】 After removing sequencing adaptors and the low-quality reads, a total of 43.84 Gb clean reads wereobtained, the Q30 base percentage at 91.36% and above, and clean reads were assembled into 193 535 Unigene. The r2Differential expression analysis showed that 3 597 differentially expressed genes were found between two duck breeds, including 1 194 up regulated genes and 2 403 down-regulated genes. Several genes were related with reproductive function, such as fibroblast growth factor, FGF, protein kinase A (PKA), mitogen-activated protein kinase 7-like, partial (BMK),growth factor receptor-bound protein 2 (GRB2), c-Jun N-terminal kinase (JNK )and tumor necrosis factor receptor superfamily member 6(FAS),and so on. With Gene Ontology (GO) annotation, 382 differentially expressed genes were identified including 97 related annotation genes involving development and reproduction biological process. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that differentially expression genes annotated to 50 metabolic pathway, and 17 pathways were enriched significantly, such as calcium signaling pathway, glycerolipid metabolism and MAPK signaling pathway, and gonadotropin releasing hormone (GnRH)signaling pathway and MAPK signaling pathway associated with testis physiology and reproduction activities. Verified by QRT-PCR, the pattern of differential gene expression was consistent with the results of transcriptome sequencing, which showed the sequencing results were reliable. 【Conclusion】 Differentially expressed genes of mule duck and muscovy duck testis were screened by transcriptional analysis, revealed that the GnRH and MAPK signaling pathway play an important role in duck reproductive activities, which provide reliable reference for exploring the differentiation mechanism of reproductive system in mule duck.
Key words:mule duck; muscovy duck; testis tissue; differentially expressed genes; transcriptome
【研究意義】番鴨屬的公番鴨與河鴨屬的母家鴨親緣關系遠,其屬間雜交后代為無繁殖能力的騾鴨,俗稱半番鴨。半番鴨抗逆性強,飼料報酬高,肉質細膩,具有很強的雜種優勢,但其公母外型差異不顯著,性器官、性行為分化不明顯,無法正常繁育后代,無實際的種用價值。實踐研究發現,半番鴨并非完全意義上的不育,它們擁有精巢組織,極少數可產生少量精液,少數可正常交配,雄性偶見爬跨,雌性偶見產蛋,這可能涉及到基因表達、調控以及性細胞形成方式等。【前人研究進展】遠緣雜交不育是一個很復雜的生物學現象,其遺傳基礎較復雜,可能受眾多的基因及其產物的調控。關于鴨類屬間雜交不育的原因,檀俊秩和陳暉等[1]認為半番鴨父母本的染色體核型不一致,減數分裂受到破壞,進而影響性腺軸發育,最終導致其后代不育。劉軍須等[2]研究認為大鼠不育性狀由常染色體上單一隱性基因控制,呈隱性遺傳。張慶波等[3]認為 DAZL(Deleted in AZoospermia-like)基因是牛精子發生的重要調控因子,其突變或表達缺乏將導致雄性不育。以 Illumina為基礎的轉錄組測序(RNA-Seq)技術被廣泛的應用到差異基因的檢測及功能注釋,在畜禽方面也應用廣泛,如鑒定鴨黑、白羽相關基因[4],篩選野雞和家雞肉質基因[5],分析紹興鴨青殼性狀相關基因[6]等研究。生殖、發育機制等一直是生物學熱點,BAUERSACHS等[7]通過RNA-Seq技術篩選到不同物種間繁殖相關差異基因,FIEDLER等[8]對海兔不同發育階段進行轉錄組測序,張偉[9]構建了中華絨螯蟹精巢組織文庫,篩選雄性生殖調控關鍵基因,鐘志君[10]研究比較了成年藏豬的精巢和卵巢轉錄組表達譜,張升利等[11]分析了長尾草金魚成熟期精巢和卵巢轉錄組差異表達基因,XU等[12]利用轉錄組測序方法挖掘出與卵泡發育相關基因,朱志明等[13]探明了山麻鴨開產期和產蛋高峰期卵巢組織的轉錄組差異。這些成果為研究鴨不育性狀和繁殖性能的遺傳機制奠定了基礎。【本研究切入點】雖然 RNA-Seq技術已被應用到鴨的性狀研究,但由于半番鴨不育性狀的特殊性,其與番鴨或家鴨精巢組織的轉錄組比較分析尚未有報道,其不育遺傳基礎需進一步深入研究。【擬解決的關鍵問題】本研究通過對半番鴨和番鴨個體精巢組織的轉錄組比較,對其差異表達基因進行篩選,并進行GO(gene ontology)與 KEGG(kyoto encyclopediaof genes and genomes)功能富集,分析通路功能并探索精巢分化相關的差異表達基因,通過轉錄組數據挖掘半番鴨雄性不育相關的基因,為后續半番鴨雄性不育形成的遺傳機制研究提供線索。
本研究所用的半番鴨和番鴨公鴨由福建省農業科學院畜牧獸醫研究所動物房提供,試驗于3—6月進行,各試驗鴨飼養管理條件一致。180日齡性成熟時,對公鴨進行采精訓練。210日齡禁飼12 h后,每個品種分別取2 只個體用于轉錄組測序,其中半番鴨公鴨為無爬跨行為個體,番鴨公鴨為正常個體。按照國家實驗動物處理行為準則屠宰,取精巢組織,置于-80℃備用。
利用RNA easy Lipid Tissue Mini Kit(QIAGEN,Germany)提取每個個體總 RNA,單個建池。采用Nanodrop、Qubit 2.0和Aglient 2100方法檢測各RNA樣品的純度、濃度及完整性等。構建文庫,Qubit2.0和 Agilent 2100分別對文庫的濃度和插入片段大小(Insert Size)進行檢測,QRT-PCR對文庫的有效濃度進行準確定量,以保證文庫質量。基于邊合成邊測序(Sequencing By Synthesis,SBS)技術,利用 Illumina HiSeq 2500(Illumina, America)平臺進行高通量測序,測序讀長為PE150。
測序數據去除接頭及低質量數據后,利用Trinity軟件將數據組裝成轉錄本,進行轉錄注釋及表達量的計算。利用DESeq進行基因的差異表達分析,繪制差異表達基因火山圖,并進行聚類分析。
利用GO數據庫對差異表達基因進行功能注釋,采用COG(cluster of orthologous groups of proteins)對差異表達基因進行分類統計,運用KEGG數據庫進行通路分析,均以P<0.05作為顯著性富集標準。
采用Primer Premier 6.0和Beacon designer 7.8軟件設計熒光定量PCR引物,然后由生物工程(上海)股份有限公司負責合成,引物序列如表1,QRT-PCR擴增體系和反應條件如表2。以甘油醛-3-磷酸脫氫酶基因(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)做內參,采用2-ΔΔCt法計算基因的相對表達量。以P<0.05作為顯著性標準。

表1 熒光定量引物序列Table 1 Real-time PCR primers and conditions

表2 熒光定量PCR反應體系及條件Table 2 Real-time PCR reaction system and conditions
本試驗共構建半番鴨和番鴨4個精巢組織的轉錄組文庫。測序數據去除接頭以及低質量數據后共獲得288 008 582個高質量數據。從表3中可以看出,本試驗共獲得43.84Gb的Clean Data,各樣品Clean Data均達到6.29Gb。另外,各樣品GC含量均不小于51.88%,Q30(Clean Data質量不小于30的堿基所占的百分比)全在 91.36%以上,該結果表明測序質量可靠,構建文庫可用于后續分析。數據組裝后共獲得193 535條Unigene,其中長度在1kb以上的Unigene有46 175條。

表3 轉錄組數據組裝情況Table 3 Summary of the sequencing data assembly

圖1 四樣品基因表達量相關性圖Fig. 1 Correlation heat map of gene expression level in 4 samples
FPKM(Fragments Per Kilobase of transcript per Million mapped reads)是每百萬Reads中來自比對到某一基因每千堿基長度的Reads數目,是轉錄組測序數據分析中常用的基因表達水平估算方法。將皮爾遜相關系數r(Pearson’s Correlation Coefficient)作為生物學重復相關性的評估指標[14]。r2越接近1,說明兩個重復樣品相關性越強。對同一條件的每一對生物學重復樣品的基因表達量做相關性圖,相關性圖見圖 1。半番鴨組內 2個不同重復樣品和番鴨組內 2個不同重復樣品的 r2值均大于 0.9,而兩組間 r2值均小于 0.6,說明了試驗的可靠性和可重復性都很高。
以FDR(False Discovery Rate)作為差異表達基因篩選的關鍵指標, 將FDR小于0.001且差異倍數FC(Fold Change)大于等于2作為兩品種鴨個體間差異表達基因顯著的篩選標準,共鑒定出3 597個基因,其中包括1 194個表達上調的差異基因,主要有(FDR由小到大排列)c86758.graph_c1(NADH脫氫酶亞基4),c86758.graph_c0(外周型苯二氮卓受體相關蛋白1)等差異基因,以及2 403個表達下調基因,包含c243330.graph_c0(DnaJ同源B亞家族成員8),c277017.graph_c0(凋亡因子BCL-2蛋白14)等。進一步分析發現,顯著差異基因中含有一些與繁殖性能相關的基因(表 4),例如,成纖維細胞生長因子(fibroblast growth factor,FGF)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、細胞外信號調控的蛋白激酶5(ERK5)、蛋白激酶A(protein kinase A,PKA)、生長因子受體結合蛋白 2(growth factor receptor-bound protein 2,Grb2)、絲裂原活化蛋白激酶 7,部分(mitogen-activated protein kinase 7-like,partial,BMK)等下調基因,腫瘤壞死因子受體超家族成員 6(tumor necrosis factor receptor superfamily member 6, FAS)、雙特異性磷酸酶3(dual specificity phosphatase 3, DUSP3)、L型電壓依賴性鈣通道α1c亞單位(alpha-1c-like voltage-dependent L-type calcium channel subunit alpha-1C-like, CACNA1C)、胞質型磷脂酶 A2(cytosolic phospholipase A2 epsilon-like,CPLA2)等上調基因。從火山圖(圖 2)能夠快速查看兩組樣品間表達的差異水表平分布情況。通過 MA圖(圖 3)可以直觀地查看兩組樣品中基因的表達豐度和差異倍數的整體分布。

表4 差異表達基因(部分)Table 4 Differentially expressed genes (parts)

圖2 差異表達基因火山圖Fig. 2 Volcano plot of differentially expressed genes

圖3 差異表達基因MA圖Fig. 3 MA plot of differentially expressed genes
對篩選出來的差異表達基因進行聚類分析(圖4),發現同一鴨品種的2 個生物學重復聚到了一起,而不同鴨品種間基因表達模式則出現分離,表明本研究所用樣本生物學重復性較好,且樣本分組較合理。
本研究運用GO數據庫對具有同源比對的差異基因進行生物學過程(biological process)、分子功能(molecular function)與細胞組分(cellular component)三方面的注釋。將比對得到的1 381個顯著差異基因進行功能注釋,382個差異基因在GO分類中有功能意義。上述3個功能被區分為更具體的61個類別,分別包括了22、19和20個功能亞分類。由圖5可知,在生物功能的組分中,兩組間的差異表達基因在細胞過程(cellular process, GO: 0009987)與單一的生物過程(single-organism process, GO: 0044699)中數目比例最大。在細胞功能中,細胞(cell, GO: 0005623)與細胞部分(cell part, GO: 0044464)數目最多。在分子功能分類中,差異基因在結合(binding,GO: 0005488)中所占的比例最高,催化活性(catalytic activity, GO:0003824)次之。由圖5可知,與發育繁殖相關的生物學過程有繁殖(reproduction, GO:0000003),發育過程(developmental process, GO:0048589)和繁殖過程(reproductive process, GO:0022414),涉及97個相關基因。

圖4 顯著差異表達基因聚類分析Fig. 4 Heat map of the differentially expressed genes
統計顯著富集的Go term中包含的基因數,分析結果見圖6。其中一般的功能預測(general function prediction only)基因數目最多,其次為信號傳導機制(signal transduction mechanism),轉錄(Transcription)和復制、重組與修復(replication, recombination and repair)。
為確定差異基因參與的主要生化代謝途徑和信號通路,對差異表達基因進行KEGG通路分析,結果顯示差異表達基因共富集到50 條信號通路中。以P<0.05作為差異表達基因在該通路顯著富集,共鑒定出17個通路顯著富集:包括與絲裂原活化蛋白激酶(MAPK)信號轉導通路(MAPK signaling pathway)、鈣信號途徑(calcium signaling pathway)、甘油酯代謝(glycerolipid metabolism)、緊密連接(gap junction)以及血管平滑肌收縮(Vascular smooth muscle contraction)等信號通路。對差異表達基因的注釋結果按照 KEGG中通路類型進行分類,分類圖如圖7所示,其中與生長發育、生殖過程相關的有 MAPK信號轉導通路和促性腺激素釋放激素信號通路(gonadotropinreleasing hormone(GnRH)signaling pathway)等。

圖5 差異表達基因GO注釋Fig. 5 GO annotation of differentially expressed genes

圖6 差異表達基因COG注釋分類統計圖Fig. 6 COG annotation classification statistics of differentially expressed genes

圖7 差異表達基因顯著富集的KEGG 通路Fig. 7 List of KEGG pathway for differentially expressed genes
挑選富集顯著性最可靠(即 Q值最小)的前 20個通路以散點圖的形式展示(圖 8),在該圖中越靠近右上角的圖形代表的通路,參考價值越大;反之亦然。由此可知甘油酯代謝(glycerolipid metabolism),鈣信號途徑(calcium signaling pathway)信號通路以及血管平滑肌收縮(vascular smooth muscle contraction)富集顯著性較為可靠。
為驗證轉錄組測序結果,本研究選擇了GRB2、CPLA2、FGF3、DUSP3及FAS基因進行Real-time PCR試驗。結果表明除FAS基因整體表達低,數據不準確外,其他4個基因在番鴨和半番鴨個體間表達變化模式與轉錄組測序結果一致(表 5),表明本研究利用轉錄組測序獲得的數據較為準確。
近來, 高通量轉錄組測序技術取得了較大的研究進展[15-20]。雄性生殖系統的發育、分化過程是一個復雜的生理過程,涉及多種代謝過程,目前已有研究表明p53信號通路[21]、Wnt代謝通路[22]以及TGFβ通路[23-24]在雄性生殖發育過程中起重要作用。為了解鴨精巢的系統機制和半番鴨不育的特性,本研究對半番鴨和番鴨精巢組織進行轉錄組學測序及比對分析,共篩選獲得3 597個差異表達基因,同時為進一步確定差異基因參與的主要生化代謝途徑和信號通路進行KEGG分析,結果發現MAPK、甘油酯代謝以及鈣信號途徑等17個通路富集顯著,其中與生殖過程相關的有GnRH信號通路和MAPK信號轉導通路。

圖8 差異表達基因KEGG通路富集散點圖Fig. 8 Enriched scatter map of differential expression gene KEGG pathway

表5 Real-time PCR 驗證轉錄組測序數據Table 5 Validation of the RNA-seq expression data by Real-time PCR for selected genes
MAPK信號通路是細胞間信號傳遞的重要通路[25],可參與細胞增殖、分化[26]、精子成熟[27]及凋亡[28-29]等動物生殖過程,被認為是精子發育的重要影響因素之一。本研究篩選到參與此通路的FGF、c- JNK、ERK5等10個下調基因,FAS、DUSP3等4個上調基因,以及CPLA2、CACN 2個混合型調節基因。在此通路篩選的差異表達基因中,FGF屬于可促進成纖維細胞生長的多肽家族。VALVE等[30]研究發現 FGF8基因在成年鼠睪丸精子發生的特定階段表達,在鼠、牛卵巢中卵子發生的特定階段也有表達。DVORAK等[31]研究表明FGF信號參與包括細胞增殖、遷移、分化等多種細胞應答,調控廣泛的生理和病理過程。JNK在細胞分化、凋亡和疾病的發生均有重要作用,是MAPK信號轉導系統的重要效應因子[32]。目前發現的JNK的底物有轉錄因子c-jun、ATF-2及P53等。陳麗莉等[33]發現JNK可調控黃鱔卵巢發育、凋亡及雄性發育的啟動。ERK基因則主要參與動物生殖細胞增殖、分化以及凋亡等多個發育過程[34]。
GnRH信號通路可調控動物體內性腺軸生殖激素的分泌,下丘腦分泌產生的神經激素能促進垂體分泌促性腺物質的釋放,并參與動物生殖調控[35]。本研究篩選到了參與此通路上的PKA、Grb2和BMK等下調基因,以及CPLA2、CACNA1C 2個混合調節基因。在此通路篩選的差異表達基因中,已有研究證實Grb2是信號轉導途徑中的一個重要成分,它最初是作為表皮生長因子受體(epidermal growth factor receptor,EGFR)和MAPK通路之間的銜接蛋白被發現的[36]。Grb2作為一種信號接頭蛋白,參與細胞信號轉導過程,具有促進細胞增殖、細胞生長、細胞分化等功能[37]。PLA2參與雄性生殖過程, 其與精子獲能、頂體反應以及精卵融合等過程密切相關,并受到各種信號通路的調節,不同通路相互協調。精子PLA2活性的激活及其調控機制受G蛋白受體可介導[38]。
另外,JNK、Crb2、CACN等基因同時參與上述兩個通路,如PKA、蛋白激酶C(protein kinase C, PKC)及 Ca2+也在生理性頂體反應的精子信號轉導中調節PLA2 的活性,此外,鈣信號途徑以及甘油酯代謝、緊密連接以及血管平滑肌收縮等信號通路也富集顯著,說明各種發揮不同作用的信號傳導通路交織在一起, 組成一個復雜龐大的細胞信號傳導網絡系統。關于鈣信號途徑,Ca2+作為細胞內重要第二信使,通過精子內Ca2+濃度調節精子生理活動。SANTI等[39]也發現 Ca2+信號通路與精子的形成有著密切的關系。甘油酯代謝、緊密連接以及血管平滑肌等信號通路在鴨精巢組織中的作用及其相互調節機制將進一步探究。
本研究通過半番鴨和番鴨轉錄組比較,首次在轉錄組水平上篩選出與繁殖性能相關的差異表達基因,如PKA、Grb2、BMK、CPLA2、FGF、JNK及ERK5等,并進一步證實了GnRH 信號通路和MAPK信號通路在公鴨生殖活動中發揮了重要作用。信號通路的分析為鴨精巢組織的信號調控提供了線索,但還需對涉及這些通路的相關基因進行深入的生物信息學分析和驗證,進一步明確繁殖性狀的基因表達譜和調控模式,該研究結果可為今后探索半番鴨生殖系統的分化機理提供可靠的參考依據。
[1]檀俊秩, 陳暉, 宋建捷, 劉玉濤. 半番鴨繁殖性狀的研究. 福建農業學報, 1998, 13(2): 41-45.TAN J Z, CHEN H, SONG J J, LIU Y T. Studies on reproductive character of mule duck. Journal of Fujian Agricultural Sciences, 1998,13(2):41-45. (in Chinese)
[2]劉軍須, 蔡月花, 張敬各, 張福英. 雄性不育大鼠近交系MIJ的建立及其遺傳特征觀察. 動物學雜志, 2008, 43(5) :37-44.LIU J X, CAI Y H, ZHANG J G, ZHANG F Y. Establishment and genetic characteristics of rat inbred strain MIJ with spontaneous male infertility. Journal of Animal Science, 2008, 43(5):37-44. (in Chinese)
[3]張慶波, 李齊發, 李家璜, 李新福, 劉振山, 潘增祥, 宋大偉, 謝莊.牛精子發生相關新基因 b-DAZL的克隆、生物信息學分析與組織表達研究. 自然科學進展, 2008, 18(5):493-504.ZHANG Q B, LI Q F, LI J H, LI X F, LIU Z S, PAN Z X, SONG D W,XIE Z. Cloning, bioinformatics analysis and tissue expression of a novel b-DAZL gene related to spermatogenesis in cattle. Progress in Natural Science, 2008, 18(5):493-504. (in Chinese)
[4]LI S J, WANG C, YU W H, ZHAO S H, GONG Y Z. Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PloS One, 2012, 7:e36592.
[5]LI Q H, WANG N, DU Z, HUX X, CHENL, FEI J, WANGY Y, LI.N. Gastrocnemius transcriptome analysis reveals domestication induced gene expression changes between wild and domestic chickens.Genomics, 2012, 100: 314-319.
[6]陳黎, 黃學濤, 田勇, 陶爭榮, 盧立志. 利用轉錄組測序篩選與鴨青殼性狀形成相關的基因. 農業生物技術學報, 2016, 24(7):1064-1072.CHEN L, HUANG X T, TIAN Y, TAO Z R, LU L Z. Identifying genes associated with blue eggshell in ducks (Anasplatyrhynchos domesticus) by transcriptome analysis. Journal of Agricultural Biotechnology, 2016, 24(7): 1064-1072. (in Chinese)
[7]BAUERSACHS S, WOLF E. Transcriptome analyses of bovine,porcine and equine endometrium during the pre-implantation phase[J].Animal reproduction science. 2012,134:84-94.
[8]FIEDLER T J, HUDDER A, MCKAY S J, SHIVKUMAR S, CAPO T R, SCHMALE M C, WALSH P J. The transcriptome of the early life history stages of the California Sea Hare Aplysia californica,comparative biochemistry and physiology Part D. Genomics &Proteomics, 2010, 5:165-170.
[9]張偉. 中華絨螯蟹精巢組織文庫構建和基因的克隆與序列分析[D].上海: 華東師范大學, 2012.ZHANG W. Construction of cDNA library of Chinese mitten crab,Eriocheir sinensis and cloeing and molecular characterization ofgene[D]. Shanghai:East China Normal University, 2012. (in Chinese)
[10]鐘志君. 豬睪丸和卵巢組織轉錄組的差異分析[D]. 雅安:四川農業大學, 2012 .ZHONG Z J. Repertoire of porcine microRNA in adult ovary and testis by deep sequencing[D]. Sichuan: Sichuan Agricultural University, 2012 (in Chinese)
[11]張升利, 付成東, 梁擁軍, 李文通, 孫硯勝, 史東杰, 張 欣. 長尾草金魚成熟期雌雄性腺 RNA-Seq轉錄組分析. 水產科學, 2014,33(12): 750-753.ZHANG S L, FU C D, LIANG Y J, LI W T, SUN Y S, SHI D J,ZHANG X. The RNA-Seq transcriptome analysis in male gonads of Long-tailed goldfish Rassius auratus. Fisheries Science, 2014, 33(12):750-753. (in Chinese)
[12]XU Q, ZHAO W M, CHEN Y, TONG Y Y, RONG G H, HUANG Z Y,ZHANG Y, CHANG G B, WU X S, CHEN G H. Transcriptome profiling of the goose (Anser cygnoides) ovaries identify laying and broodiness phenotypes. PloS One, 2013, 8:e55496.
[13]朱志明, 陳紅萍, 林如龍, 繆中緯, 辛清武, 李麗, 張丹青, 鄭嫩珠.山麻鴨開產期和產蛋高峰期卵巢組織轉錄組分析. 中國農業科學,2016, 49(5):998-1007.ZHU Z M, CHEN H P, LIN R L, MIAO Z W, XIN Q W, LI L,ZHANG D Q, ZHENG N Z. Transcriptome analysis of ovary tissue in early laying period and egg laying peak period of shanma Ducks.Scientia Agricultura Sinica, 2016, 49(5):998-1007. (in Chinese)
[14]SCHULZE S K, KANWAR R, G?LZENLEUCHTER M,THERNEAU T M, BEUTLER A S. SERE: Single-parameter quality control and sample comparison for RNA-Seq. [BMC genomics Italic],2012, 13(1): 524.
[15]XIANG L X, HE D, DONG W R, ZHANG Y W, SHAO J Z.Deep sequencing-based transcriptome profiling analysis of bacteria challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics, 2010, 11: 472.
[16]WANG B, GUO G W, WANG C, LIN Y, WANG X M, ZHAO M M,GUO Y, HE M H, ZHANG Y, PAN L. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Research, 2010, 38(15): 5075-5087.
[17]LI M Y, TAN H W, WANG F, JIANG Q, XU Z S, TIAN C, XIONG A S. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley(Petroselinum crispum). PLoS One, 2014, 9(9): e108977.
[18]ZHU S Y, TANG S M, TANG Q M, LIU T M. Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Gene, 2014, 552: 67-74.
[19]CONG F, LIU X L, HAN Z X, SHAO Y H, KONG X P, LIU S W.Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. Genomics, 2013, 14:743-756.
[20]FRASER B A, WEADICK C J, JANOWITZ I, RODD F H, HUGHES K A. Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics, 2011, 12:202.
[21]LI G Y, XIE P, LI H Y, HAO L, XIONG Q, QIU T. Involment of p53,Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis.Environmental Toxicology, 2011, 26(2):111-117.
[22]鄭煒, 趙宗勝, 李青峰, 班謙, 李洪濤, 梁耀偉. Solexa測序技術分析雞與鵪鶉屬間雜交雌性和雄性胚胎的差異 microRNAs. 中國獸醫學報, 2014, 34(1):116-122.ZHENG W, ZHAO Z S, LI Q F, BAN Q, LI H T, LIANG H T.Analysis of difference microRNAs in female and male embryos of chicken-quail hybrid by Solexa sequencing. Chinese Journal of Veterinary Science, 2014, 34(1):116-122. (in Chinese)
[23]DRUMMOND A E. TGFβ signaling in the development of ovarian function. Cell and Tissue Research, 2005, 322(l): 107-115.
[24]KONRAD L, KEILANI M M, LAIBLE L, NOTTELMANN U,HOFMANN R. Effects of TGF-betas and a specific antagonist on apoptosis of immature rat male germ cells in vitro. Apoptosis, 2006,11(5): 739-748.
[25]SUN Q Y, BREITBART H, SCHATTEN H. Role of the MAPK cascade in mammalian germ cells. Reproduction, Fertility, and Development, 1999, 11(8):443-450.
[26]HARRIS V K, COTICCHIA C M, KAGAN B L, AHMAD S,WELLSTEIN A, RIEGE A T, HARRIS V K, COTICCHIA C M.Induction of the angiogenic modulator fibroblast growth factorbinding protein by epidermal growth factor is mediated through both MEK/ERK and p38 signal transduction path ways. Journal Biology Chemistry, 2000, 275(15): 10802-10811.
[27]ALMOG T, NAOR Z. Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Molecular and Cellular Endocrinology, 2008, 282:39-44.
[28]JOHNSON C, JIA Y, WANG C, LUE Y H, SWERDLOFF R S,ZHANG X S, HU Z Y, LI Y C, LIU Y X, AMIYA P. Sinha Hikim.Role of Caspase 2 in apoptotic signaling in primate and murine germ cells. Biology of Reproduction, 2008, 79 (5): 806.
[29]SHOW M D, HILL C M, ANWAY M D, WRIGHT W W, ZIRKIN B R. Phosphorylation of mitogen-activated protein kinase 8 (MAPK8) is associated with germ cell apoptosis and redistribution of the Bcl2-Modifying Factor (BMF). Journal of Andrology, 2008,29(3): 338-344.
[30]VALVE E, PENTTILA T L, PARANKO J, HA¨RKO¨NEN P. FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochemical and Biophysical Research Communications, 1997, 232(1) :173-177.
[31]DVORAK P, DVORAKOV D, HAMPL A. Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Letters , 2006,580: 2869-2874.
[32]MIALON A, SANKINEN M, SO¨DERSTRO¨M H, JUNTTILA T T,HOLMSTRO¨M T, KOIVUSALO R, PAPAGEORGIOU A C,JOHNSON R S, HIETANEN S, ELENIUS K, WESTERMARCK J.DNA topoisomerase I is a cofactor for c-Jun in the regulation of epidermal growth factor receptor expression and cancer cell proliferation.Molecular and Cellular Biology, 2005, 12(25): 5040-5051.
[33]陳麗莉,肖亞梅,劉文彬,趙如榕,劉姣,劉筠,李萬程.ERK/JNK 在黃鱔雌、雄發育階段生殖腺中的表達和定位.動物學報,2007, 53(2):325-331.CHEN L L, XIAO Y M, LIU W B, ZHAO R R, LIU J, LI W C.Expression and location of ERK/JNK in ovary and spermary in rice field eels Monopterus albus. Journal of Animal Science, 2007,53(2):325-331. (in Chinese)
[34]SHEIKH A Q, TAGHIAN T, HEMINGWAY B, CHO H, KOGAN A B,NARMONEVA1 D A. Regulation of endothelial MAPK/ERK signalling and capillary morphogenesis by low-amplitude electric field.Journal of the Royal Society Interface, 2013, 10(78): 1-13.
[35]Vien H Y Lee, Leo T O Lee, Billy K C Chow. Gonadotropin- releasing hormone: regulation of the GnRH gene. FEBS Journal, 2008, 275:5458-5478.
[36]BELOV A A, MOHAMMADI M. Grb2, a double-edged sword of receptor tyrosine kinase signaling. Science Signaling, 2012, 5(249):49.
[37]HAINES E, MINOO P, FENG Z Q, RESALATPANAH N, NIE X M,CAMPIGLIO M, ALVAREZ L, COCOLAKIS E, RIDHA M,FULVIO M D, GOMEZ-CAMBRONERO J, LEBRUN J J, ALI S.Tyrosine phosphorylation of Grb2:Role in prolactin /epidermal growth factor cross talk in mammary epithelial cell growth and differentiation.Molecular and Cellular Biology, 2009, 29(10):2505-2520.
[38]YUAN Y Y, CHEN W Y, SHI Q X, MAO L Z,YU S Q, FANG X,ROLDAN E R S. Zona pellucida induces activation of phospholipase A2 during acrosomal exocytosis in guinea pig spermatozoa. Biology of Reproduction, 2003, 68(3): 904-913.
[39]SANTI C M, SANTOS T, HERNáNDEZ-CRUZ A, DARSZON A.Properties of a novel pH-dependent Ca2+permeation pathway present in male germ cells with possible roles in spermatogenesis and mature sperm function. The Journal of General Physiology, 1998,112: 33-53.
(責任編輯 林鑒非)
Transcriptome Analysis of Differential Gene Expression Associated with Testis Tissue in Mule Duck and Muscovy Duck
LI Li1, MIAO ZhongWei1, XIN QingWu1, ZHU ZhiMing1, ZHANG LinLi1,ZHUANG XiaoDong2, ZHENG NenZhu1,3
(1Institute of Animal Science and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013;2Fujian Changlong Group, Zhangzhou 363000, Fujian;3Food College of Fujian Agriculture and Forestry University, Fuzhou 350002)
2017-02-04;接受日期:2017-06-13
福建省農科院青年人才創新基金(YC2017-7)、福建省省屬公益類科研院所基本科研專項(2017R1023-5)、福建省農科院所青年基金(MYQJ2015-5)
聯系方式:李麗,Tel:13960985616;E-mail:576801792@qq.com。通信作者鄭嫩珠,Tel:0591-83815170;E-mail:zhengnz@163.com