999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于3-乙基-2-乙酰吡嗪縮肼基甲酸甲酯的銅和鋅配合物的晶體結構及熒光性質

2017-11-01 10:22:41毛盼東陳澤華吳偉娜
無機化學學報 2017年10期

毛盼東 陳澤華*, 王 媛 秦 莉 吳偉娜 王 元*,

基于3-乙基-2-乙酰吡嗪縮肼基甲酸甲酯的銅和鋅配合物的晶體結構及熒光性質

毛盼東1陳澤華*,1王 媛2秦 莉2吳偉娜1王 元*,1

(1河南理工大學化學化工學院,焦作 454000)
(2河南理工大學材料科學學院,焦作 454000)

合成并通過單晶X射線衍射、元素分析及紅外光譜表征了配合物[Cu(HL)Cl2]·H2O(1)和[ZnL2](2)的結構(HL為3-乙基-2-乙酰吡嗪縮肼基甲酸甲酯)。單晶衍射結果表明,在配合物1中,Cu離子擁有四方錐配位構型,與一個中性配體HL和2個氯離子配位。配合物2中,Zn離子與來自2個陰離子配體L-的N2O電子供體配位,配位構型為扭曲的八面體。此外還研究了配合物1和2的固體熒光性質。

肼基甲酸甲酯;吡嗪;熒光;晶體結構

Transition metal complexes have become of increasing importance in synthetic chemistry,coordination chemistry,homogenous catalysis and biological chemistry[1].Among the various types of ligands,Schiff bases,including acylhydrazones[2-4],thiosemicarbazones[5-6]and semicarbazones[7-8],and their transition metal complexes have been widely investigated due to the high biological and pharmaceutical activities.However,astheir structurally analogous,carbazates(R-O-CO-NHNH2)have been paid much less attention[9].

On the other hand,Cu2+and Zn2+are crucial to the life because they are present as important cofactors of various enzymes and numerous proteins[10].Furthermore,pyrazines are an important class of nitrogen heterocyclic compounds with a variety of biological activities and are used as key structural motifs for the synthesis of various pharmaceutical agents[11-12].Our previous work has shown that the semicarbazone,namely,methyl(pyrazin-2-yl)ethylidene)carbazatecould coordinate with Niand Cdions[9].As the continuation of our work on Schiff base metal complexes,we report here the crystal structures of Cuand Zncomplexes with methyl(1-(3-ethylpyrazin-2-yl)ethylidene)carbazate(HL).In addition,the luminescent properties of the complexes in solid state were investigated.

1 Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchased commercially and used as received.Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra(ν=4 000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.1H NMR spectra of L was acquired with Bruker AV400 NMR instrument in DMSO-d6solution with TMS as internal standard.The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer.

1.2 Preparation of the ligand,complexes 1 and 2

As shown in Scheme 1,the ligand HL was produced by condension of 3-ethyl-2-acetyl pyrazine(1.51 g,0.01 mol)and methyl hydrazinocarboxylate(0.90 g,0.01 mol)in anhydrous methanol solution(30 mL)with continuous stirring at room temperature for 3 h.The white solid was filtered and washed three times by cold methanol.Yield:1.44 g (65%).m.p.111.9~112.5℃.Elemental analysis Calcd.for C10H14N4O2(%):C:54.04;H:6.35;N:25.21;Found(%):C:54.22;H:6.26;N:25.15.FT-IR(cm-1):ν(C=O)1 727,ν(C=N)1 605,ν(C=N)pyrazine1 560.1H NMR(400 MHz,DMSO-d6):δ10.44(1H,s,NH),8.48~8.53(2H,dd,pyrazine-H),3.73 (3H,s,CH3),3.01~3.06 (2H,q,CH2),2.26(3H,s,CH3),1.21~1.25(3H,t,CH3).

Crystals of(H2L)NO3,complexes 1 and 2 suitable for X-ray diffraction analysis were obtained by slow evaporating the methanol solution(10 mL)of the ligand HL(5 mmol)with equimolar of Ga(NO3)3·6H2O,CuCl2·2H2O and Zn(NO3)2·6H2O at room temperature,respectively.

(H2L)NO3:colorless rods.

1:green plates.Anal.Calcd.for C10H16N4O3Cl2Cu(%):C:32.05;H:4.30;N:14.95.Found(%):C:32.12;H:4.15;N:15.02.FT-IR(cm-1):ν(C=O)1 720,ν(C=N)1 566,ν(C=N)pyrazine1 508.

2:yellow plates.Anal.Calcd.for C20H26N8O4Zn(%):C:47.30;H:5.16;N:22.06.Found(%):C:47.22;H:5.12;N:22.15.FT-IR(cm-1):ν(N=C-O)1 644,ν(C=N)1 562,ν(C=N)pyrazine1 510.

1.3 X-ray crystallography

The single crystal X-ray diffraction data for(H2L)NO3,complexes 1 and 2 were performed on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation(λ=0.071 073 nm)by using φ-ω scan mode at 296(2)K.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[13].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[14].All non-hydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.The O5 and O6 atoms of the nitrate anion in(H2L)NO3occupied two positions,with the occupancy value of OVO5(O6)/OVO5A(O6A)being 0.723/0.277.Details of the crystal parameters,data collection and refinements for(H2L)NO3,complexes1and 2 aresummarized in Table1.

Scheme 1 Synthesis route of HL

Table 1 Crystal data and structure refinement for(H 2L)NO3,complexes 1 and 2

CCDC:1544291,(H2L)NO3;1544292,1;1544293,2.

2 Results and discussion

2.1 Crystal structure description

Selected bond distances and angles,hydrogen bonds information for(H2L)NO3,complexes 1 and 2 are listed in Table 2 and 3,respectively.The reaction of theligand HL with Ga(NO3)3generates crystalsof(H2L)NO3,establishing the hydrolysis of the metal salt.The asymmetric unit of(H2L)NO3contains two counter nitrate anions and two independent protonated(N2 and N6 atoms of pyrazines)organic ligands.Bond lengths of carbonyl C9-O1(0.118 2(4)nm)and C19-O3(0.117 0(4)nm)are shorter than those of some reported neutral semicarbazones[15].In the crystal,H2L molecules are linked by nitrate anions into onedimensional chains(Fig.1d)via intermolecular N-H…O hydrogen bonds.

Table 2 Selected bond lengths(nm)and angles(°)in(H 2L)NO3,complexes 1 and 2

Asshown in Fig.1b,complex 1 containsonecrystal water molecule and one discrete Cucomplex,in which the ratio of the ligand HL and metal is 1∶1 andthe ligand is neutral tridentate with carbonyl C=O bond length being 0.122 5(3)nm.The Cuion is also coordinated with two chloride anions,giving a distorted square pyramid coordination geometry(τ=0.148)[16].In the solid state,crysltal water molecules link the complexes into a one-dimensional chain along c axis (Fig.1e)through intermolecular N-H…O and O-H…Cl hydrogen bonds.

Table 3 Hydrogen bonds information for(H 2L)NO3 and complex 1

Fig.1 Diamond drawing of(H2L)NO3(a),complexes 1(b)and 2(c)with 30%thermal ellipsoids;Extended chain-like supramolecular structure in(H2L)NO3(d)and complex 1(e)

2.2 IR spectra

Theν(C=O)of the free ligand HL is at 1 727 cm-1,and it shifts to lower frequency value in complex 1,confirming the coordination of the carbonyl group[9].However,such absorption band is disappeared in complex 2,meanwhile,new(N=C-O)stretching vibration absorption is observed at 1 644 cm-1,revealing that the C=O in O=C-N moiety has enolizated and the oxygen atom coordinates to the Znion[16].Theν(C=N)bands of the imine group and pyrazine ring in the ligand HL shift to lower frequency values in both complexes,indicating that the N atoms of both units take part in the coordination[16],which is in accordance with the crystal structure study.

2.3 UV spectra

The UV spectra of HL,complexes 1 and 2 in CH3OH solution(1×10-5mol·L-1)were measured at room temperature (Fig.2).The spectra of HL features only one main band located around 285 nm(ε=6 389 L·mol-1·cm-1),which could be assigned to characteristic π-π*transition of pyrazine unit[9].Similar bands are observed at 284 nm(ε=5 143 L·mol-1·cm-1)in that of complex 2.However,there are three bonds in spectra of 1 at 257 nm(ε=9 334 L·mol-1·cm-1),291 nm(ε=10 444 L·mol-1·cm-1)and 385 nm(ε=6 864 L·mol-1·cm-1).The former two could be contributed to the characteristic π-π*transition of pyrazine and imine unit,respectively,while the final one is probably due to the ligand-to-metal charge transfer(LMCT)[16].

Fig.2 UV spectra of the ligand HL,complexes 1 and 2 in CH3OH solution at room temperature

2.4 Fluorescence spectra

Fig.3 shows the emission spectra of the ligand HL,complexes 1 and 2 in solid state.When excited at 330 nm,the ligand shows single emission band at 400 nm,while complex 2 exhibits two broad emissions at 400 and 490 nm,which is probably due to the energy transferring from the ligand to the Znion[17].The behavior of Zn2+coordinated to the ligand is regarded as that of emissive species resulting in a CHEF effect(chelation enhancement of the fluorescence emission)[18].By contrast,the center Cuion induces obvious fluorescence quenching of HL in complex 1.

Fig.3 Fluorescence emission spectra of the ligand HL,complexes 1 and 2 in solid state at room temperature

[1]Sharma S,Chauhan M,Jamsheera A,et al.Inorg.Chim.Acta,2017,458:8-27

[2]El-Gammal O A,Bekheit M M,Tahoon M.Spectrochim.Acta A,2015,135:597-607

[3]Shaabani B,Khandar A A,Kazemi S S,et al.Polyhedron,2013,49:61-66

[4]Singh P,Singh D P,Singh V P.Polyhedron,2014,81:56-65

[5]Qi J,Deng J,Qian K,et al.Eur.J.Med.Chem.,2017,134:34-42

[6]Rogolino D,Cavazzoni A,Gatti A,et al.Eur.J.Med.Chem.,2017,128:140-153

[7]Safavi M,Foroumadi A,Nakhjiri M,et al.Bioorg.Med.Chem.Lett.,2010,20:3070-3073

[8]Venkatachalam T K,Bernhardt P V,Noble C J,et al.J.Inorg.Biochem.,2016,162:295-308

[9]MAO Pan-Dong(毛盼東),HAN Xue-Feng(韓學鋒),WU Wei-Na(吳偉娜),et al.Chinese J.Inorg.Chem.(無機化學學報),2016,32:161-166

[10]Trusso Sfrazzetto G,Satriano C,Tomaselli G A,et al.Coord.Chem.Rev.,2016,311:125-167

[11]Li M X,Zhang L Z,Yang M,et al.Bioorg.Med.Chem.Lett.,2012,22:2418-2433

[12]Li M X,Zhang L Z,Zhang D,et al.Eur.J.Med.Chem.,2011,46:4383-4390

[13]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

[14]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[15]Soria-Martínez R,Mendoza-Meroo R,García-Granda S.J.Mol.Struct.,2016,1105:322-331

[16]WU Hao(吳浩),CHEN Ze-Hua(陳澤華),YU Ya-Ping(于亞平),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33:699-704

[17]CHENG Mei-Ling(程美令),CAO Xiang-Qian(曹向前),WANG Chun-Lan(王春蘭),et al.Chinese J.Inorg.Chem.(無機化學學報),2006,22:1222-1226

[18]Vicente M,Bastida R,Lodeiro C,et al.Inorg.Chem.,2003,42:6768-6779

Twocomplexes,namely[Cu(HL)Cl2]·H2O(1)and[ZnL2](2)(HL=methyl(1-(3-ethylpyrazin-2-yl)ethylidene)carbazate)have been synthesized and characterized by single-crystal X-ray diffraction,elemental analysis and IR spectroscopy.X-ray diffraction analysis results show that in complex 1,the Cuion with a distorted square pyramid coordination geometry is coordinated with one neutral ligand HL and two chloride anions.However,the central Znion in complex 2 is surrounded by two independent anionic ligands with N2O donor set,thus possesses a distorted octahedral coordination geometry.The luminescent properties of the complexes were also studied in detail.CCDC:1544291,(H2L)NO3;1544292,1;1544293,2.

methyl hydrazinocarboxylate;pyrazine;fluorescence;crystal structure

O614.121;O614.24+1

A

1001-4861(2017)10-1849-06

10.11862/CJIC.2017.214

MAOPan-Dong1CHEN Ze-Hua*,1WANGYuan2QIN Li2WU Wei-Na1WANG Yuan*,1
(1College of Chemistry and Chemical Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)
(2School of Materials Science and Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

2017-04-17。收修改稿日期:2017-07-19。

國家自然科學基金(No.21001040)、河南省科技廳基礎與前沿項目(No.162300410011)、河南省教育廳自然科學基金(No.12B15001,14B150029)和河南省青年骨干教師項目(No.2014GGJS-045)資助。

*通信聯系人。 E-mail:chen1861@hpu.edu.cn,wangyuan08@hpu.edu.cn;會員登記號:S06N4036M1112(王元)。

主站蜘蛛池模板: 五月天天天色| 日韩欧美国产成人| 国产高清在线精品一区二区三区| 亚洲无线视频| 日韩欧美中文| 欧美成人aⅴ| 人妻无码中文字幕一区二区三区| 亚洲视频三级| 亚洲日本在线免费观看| 东京热av无码电影一区二区| 久久青草精品一区二区三区| 国产午夜精品鲁丝片| 亚洲日本中文综合在线| 精品免费在线视频| AV不卡无码免费一区二区三区| 国产精品区视频中文字幕| 国产喷水视频| 久久精品这里只有国产中文精品| 亚洲美女一级毛片| www.国产福利| 沈阳少妇高潮在线| 香蕉久久国产超碰青草| 成人欧美日韩| 国产av剧情无码精品色午夜| 亚洲第一视频网| 亚洲精品麻豆| 国产精品污污在线观看网站| 中文毛片无遮挡播放免费| 伊人久久综在合线亚洲91| 国产亚洲精品97AA片在线播放| 欧美a级在线| 日本久久网站| 国产国拍精品视频免费看| 欧美激情福利| 青青草国产免费国产| 精品国产中文一级毛片在线看| 在线免费a视频| 麻豆国产精品一二三在线观看| 91偷拍一区| 国产精品福利导航| 国产在线精彩视频二区| 国产精品对白刺激| 国产伦精品一区二区三区视频优播| 亚洲天堂网视频| 久久中文字幕av不卡一区二区| 丝袜亚洲综合| 国产成人成人一区二区| 手机精品视频在线观看免费| 久久精品丝袜| 国产精品思思热在线| 国产精品毛片一区| 亚洲视频欧美不卡| 99ri精品视频在线观看播放| 中文字幕在线观看日本| 真实国产乱子伦视频| 国产又爽又黄无遮挡免费观看| 亚洲人成影院在线观看| 亚洲国产在一区二区三区| 国产91小视频| 这里只有精品国产| 亚洲天堂日韩av电影| 久久久久亚洲Av片无码观看| 国产爽爽视频| 国产九九精品视频| 国产精品女人呻吟在线观看| 亚洲视频影院| 91探花在线观看国产最新| 日本人妻一区二区三区不卡影院| 国产精品偷伦在线观看| 国产手机在线小视频免费观看| 91精品国产无线乱码在线| 丰满少妇αⅴ无码区| 亚洲欧美一区二区三区蜜芽| 日本午夜精品一本在线观看| 99精品伊人久久久大香线蕉| 伊人欧美在线| 伊人中文网| 精品无码日韩国产不卡av| 日韩小视频在线观看| 国产一级α片| 国产主播一区二区三区| 亚洲成在线观看|