999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

全氟和多氟化合物替代品的研究進展

2017-10-13 04:01:52周秀鵑盛南王建設戴家銀
生態毒理學報 2017年3期
關鍵詞:生物研究

周秀鵑,盛南,王建設,戴家銀

中國科學院動物研究所,中國科學院動物生態與保護生物學重點實驗室,北京 100101

全氟和多氟化合物替代品的研究進展

周秀鵑,盛南,王建設,戴家銀*

中國科學院動物研究所,中國科學院動物生態與保護生物學重點實驗室,北京 100101

全氟和多氟化合物(per-and polyfluoroalkyl substances, PFASs)是一類新型持久性有機污染物(POPs),廣泛應用于工業和人類日常生活用品中。此類化合物具有高能量的C-F共價鍵,因此具有優良的理化特性和生物穩定性。由于存在持久性、生物累積性、長距離遷移以及毒性等問題,長鏈PFASs(C>7)已經成為全世界關注的焦點之一,尋找能夠替代PFASs的新型化合物具有重要意義。本文介紹了幾種可能替代PFASs的新型氟化替代品,PFASs替代品在各類環境介質中的分布、持久性、人體暴露及毒性等幾個方面進行了綜述,特別對目前存在的問題及今后的研究方向進行了討論和展望,以期為PFASs替代品的環境污染及風險評估提供參考。

全氟和多氟化合物;PFASs替代品;環境行為;人體暴露;毒性

Received18 June 2016accepted22 August 2016

Abstract: Per-and polyfluoroalkyl substances (PFASs) are an emerging kind of persistent organic pollutant currently widely used in industrial and daily life supplies. With high-energy C-F bonds, PFASs have excellent physical, chemical properties and biological stability and have drawn the attention of researchers all over the world due to their high persistence, bioaccumulation potential, toxicity and ubiquitous distribution in the environment, biota and humans. It is of vital importance to look for fluorinated alternatives to long-chain PFASs. This paper summarizes hot issues about PFASs alternatives, such as environmental distribution and behavior, persistence, human exposure and toxicity. The emphasis is laid on existing problems and future research perspectives so as to provide evidence for the investigation of existing problems and future research directions.

Keywords: per-and polyfluoroalkyl substances; PFASs alternatives; environmental behavior; human exposure; toxicity

全氟和多氟化合物(per-and polyfluoroalkyl substances, PFASs)是一類高度氟化的脂肪族物質,即除官能團中的氫原子外,碳骨架上的氫原子全部或部分被氟原子替代的人工合成有機化合物[1]。由于PFASs的理化特性極其特殊,包括較強穩定性、疏水、疏油性等,被廣泛地應用于地毯、皮革、紡織、包裝、滅火泡沫、洗發香波、地板打磨、電鍍等工業和民用領域。目前環境中存在的PFASs主要有全氟烷基羧酸(PFCAs)、全氟烷基磺酸(PFSAs)、全氟烷基磺酰胺(FOSAs)、氟化調聚醇(FTOHs)、全氟磷酸(膦酸)及其酯等,其中全氟辛烷羧酸(perfluorooctanoic acid, PFOA)和全氟辛烷磺酸(perfluorooctane sulfonic acid, PFOS)是目前最受關注和應用最廣泛的2種典型全氟有機化合物。由于結構中含有高能量的C-F化學鍵(C-F: 485.3 kJmol-1),該類化合物普遍具有很高的穩定性,難以水解、光解和被微生物降解,因此許多PFASs具有環境持久性及高生物累積性[2]。大量研究表明PFASs已在各種環境介質和生物體中廣泛檢出,包括表層水[3-5]、污泥[6-7]、沉積物[8]、灰塵[9-10]、海洋生物[11-12]等,甚至人體中也檢出多種PFASs[13-15]。流行病學研究發現PFASs的人體暴露與一些生化和生理指標的改變存在一定的正相關,包括腎癌和睪丸癌[16]、潰瘍性結腸炎[17]、孕期高血壓[18]、高膽固醇[19-20]、甲狀腺機能減退[21-22]、免疫系統疾病[23-24]、胎兒生長遲緩[25-27]、妊娠期糖尿病[28]等。此外,毒理學研究也發現PFASs具有肝毒性[29]、神經毒性[30]、生殖發育毒性[29,31]、免疫毒性[29]、致癌性[32]、干擾脂肪代謝[33]以及內分泌干擾效應[34-35]等多種毒性。

由于PFASs具有持久性、累積性、長距離遷移以及高毒性等特性,嚴重地威脅了生態環境和人體健康,2001年國際社會共同簽署了《關于持久性有機污染物(Persistent Organic Pollutants,簡稱POPs)的斯德哥爾摩公約》,開啟了保護環境和人類健康免受有毒污染物危害的全球行動。3M公司于2002年停止生產PFOS及其相關產品。2009年5月9日聯合國環境規劃署正式將PFOS及全氟辛基磺酰氟(PASF)等列為新的持久性有機污染物,同意減少并最終禁止使用該類物質。最近,歐洲化學品管理局(ECHA)公布提案,建議將PFOA、全氟辛酸銨(APFO)以及C11~C14 PFCAs等化學品列為高度關注物質[36]。

長鏈PFASs的安全問題已經引發全球研發者和使用者的高度關注。淘汰部分長鏈PFASs,雖然減少了含氟聚合物生產過程中某些長鏈PFASs的使用量及排放量,但仍然無法從根本上解決長鏈PFASs的環境問題。為了適應全球化的發展,保護自身環境,研發無潛在生物蓄積性、低毒性的高性能化合物已迫在眉睫,尋找和研發新的PFASs替代品成為近年來科研工作者研究的熱點之一。本文在2篇已有綜述的基礎上[37-38],概述了幾種可能替代PFASs的新型化合物及其持久性、人體暴露及毒性等,對目前存在的問題及今后的研究方向進行了討論和展望,以期為PFASs替代品的環境污染及風險評估提供參考。

1 長鏈PFASs替代品分類(The classification of long chain PFASs alternatives)

美國環境保護署(USEPA)提出禁用PFOA以后,其國內外就開展了PFASs替代品研究并取得了實質進展。迄今為止,3M、大金、杜邦、旭硝子、阿科瑪和蘇威在內的國際氟化工生產商已經向USEPA上報了50余種PFASs替代品以待評估。如3M公司研發的PFOS替代品全氟丁基磺酸(PFBS)無明顯生物積累性,短時間內可隨人體新陳代謝排出體外。由杜邦等公司利用調聚反應生產的全氟烷基C6基產品,由于沒有C8基成分,沒有PFOS及其衍生物,也不產生PFOA。這些調聚物基含氟表面活性劑很可能降解為C6F13CH2CH2SO3H(6:2 FTSA)或C6F13CH2CH2COOH(6:2 FTCA),而不是PFOS或PFOA,其毒性較C8小。國內外針對PFASs替代品的研發一般分為2類:(1)使用C4、C6結構的短鏈全氟烷基羧酸或磺酸鹽,如PFBA、PFHxA、PFBS。(2)含功能官能團的全氟聚醚(PFPEs),尤其是全氟聚醚羧酸和磺酸(PFESAs和PFECAs),如6:2 FTCA、GenX、F-53B、6:2 FTSA。各化合物的結構和名稱如表1所示。

2 PFASs替代品的環境含量以及應用(The content, and application of PFASs alternative in environment)

一些研究表明作為C8全氟化合物替代物的C4全氟化合物在環境中的濃度不斷升高。Zhou等[39]在武漢湯遜湖氟化學工廠附近的水樣檢測到高濃度的PFBA和PFBS等短鏈全氟化合物,其濃度分別為3 660 ngL-1、4 770 ngL-1。6:2 FTSA作為PFOS的一種替代物,近年來被越來越多地使用在裝飾性電鍍行業和泡沫滅火器的生產過程中,如杜邦公司以6:2 FTSA合成了Forafac?1176。此外,6:2 FTSA還是Capstone?FS-17的主要成分[40]。最近在水體[41-44]、污泥[42,45-46]、消防基地[47]、城市垃圾填埋場滲濾液[48]等中都發現了6:2 FTSA。在我國,PFOS的替代物F-53B作為霧抑制劑廣泛地應用于鍍鉻工業。Wang等[49]在溫州一個鍍鉻工業的廢水處理廠的進水、出水中檢測到了高濃度的F-53B。由于污水處理廠不能夠有效去除該類物質,在污水處理廠排放的地表水中也可以檢測到高濃度的F-53B。最近一些研究發現在污泥中也檢測到F-53B。據統計,F-53B年產量高達10多噸,其銷售保持逐年穩步增長的態勢。由于全球禁止使用PFOS,F-53B在未來可能會有更大的市場份額[50-51]。在歐洲,PFOA替代物GenX作為加工助劑廣泛應用于氟聚樹脂制造業,年產量高達10~100噸[50]。此外,在中國含氟乳化劑用6:2 FTCA替代了PFOA。目前在水體、污泥等介質中均已檢測到PFASs替代物的存在(表2)。

表1 全氟和多氟化合物(PFASs)及其替代品Table 1 Per- and polyfluoroalkyl substances (PFASs) and PFASs alternatives

3 生物及人體暴露水平(The exposure of PFASs alternatives in the human and organisms)

自2002年3M公司終止全氟辛烷磺酰氟(POSF)的生產和PFOS正式進入POPs名單以來,PFASs在環境中的濃度雖然有所下降,但是PFASs替代物在生物體不斷檢出。一項研究表明,在東格陵蘭島海洋哺乳動物環海豹、北極熊、虎鯨中發現了高濃度F-53B[53]。Shi等[54]在小清河和湯遜湖中鯽魚血清、腎、性腺、肝臟以及心臟中檢出了F-53B。同時Shi等[55]研究發現食魚偏好者、鍍鉻工人以及普通人群尿液和血清也存在F-53B。另一項對6:2 FTSA的檢測發現,6:2 FTSA也存在于生物以及人體中(表3)。

暴露途徑研究是準確認識污染物健康效應的一個重要前提。Shi等[55]研究認為灰塵/空氣、飲用水和食物可能是PFASs替代物人體暴露的重要途徑。偏好食魚的人群血清中F-53B濃度中值是普通人的20倍,說明淡水魚可能是人體暴露的重要途徑。鍍鉻工人血清中濃度也遠遠超過普通人,可能通過灰塵/空氣、皮膚接觸等暴露途徑。最近一項研究也發現,通過羅納河的沉積物暴露,鉤蝦體內發現了6:2 FTSA,因此食物和呼吸可能是鉤蝦暴露的途徑[42]。

高度重視PFASs替代物的人體累積和清除是科學研究的一個熱點。與普通人群不同的是,一些特殊人群可能面臨比普通人群更高或者不同特征的PFASs替代品暴露,這種情況值得高度關注。一項對食魚偏好者、鍍鉻工人、以及普通人體血液和尿液中血清中的F-53B和PFOS濃度清除半衰期的研究表明,人體對F-53B的血液清除較慢,半衰期較長,其半衰期的中值分別為15.3和6.7年,F-53B的半衰期顯著長于PFOS[55]。

表2 PFASs替代品在環境中的檢出量Table 2 The detection of PFASs alternatives in the environment

4 PFASs替代品的潛在影響(The potential impact of PFASs alternatives)

最近一些研究表明短鏈全氟替代物生物富集因子較低,基本沒有生物富集趨勢[42,60]。但仍有研究學者提出部分PFASs替代物具有持久性、生物累積性以及毒性等問題。最近研究發現有些替代物的降解產物仍然具有毒性。如全氟丁基磺酰氟(PBSF)和6:2全氟調聚物最終降解為短鏈PFASs和其他物質,如高毒性的碳酰氟(COF2)[61]。因此,PFASs替代物對環境和生態影響仍然值得關注。關于PFASs替代物的特性見表4。

表3 PFASs替代品在生物及人體組織中的檢出量Table 3 The detection of PFASs alternatives in the human and organisms

表4 短鏈PFASs和全氟聚醚(PFPEs)的理化性質Table 4 The physical and chemical properties of short chain PFASs and perfluoropolyether (PFPEs)

4.1 持久性

4.2 生物累積性

生物累積性是衡量污染物是否屬于POPs的一個極其重要依據,也是近年來PFASs研究的一個重要內容。與長鏈類似物相比,短鏈全氟化合物在生物和人體內基本沒有生物累積趨勢[60],但在植物的葉、莖、果實中很易積累[69-70]。最近研究發現,6:2 FTSA對虹鱒魚的生物富集系數< 40,同時研究發現虹鱒魚對6:2 FTSA的食物吸收效率、生長半衰期以及食物放大因子分別為0.435、23.1和0.295,因此虹鱒魚對6:2 FTSA的積累性很低[71]。Shi等[55]對不同人群血液及尿液中的F-53B的消除動力學進行了分析,F-53B的血液清除半衰期小于PFOS的清除半衰期,但是由于物種的敏感度、灌喂的劑量方法以及實驗技術等原因,關于PFECAs和PFESAs的生物累積性還需要更多的驗證。

4.3 長距離遷移

許多PFASs具有POPs的遠距離遷移特性,與長鏈類似物相比,具有較高水溶性、低吸附性的短鏈PFASs更易在環境中遷移[72-73]。PFECAs和PFESAs不僅與PFCAs和PFSAs結構類似,而且具有持久性,因此在水中也可能具有長距離運輸的潛力[74]。到目前為止,還未在偏遠地區發現PFECAs和PFESAs,可能由于(1)有些PFECAs和PFESAs近期才開始使用,使用量少并且排放量少;(2)PFECAs和PFESAs可能以前體形式存在;(3)排放和遷移到偏遠地區形成污染物之間有一定的時間間隔;(4)沒有靈敏的檢測方法以及檢測標準。

4.4 毒性

高度重視人體健康效應研究是PFASs環境研究的一個前沿和重點領域。研究表明,與長鏈類似物相比,大多數的短鏈PFASs替代品對人體和環境中生物沒有明顯的毒性效應[75-76]。在對水生生物的急性和慢性毒性暴露研究發現,6:2 FTSA對水生生物幾乎沒有毒性。如虹鱒魚96 h半數效應濃度(96 h-LC50)> 107 mgL-1,大型蚤48 h的半數效應濃度(48 h-EC50) > 112 mgL-1[72]。Hoke等[77]研究發現6:2 FTCA對水蚤的48 h-LC50> 97.5 mgL-1,海藻72 h-EC50= 47.9 mgL-1,搖蚊10 d-LC50= 75.2 mgL-1,浮萍7 d-EC50= 1.3 mgL-1。根據美國環保署毒品管理條例(USEPA TSCA)中水生動物毒性評估條例的規定,急性毒性的參考值為1 mgL-1< EC/LC50< 100 mgL-1,因此,6:2 FTCA對水生無脊椎動物毒性并不大。Mitchell等[78]也研究發現6:2 FTCA對淡水無脊椎動物的毒性不大。如6:2 FTCA抑制小球藻生長的EC50= 26.2 mgL-1,對月牙藻的生長抑制EC50>53 mgL-1,而對端足蟲10 d的死亡LC50= 33.1 mgL-1。Phillips等[79]也發現6:2 FTCA抑制搖蚊生長的EC50= 63 mgL-1。Wang等[38]研究發現F-53B對斑馬魚毒性與PFOS類似,其96 h-LC50分別為15.5 mgL-1和17 mgL-1。GenX不僅對皮膚、眼睛造成刺激,在低劑量濃度連續暴露(≤ 10 mgkg-1d-1)還可能引起肝癌[70]。關于PFASs替代品的毒性還需要更多的實驗驗證。

表5 PFASs替代品的降解性實驗Table 5 The degradability of PFASs alternatives

5 PFASs替代品研究存在的問題與展望(The existing problems and perspectives of PFASs alternatives)

PFASs替代品對人和環境是否安全?最近一些研究發現結構類似物的替換并不能真正解決問題,相反會出現“鎖定”問題[38]。為了解決這一問題,PFASs替代品的信息如特性、產量、用量、排放量以及毒性需要公開。然而,目前由于新型化合物研發費用高、時間長以及公司為了增加競爭力,PFASs替代品信息并未完全公開。同時對PFASs替代品的環境行為及生態毒理效應方面的研究也尚未系統開展。今后應該開展如下研究:鼓勵公司公開替代品的信息,加強各部門之間的交流;注重PFASs替代品在各環境介質以及人體內的監測,加快對PFASs替代品在各種環境介質降解機制的研究;完善新的替代品在環境介質和生物中的分析方法,以使分析數據具有可比性;系統地進行全氟替代品的來源、分布、遷移轉化等研究;重視暴露途徑、生物有效性的研究,并與風險評估相結合;開展低劑量、長期、慢性毒性和復合毒性研究,整合多種組學從分子、基因等水平研究其毒性機制,這些研究結果為研發新的無潛在生物蓄積性、無毒性的高性能化合物提供技術支撐。

[1] Buck R C, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins [J]. Integrated Environmental Assessment Management, 2011, 7(4): 513-541

[2] Olsen G W, Burris J M, Ehresman D J, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers [J]. Enviromental Health Perspectives, 2007, 115(9): 1298-1305

[3] Moody C A, Martin J W, Kwan W C, et al. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek [J]. Environmental Science & Technology, 2002, 36(4): 545-551

[4] Moody C A, Kwan W C, Martin J W, et al. Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: Liquid chromatography/tandem mass spectrometry and 19F NMR [J]. Analytical Chemistry, 2001, 73(10): 2200-2206

[5] Lu Z B, Song L N, Zhao Z, et al. Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China [J]. Chemosphere, 2015, 119: 820-827

[6] Gomez-Canela C, Barth J A, Lacorte S. Occurrence and fate of perfluorinated compounds in sewage sludge from Spain and Germany [J]. Environmental Science and Pollution Research International, 2012, 19(9): 4109-4119

[7] Yan H, Zhang C J, Zhou Q, et al. Short- and long-chain perfluorinated acids in sewage sludge from Shanghai, China [J]. Chemosphere, 2012, 88(11): 1300-1305

[8] Higgins C P, Field J A, Criddle C S, et al. Quantitative determination of perfluorochemicals in sediments and domestic sludge [J]. Environmental Science & Technology, 2005, 39(11): 3946-3956

[9] Shoeib T, Hassan Y, Rauert C, et al. Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: Trends in developed and developing countries [J]. Chemosphere, 2016, 144: 1573-1581

[10] Yao Y M, Sun H W, Gan Z W, et al. Nationwidedistribution of per- and polyfluoroalkyl substances in outdoor dust in mainland China from eastern to western areas [J]. Environmental Science & Technology, 2016, 50(7): 3676-3685

[11] Kannan K, Koistinen J, Beckmen K, et al. Accumulation of perfluorooctane sulfonate in marine mammals [J]. Environmental Science & Technology, 2001, 35(8): 1593-1598

[12] Rotander A, Karrman A, van Bavel B, et al. Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009 [J]. Chemosphere, 2012, 86(3): 278-285

[13] Olsen G W, Church T R, Miller J P, et al. Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors [J]. Environmental Health Perspectives, 2003, 111(16): 1892-1901

[14] Starling A P, Engel S M, Whitworth K W, et al. Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study [J]. Environmental International, 2014, 62: 104-112

[15] Kato K, Wong L Y, Jia L T, et al. Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008 [J]. Environmental Science & Technology, 2011, 45(19): 8037-8045

[16] Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant [J]. Environmental Health Perspectives, 2013, 121(11-12): 1313-1318

[17] Steenland K, Zhao L, Winquist A, et al. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley [J]. Environmental Health Perspectives, 2013, 121(8): 900-905

[18] Darrow L A, Stein C R, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010 [J]. Environmental Health Perspectives, 2013, 121(10): 1207-1213

[19] Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts [J]. Environmental Health Perspectives, 2014, 122(12): 1299-1305

[20] Nelson J W, Hatch E E, Webster T F. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population [J]. Environmental Health Perspectives, 2010, 118(2): 197-202

[21] Winquist A, Steenland K. Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts [J]. Epidemiology, 2014, 25(2): 255-264

[22] Lopez-Espinosa M J, Mondal D, Armstrong B, et al. Thyroid function and perfluoroalkyl acids in children living near a chemical plant [J]. Environmental Health Perspectives, 2012, 120(7): 1036-1041

[23] Okada E, Sasaki S, Saijo Y, et al. Prenatal exposure to perfluorinated chemicals and relationship with allergies and infectious diseases in infants [J]. Environmental Research, 2012, 112: 118-125

[24] Grandjean P, Andersen E, Budtz-J?rgensen E, et al. Serum vaccine antibody concentrations in children exposed to perfluorinated compounds [J]. Jama-Journal of the American Medical Association, 2012, 307(4): 391-397

[25] Fei C, McLaughlin J K, Tarone R E, et al. Perfluorinated chemicals and fetal growth: A study within the Danish National Birth Cohort [J]. Environmental Health Perspectives, 2007, 115(11): 1677-1682

[26] Fei C, McLaughlin J K, Tarone R E, et al. Fetal growth indicators and perfluorinated chemicals: A study in the Danish National Birth Cohort [J]. American Journal of Epidemiology, 2008, 168(1): 66-72

[27] Lam J, Koustas E, Sutton P, et al. The Navigation Guide—Evidence-based medicine meets environmental health: Integration of animal and human evidence for PFOA effects on fetal growth [J]. Environmental Health Perspectives, 2014, 122(10): 1040-1051

[28] Zhang C, Sundaram R, Maisog J, et al. A prospective study of prepregnancy serum concentrations of perfluorochemicals and the risk of gestational diabetes [J]. Fertil Steril, 2015, 103(1): 184-189

[29] Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings [J]. Toxicological Sciences, 2007, 99(2): 366-394

[30] Mariussen E. Neurotoxic effects of perfluoroalkylated compounds: Mechanisms of action and environmental relevance [J]. Archives of Toxicology, 2012, 86(9): 1349-1367

[31] Lau C, Butenhoff J L, Rogers J M. The developmental toxicity of perfluoroalkyl acids and their derivatives [J]. Toxicology and Applied Pharmacology, 2004, 198(2): 231-241

[32] Negri S, Maestri L, Esabon G, et al. Characteristics, use and toxicity of fluorochemicals: Review of the literature [J]. Giornale Italiano di Medicina del Lavoro ed Ergonomia, 2008, 30(1): 61-74

[33] Zhang L, Ren X M, Guo L H. Structure-based investigation on the interaction of perfluorinated compounds with human liver fatty acid binding protein [J]. Environmental Science & Technology, 2013, 47(19): 11293-11301

[34] Knox S S, Jackson T, Javins B, et al. Implications of early menopause in women exposed to perfluorocarbons [J]. Journal of Clinical Endocrinology & Metabolism, 2011, 96(6): 1747-1753

[35] White S S, Fenton E, Hines E P. Endocrine disrupting properties of perfluorooctanoic acid [J]. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(1-2): 16-26

[36] European Chemical Agency (ECHA). Candidate list of substances of very high concern for authorisation [DB/OL]. (2013-12-21) [2016-06-18]. http://echa.europa.eu/web/guest/candidate-list-table

[37] Wang Z Y, Cousins T I, Scheringer M, et al. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions [J]. Environment International, 2015, 75: 172-179

[38] Wang Z Y, Cousins I T, Scheringer M, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors [J]. Environment International, 2013, 60: 242-248

[39] Zhou Z, Liang Y, Shi Y L, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China [J]. Environmental Science & Technology, 2013, 47(16): 9249-9257

[40] Yang X L, Huang J, Zhang K L, et al. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: Degradation kinetics and pathway [J]. Environmental Science Pollution Research, 2014, 21(6): 4634-4642

[41] Schultz M M, Barofsky D F, Field J A, et al. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatographytandem mass spectrometry-characterization of municipal wastewaters [J]. Environmental Science & Technology, 2006, 40(1): 289-295

[42] Bertin D, Labadie P, Ferrari B J, et al. Potential exposure routes and accumulation kinetics for poly- and perfluorinated alkyl compounds for a freshwater amphipod: Gammarus spp. (Crustacea) [J]. Chemosphere, 2016, 155: 380-387

[43] Schiltz M M, Barofsky D F, Field J A. Quantitative determination of fluotelomer sulfonates in groudwater by LC MS/MS [J]. Environmental Science & Technology, 2014, 38: 1828-1835

[44] Houtz E F, Sutton R, Park J S, et al. Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts [J]. Water Research, 2016, 95: 142-149

[45] Zhang S, Lu X X, Wang N, et al. Biotransformation potential of 6:2 fluorotelomer sulfonate (6:2 FTSA) in aerobic and anaerobic sediment [J]. Chemosphere, 2016, 154: 224-230

[46] Ruan T, Lin Y, Wang T, et al. Identification of novel polyfluorinated ether sulfonates as PFOS alternatives in municipal sewage sludge in China [J]. Environmental Science & Technology, 2015, 49(11): 6519-6527

[47] Baduel C, Paxman C J, Mueller J F. Perfluoroalkyl substances in a firefighting training ground (FTG), distribution and potential future release [J]. Journal of Hazardous Materials, 2015, 296: 46-53

[48] Huset C A, Barlaz M A, Barofsky D F, et al. Quantitative determination of fluorochemicals in municipal landfill leachates [J]. Chemosphere, 2011, 82(10): 1380-1386

[49] Wang S, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: Its toxicity, persistence, and presence in the environment [J]. Environmental Science & Technology, 2013, 47(18): 10163-10170[50] Heydebreck F, Tang J, Xie Z, et al. Alternative and legacy perfluoroalkyl substances: Differences between European and Chinese river/estuary system [J]. Environmental Science & Technology, 2015, 49(14): 8386-8395

[51] 黃澄華, 李訓生, 金廣泉, 等. 電解氟化及其下游精細氟化工產品(待續)[J]. 化工生產與技術, 2010, 17(5): 1-9

Huang C H, Li X S, Jin G Q, et al. Electro fluorination and its fine-fluorine production branches [J]. Chemical Production and Technology, 2010, 17(5): 1-9 (in Chinese)

[52] Zabaleta I, Bizkarguenaga E, Bilbao D, et al. Fast and simple determination of perfluorinated compounds and their potential precursors in different packaging materials [J]. Talanta, 2016, 152: 353-363

[53] Gebbink W A, Bossi R, Riget F F, et al. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals [J]. Chemosphere, 2016, 144: 2384-2391

[54] Shi Y, Vestergren R, Zhou Z, et al. Tissue distribution and whole body burden of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in crucian carp (Carassius carassius): Evidence for a highly bioaccumulative contaminant of emerging [J]. Environmental Science & Technology, 2015, 49(24): 14156-14165

[55] Shi Y, Vestergren R, Xu L, et al. Human exposure and elimination kinetics of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) [J]. Environmental Science & Technology, 2016, 50(5): 2396-2404

[56] Wang M, Wang Y X, Yang L, et al. Determination of perfluorosulfonate and perfluorocarboxylate precursors in eggs by ultra-highperformance liquid chromatography-mass spectrometry [J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2016, 50(5): 439-444

[57] Eriksson U, Roos A, Lind Y, et al. Comparison of PFASs contamination in the freshwater and terrestrial environments by analysis of eggs from osprey (Pandion haliaetus), tawny owl (Strix aluco), and common kestrel (Falco tinnunculus) [J]. Environmental Research, 2016, 149: 40-47

[58] 石瑀. 全氟有機化合物及其前體物質的產前暴露水平及與胎兒生長發育的關系[D]. 北京: 中國疾病預防控制中心, 2014: 1-8

[59] Yang L, Wang Z, Shi Y, et al. Human placental transfer of perfluoroalkyl acid precursors: Levels and profiles in paired maternal and cord serum [J]. Chemosphere, 2016, 144: 1631-1638

[60] Conder J M, Hoke R A, De Wolf W, et al. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds [J]. Environmental Science & Technology, 2008, 42(4): 995-1003

[61] Center for Disease Control and Prevention. NIOSH Pocket Guide to Chemical Hazards [DB/OL]. (2011-04-11) [2016-06-18]. http://www.cdc.gov/niosh/npg/npgd0108.html.

[62] Parsons J R, Sáez M, Dolfing J, et al. Biodegradation of perfluorinated compounds [J]. Reviews of Environmental Contamination and Toxicology, 2008, 196: 53-71

[63] Young C J, Mabury S A. Atmospheric perfluorinated acid precursors: Chemistry, occurrence, and impacts [J]. Reviews of Environmental Contamination and Toxicology, 2010, 208: 1-109

[64] Hori H, Murayama M, Kutsuna S. Oxygen-induced efficient mineralization of perfluoroalkylether sulfonates in subcritical water [J]. Chemosphere, 2009, 77(10): 1400-1405

[65] Zhang K L, Cao Z G, Huang J, et al. Mechanochemical destruction of Chinese PFOS alternative F-53B [J]. Chemical Engineering Journal, 2016, 286: 387-393

[66] Park S, Lee L S, Medina V F. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation [J]. Chemosphere, 2016, 82(6): 376-383

[67] Wang N, Liu J, Buck R C, et al. 6:2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants [J]. Chemosphere, 2011, 82(6): 853-858

[68] European Chemical Agency (ECHA). European Chemicals Agency Registered Substances [DB/OL]. (2014-04-03) [2016-06-18]. http://echa.europa.eu/information-on-chemicals/registered-substances

[69] Felizeter S, McLachlan M S, DeVoogt P. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops [J]. Journal of Agricultural and Food Chemistry, 2014, 62(15): 3334-3342

[70] Krippner J, Brunn H, Falk S, et al. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays) [J]. Chemosphere, 2014, 94: 85-90

[71] Hoke R A, Barbra D, Ferrell B D, et al. Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate [J]. Chemosphere, 2015, 128: 258-265

[72] Venkatesan A K, Halden R U. Loss and in situ production of perfluoroalkyl chemicals in outdoor biosolids-soil mesocosms [J]. Environmental Research, 2014, 132: 321-327

[73] Vierke L, Moller A, Klitzke S. Transport of perfluoroalkyl acids in a water-saturated sediment column investigated under near-natural conditions [J]. Environmental Pollution, 2014, 186: 7-13

[74] Gomis M I, Wang Z, Scheringer M, et al. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances [J]. Science of the Total Environment, 2015, 505: 981-991

[75] Borg D, Hakansson H. Environmental and health risk assessment of perfluoroalkylated and polyfluoroalkylated substances (PFASs) in Sweden, Report 6513 [R]. Stockholm: The Swedish Environmental Protection Agency, 2012

[76] Daikin. Measures concerning use of PFOA [DB/OL]. [2016-06-18]. http://www.daikin.com/chm/csr/.

[77] Hoke R A, Bouchelle L D, Ferrell B D, et al. Comparative acute freshwater hazard assessment and preliminary PNEC development for eight fluorinated acids [J]. Chemosphere, 2012, 87(7): 725-733

[78] Mitchell R J, Myers A L, Mabury S A, et al. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca [J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2260-2267

[79] Phillips M M, Dinglasan-Panlilio M J, Mabury S A, et al. Fluorotelomer acids are more toxic than perfluorinated acids [J]. Environmental Science & Technology, 2007, 41(20): 7159-7163

TheCurrentResearchStatusofSeveralKindsofFluorinatedAlternatives

Zhou Xiujuan, Sheng Nan, Wang Jianshe, Dai Jiayin*

Institute of Zoology, Chinese Academy of Sciences, Chinese Academy of Sciences Key Laboratory of Animal Ecology and Conservation Biology, Beijing 100101, China

10.7524/AJE.1673-5897.20160618001

2016-06-18錄用日期2016-08-22

1673-5897(2017)3-003-10

X171.5

A

戴家銀(1965—),男,博士,研究員,主要從事持久性污染物的生態毒理學研究工作,發表學術論文90余篇。

國家自然科學基金(31320103915,21477126)

周秀鵑(1990-),女,碩士研究生,研究方向為生態毒理學,E-mail: zhouxiujuan@ioz.ac.cn;

*通訊作者(Corresponding author), E-mail: daijy@ioz.ac.cn

周秀鵑, 盛南, 王建設, 等. 全氟和多氟化合物替代品的研究進展[J]. 生態毒理學報,2017, 12(3): 3-12

Zhou X J, Sheng N, Wang J S, et al. The current research status of several kinds of fluorinated alternatives [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 3-12 (in Chinese)

猜你喜歡
生物研究
生物多樣性
天天愛科學(2022年9期)2022-09-15 01:12:54
FMS與YBT相關性的實證研究
生物多樣性
天天愛科學(2022年4期)2022-05-23 12:41:48
上上生物
當代水產(2022年3期)2022-04-26 14:26:56
2020年國內翻譯研究述評
遼代千人邑研究述論
發現不明生物
科學大眾(2021年9期)2021-07-16 07:02:54
史上“最黑暗”的生物
軍事文摘(2020年20期)2020-11-28 11:42:50
第12話 完美生物
航空世界(2020年10期)2020-01-19 14:36:20
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
主站蜘蛛池模板: 国产毛片久久国产| 欧美不卡视频在线观看| 国产精品亚洲综合久久小说| 99精品在线视频观看| 亚洲人成网站色7777| 蜜芽国产尤物av尤物在线看| 国产黄网站在线观看| 日韩中文无码av超清| 欧美色香蕉| 国产精品一区二区国产主播| 超薄丝袜足j国产在线视频| 四虎永久免费网站| 午夜不卡福利| 亚洲va欧美va国产综合下载| 四虎成人免费毛片| 女同久久精品国产99国| 欧美成人日韩| 97在线免费| 久久综合亚洲鲁鲁九月天| 国产偷国产偷在线高清| 欧美日韩精品综合在线一区| 欧美日韩国产成人高清视频| 国产手机在线小视频免费观看 | 国产精品自拍合集| 色婷婷视频在线| jizz在线观看| 欧美成人午夜视频免看| 国产亚洲精品在天天在线麻豆 | 亚洲永久免费网站| 狠狠亚洲婷婷综合色香| 色悠久久久久久久综合网伊人| 风韵丰满熟妇啪啪区老熟熟女| 国产原创演绎剧情有字幕的| 精品国产Av电影无码久久久| 青青青视频蜜桃一区二区| 男女性色大片免费网站| 国产三区二区| 国产在线观看一区精品| 国产精鲁鲁网在线视频| 国产69精品久久| 国产精鲁鲁网在线视频| 欧洲一区二区三区无码| 亚洲最新在线| 亚洲Av激情网五月天| 九九久久精品免费观看| 色噜噜狠狠色综合网图区| 青青青伊人色综合久久| 萌白酱国产一区二区| 久久精品国产电影| 一本色道久久88亚洲综合| www.youjizz.com久久| 大陆国产精品视频| 国产区精品高清在线观看| 国模沟沟一区二区三区 | 欧美亚洲国产一区| 91在线播放国产| 免费一级全黄少妇性色生活片| 野花国产精品入口| 国产电话自拍伊人| 91小视频在线观看免费版高清| 免费国产高清精品一区在线| 亚洲熟女中文字幕男人总站| 日本黄色a视频| 又猛又黄又爽无遮挡的视频网站| 找国产毛片看| 亚洲无码高清视频在线观看| 精品国产免费观看| 国产噜噜噜| 无码AV高清毛片中国一级毛片| 三上悠亚一区二区| 久久77777| 高清不卡毛片| 日韩无码黄色网站| 精品天海翼一区二区| 亚洲国产精品一区二区高清无码久久| 成色7777精品在线| 亚洲三级电影在线播放| 五月婷婷激情四射| 亚洲日韩国产精品综合在线观看| 91毛片网| аv天堂最新中文在线| 91免费观看视频|