999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于3-乙基-2-乙酰吡嗪縮肼基甲酸甲酯的銅和鋅配合物的晶體結構及熒光性質

2017-11-01 10:22:41毛盼東陳澤華吳偉娜
無機化學學報 2017年10期

毛盼東 陳澤華*, 王 媛 秦 莉 吳偉娜 王 元*,

基于3-乙基-2-乙酰吡嗪縮肼基甲酸甲酯的銅和鋅配合物的晶體結構及熒光性質

毛盼東1陳澤華*,1王 媛2秦 莉2吳偉娜1王 元*,1

(1河南理工大學化學化工學院,焦作 454000)
(2河南理工大學材料科學學院,焦作 454000)

合成并通過單晶X射線衍射、元素分析及紅外光譜表征了配合物[Cu(HL)Cl2]·H2O(1)和[ZnL2](2)的結構(HL為3-乙基-2-乙酰吡嗪縮肼基甲酸甲酯)。單晶衍射結果表明,在配合物1中,Cu離子擁有四方錐配位構型,與一個中性配體HL和2個氯離子配位。配合物2中,Zn離子與來自2個陰離子配體L-的N2O電子供體配位,配位構型為扭曲的八面體。此外還研究了配合物1和2的固體熒光性質。

肼基甲酸甲酯;吡嗪;熒光;晶體結構

Transition metal complexes have become of increasing importance in synthetic chemistry,coordination chemistry,homogenous catalysis and biological chemistry[1].Among the various types of ligands,Schiff bases,including acylhydrazones[2-4],thiosemicarbazones[5-6]and semicarbazones[7-8],and their transition metal complexes have been widely investigated due to the high biological and pharmaceutical activities.However,astheir structurally analogous,carbazates(R-O-CO-NHNH2)have been paid much less attention[9].

On the other hand,Cu2+and Zn2+are crucial to the life because they are present as important cofactors of various enzymes and numerous proteins[10].Furthermore,pyrazines are an important class of nitrogen heterocyclic compounds with a variety of biological activities and are used as key structural motifs for the synthesis of various pharmaceutical agents[11-12].Our previous work has shown that the semicarbazone,namely,methyl(pyrazin-2-yl)ethylidene)carbazatecould coordinate with Niand Cdions[9].As the continuation of our work on Schiff base metal complexes,we report here the crystal structures of Cuand Zncomplexes with methyl(1-(3-ethylpyrazin-2-yl)ethylidene)carbazate(HL).In addition,the luminescent properties of the complexes in solid state were investigated.

1 Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchased commercially and used as received.Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra(ν=4 000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.1H NMR spectra of L was acquired with Bruker AV400 NMR instrument in DMSO-d6solution with TMS as internal standard.The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer.

1.2 Preparation of the ligand,complexes 1 and 2

As shown in Scheme 1,the ligand HL was produced by condension of 3-ethyl-2-acetyl pyrazine(1.51 g,0.01 mol)and methyl hydrazinocarboxylate(0.90 g,0.01 mol)in anhydrous methanol solution(30 mL)with continuous stirring at room temperature for 3 h.The white solid was filtered and washed three times by cold methanol.Yield:1.44 g (65%).m.p.111.9~112.5℃.Elemental analysis Calcd.for C10H14N4O2(%):C:54.04;H:6.35;N:25.21;Found(%):C:54.22;H:6.26;N:25.15.FT-IR(cm-1):ν(C=O)1 727,ν(C=N)1 605,ν(C=N)pyrazine1 560.1H NMR(400 MHz,DMSO-d6):δ10.44(1H,s,NH),8.48~8.53(2H,dd,pyrazine-H),3.73 (3H,s,CH3),3.01~3.06 (2H,q,CH2),2.26(3H,s,CH3),1.21~1.25(3H,t,CH3).

Crystals of(H2L)NO3,complexes 1 and 2 suitable for X-ray diffraction analysis were obtained by slow evaporating the methanol solution(10 mL)of the ligand HL(5 mmol)with equimolar of Ga(NO3)3·6H2O,CuCl2·2H2O and Zn(NO3)2·6H2O at room temperature,respectively.

(H2L)NO3:colorless rods.

1:green plates.Anal.Calcd.for C10H16N4O3Cl2Cu(%):C:32.05;H:4.30;N:14.95.Found(%):C:32.12;H:4.15;N:15.02.FT-IR(cm-1):ν(C=O)1 720,ν(C=N)1 566,ν(C=N)pyrazine1 508.

2:yellow plates.Anal.Calcd.for C20H26N8O4Zn(%):C:47.30;H:5.16;N:22.06.Found(%):C:47.22;H:5.12;N:22.15.FT-IR(cm-1):ν(N=C-O)1 644,ν(C=N)1 562,ν(C=N)pyrazine1 510.

1.3 X-ray crystallography

The single crystal X-ray diffraction data for(H2L)NO3,complexes 1 and 2 were performed on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation(λ=0.071 073 nm)by using φ-ω scan mode at 296(2)K.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[13].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[14].All non-hydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.The O5 and O6 atoms of the nitrate anion in(H2L)NO3occupied two positions,with the occupancy value of OVO5(O6)/OVO5A(O6A)being 0.723/0.277.Details of the crystal parameters,data collection and refinements for(H2L)NO3,complexes1and 2 aresummarized in Table1.

Scheme 1 Synthesis route of HL

Table 1 Crystal data and structure refinement for(H 2L)NO3,complexes 1 and 2

CCDC:1544291,(H2L)NO3;1544292,1;1544293,2.

2 Results and discussion

2.1 Crystal structure description

Selected bond distances and angles,hydrogen bonds information for(H2L)NO3,complexes 1 and 2 are listed in Table 2 and 3,respectively.The reaction of theligand HL with Ga(NO3)3generates crystalsof(H2L)NO3,establishing the hydrolysis of the metal salt.The asymmetric unit of(H2L)NO3contains two counter nitrate anions and two independent protonated(N2 and N6 atoms of pyrazines)organic ligands.Bond lengths of carbonyl C9-O1(0.118 2(4)nm)and C19-O3(0.117 0(4)nm)are shorter than those of some reported neutral semicarbazones[15].In the crystal,H2L molecules are linked by nitrate anions into onedimensional chains(Fig.1d)via intermolecular N-H…O hydrogen bonds.

Table 2 Selected bond lengths(nm)and angles(°)in(H 2L)NO3,complexes 1 and 2

Asshown in Fig.1b,complex 1 containsonecrystal water molecule and one discrete Cucomplex,in which the ratio of the ligand HL and metal is 1∶1 andthe ligand is neutral tridentate with carbonyl C=O bond length being 0.122 5(3)nm.The Cuion is also coordinated with two chloride anions,giving a distorted square pyramid coordination geometry(τ=0.148)[16].In the solid state,crysltal water molecules link the complexes into a one-dimensional chain along c axis (Fig.1e)through intermolecular N-H…O and O-H…Cl hydrogen bonds.

Table 3 Hydrogen bonds information for(H 2L)NO3 and complex 1

Fig.1 Diamond drawing of(H2L)NO3(a),complexes 1(b)and 2(c)with 30%thermal ellipsoids;Extended chain-like supramolecular structure in(H2L)NO3(d)and complex 1(e)

2.2 IR spectra

Theν(C=O)of the free ligand HL is at 1 727 cm-1,and it shifts to lower frequency value in complex 1,confirming the coordination of the carbonyl group[9].However,such absorption band is disappeared in complex 2,meanwhile,new(N=C-O)stretching vibration absorption is observed at 1 644 cm-1,revealing that the C=O in O=C-N moiety has enolizated and the oxygen atom coordinates to the Znion[16].Theν(C=N)bands of the imine group and pyrazine ring in the ligand HL shift to lower frequency values in both complexes,indicating that the N atoms of both units take part in the coordination[16],which is in accordance with the crystal structure study.

2.3 UV spectra

The UV spectra of HL,complexes 1 and 2 in CH3OH solution(1×10-5mol·L-1)were measured at room temperature (Fig.2).The spectra of HL features only one main band located around 285 nm(ε=6 389 L·mol-1·cm-1),which could be assigned to characteristic π-π*transition of pyrazine unit[9].Similar bands are observed at 284 nm(ε=5 143 L·mol-1·cm-1)in that of complex 2.However,there are three bonds in spectra of 1 at 257 nm(ε=9 334 L·mol-1·cm-1),291 nm(ε=10 444 L·mol-1·cm-1)and 385 nm(ε=6 864 L·mol-1·cm-1).The former two could be contributed to the characteristic π-π*transition of pyrazine and imine unit,respectively,while the final one is probably due to the ligand-to-metal charge transfer(LMCT)[16].

Fig.2 UV spectra of the ligand HL,complexes 1 and 2 in CH3OH solution at room temperature

2.4 Fluorescence spectra

Fig.3 shows the emission spectra of the ligand HL,complexes 1 and 2 in solid state.When excited at 330 nm,the ligand shows single emission band at 400 nm,while complex 2 exhibits two broad emissions at 400 and 490 nm,which is probably due to the energy transferring from the ligand to the Znion[17].The behavior of Zn2+coordinated to the ligand is regarded as that of emissive species resulting in a CHEF effect(chelation enhancement of the fluorescence emission)[18].By contrast,the center Cuion induces obvious fluorescence quenching of HL in complex 1.

Fig.3 Fluorescence emission spectra of the ligand HL,complexes 1 and 2 in solid state at room temperature

[1]Sharma S,Chauhan M,Jamsheera A,et al.Inorg.Chim.Acta,2017,458:8-27

[2]El-Gammal O A,Bekheit M M,Tahoon M.Spectrochim.Acta A,2015,135:597-607

[3]Shaabani B,Khandar A A,Kazemi S S,et al.Polyhedron,2013,49:61-66

[4]Singh P,Singh D P,Singh V P.Polyhedron,2014,81:56-65

[5]Qi J,Deng J,Qian K,et al.Eur.J.Med.Chem.,2017,134:34-42

[6]Rogolino D,Cavazzoni A,Gatti A,et al.Eur.J.Med.Chem.,2017,128:140-153

[7]Safavi M,Foroumadi A,Nakhjiri M,et al.Bioorg.Med.Chem.Lett.,2010,20:3070-3073

[8]Venkatachalam T K,Bernhardt P V,Noble C J,et al.J.Inorg.Biochem.,2016,162:295-308

[9]MAO Pan-Dong(毛盼東),HAN Xue-Feng(韓學鋒),WU Wei-Na(吳偉娜),et al.Chinese J.Inorg.Chem.(無機化學學報),2016,32:161-166

[10]Trusso Sfrazzetto G,Satriano C,Tomaselli G A,et al.Coord.Chem.Rev.,2016,311:125-167

[11]Li M X,Zhang L Z,Yang M,et al.Bioorg.Med.Chem.Lett.,2012,22:2418-2433

[12]Li M X,Zhang L Z,Zhang D,et al.Eur.J.Med.Chem.,2011,46:4383-4390

[13]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

[14]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[15]Soria-Martínez R,Mendoza-Meroo R,García-Granda S.J.Mol.Struct.,2016,1105:322-331

[16]WU Hao(吳浩),CHEN Ze-Hua(陳澤華),YU Ya-Ping(于亞平),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33:699-704

[17]CHENG Mei-Ling(程美令),CAO Xiang-Qian(曹向前),WANG Chun-Lan(王春蘭),et al.Chinese J.Inorg.Chem.(無機化學學報),2006,22:1222-1226

[18]Vicente M,Bastida R,Lodeiro C,et al.Inorg.Chem.,2003,42:6768-6779

Twocomplexes,namely[Cu(HL)Cl2]·H2O(1)and[ZnL2](2)(HL=methyl(1-(3-ethylpyrazin-2-yl)ethylidene)carbazate)have been synthesized and characterized by single-crystal X-ray diffraction,elemental analysis and IR spectroscopy.X-ray diffraction analysis results show that in complex 1,the Cuion with a distorted square pyramid coordination geometry is coordinated with one neutral ligand HL and two chloride anions.However,the central Znion in complex 2 is surrounded by two independent anionic ligands with N2O donor set,thus possesses a distorted octahedral coordination geometry.The luminescent properties of the complexes were also studied in detail.CCDC:1544291,(H2L)NO3;1544292,1;1544293,2.

methyl hydrazinocarboxylate;pyrazine;fluorescence;crystal structure

O614.121;O614.24+1

A

1001-4861(2017)10-1849-06

10.11862/CJIC.2017.214

MAOPan-Dong1CHEN Ze-Hua*,1WANGYuan2QIN Li2WU Wei-Na1WANG Yuan*,1
(1College of Chemistry and Chemical Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)
(2School of Materials Science and Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

2017-04-17。收修改稿日期:2017-07-19。

國家自然科學基金(No.21001040)、河南省科技廳基礎與前沿項目(No.162300410011)、河南省教育廳自然科學基金(No.12B15001,14B150029)和河南省青年骨干教師項目(No.2014GGJS-045)資助。

*通信聯系人。 E-mail:chen1861@hpu.edu.cn,wangyuan08@hpu.edu.cn;會員登記號:S06N4036M1112(王元)。

主站蜘蛛池模板: 操操操综合网| 午夜国产精品视频黄| 日韩黄色精品| 伊人久久婷婷五月综合97色| 成人免费午夜视频| 99精品热视频这里只有精品7| 成人夜夜嗨| 日韩区欧美区| 欧类av怡春院| 国产第一页亚洲| 国产精品自拍合集| 国产在线观看成人91| 最新国产高清在线| 2020极品精品国产 | 亚洲福利网址| 国产精品污污在线观看网站| 久久久成年黄色视频| 欧美激情视频一区| 99re经典视频在线| 特级毛片免费视频| 欧美成人亚洲综合精品欧美激情| 国产精品任我爽爆在线播放6080| 国产精品国产三级国产专业不| 国产95在线 | 亚洲区一区| 亚洲精品无码不卡在线播放| av天堂最新版在线| 免费不卡视频| 欧美第九页| 国产日韩精品一区在线不卡| 国产无吗一区二区三区在线欢| 女同久久精品国产99国| 99久久亚洲精品影院| 2021国产v亚洲v天堂无码| 无码AV高清毛片中国一级毛片| 欧美在线天堂| 天堂在线www网亚洲| 91探花在线观看国产最新| lhav亚洲精品| 亚洲av片在线免费观看| 欧美一级高清视频在线播放| 精品国产99久久| 在线免费看片a| 国产呦视频免费视频在线观看| 成人国产精品网站在线看| 亚洲国产成人久久77| www亚洲天堂| 久综合日韩| www.av男人.com| 久久福利网| 99热这里只有精品在线观看| 婷婷色在线视频| 精品少妇人妻av无码久久| 亚洲第一天堂无码专区| 亚洲一区二区三区国产精品| 亚洲系列中文字幕一区二区| 欧亚日韩Av| 国产香蕉一区二区在线网站| 黄色网页在线播放| 1级黄色毛片| 亚洲IV视频免费在线光看| 国产日本欧美亚洲精品视| 亚洲欧美日韩天堂| 国产成人精品亚洲77美色| 免费在线色| 欧美日韩v| 日韩欧美高清视频| 国产免费精彩视频| 国产99视频精品免费视频7| 在线观看亚洲人成网站| 久久精品电影| 国产精品区视频中文字幕| 成人午夜视频网站| 伊人久久大香线蕉影院| 欧美精品在线免费| 这里只有精品免费视频| 欧美日韩国产一级| 久久久久免费精品国产| 国产三级毛片| 欧美亚洲国产精品第一页| 国产成人91精品| 国产内射一区亚洲|