
(21)
公式4代入公式21得:

(22)
求解公式22,又Vc>0得:

(23)
當光合作用受TP轉運速率限制時,Vc由公式23給出,代入公式8得:

(24)
公式24為FvCB光合模型TPU階段的子模型。當a=0時,公式24可簡化為公式19。
1.4 葉肉導度
1980年,Farquhar等認為葉肉細胞對CO2擴散的阻力很小,在FvCB模型中可以忽略不計,即Cc等于胞間CO2濃度(Ci)[1]。隨著研究的深入,人們發現葉肉細胞對CO2擴散的阻力是光合作用的一個重要限制因子[9]。一般把CO2從胞間到Rubisco酶羧化位點擴散的導度稱為葉肉導度,記為gm:

(25)
為估計參數gm,需結合公式25和FvCB模型的3個子模型推導出A關于Ci的函數表達式。根據公式25計算出Cc,再分別代入公式9、公式18和公式24得改進后的FvCB模型。
首先是Rubisco酶限制階段。由公式25和公式9得Ac關于Ci的函數[19]:
(26)
求解公式26并取正解得:


(27)
其次是RuBP再生速率限制階段。由公式25和公式18得Aj關于Ci的函數[19]:
(28)
求解公式28并取正解得:



(29)
第三是TPU限制階段。由公式25和公式24得AP關于Ci的函數[20]:
(30)




b=3Tp-Rd+[Ci-1+3αΓ*]gm
c={3Ci-Γ*Tp-[Ci-1+3αΓ*]Rd}gm
(31)
公式27、公式29和公式31為加入gm參數后改進的FvCB模型。
1.5 參數擬合
在模型擬合中,一般假定所有C3植物有相等的Rubisco酶動力學常數(Kc和Ko),葉綠體內O2濃度等于空氣O2濃度。由于FvCB模型本身存在超參數現象,一般把Γ*作為輸入常數[20]。根據公式27、公式29、公式31,FvCB模型擬合CO2響應曲線可以獲得Vcmax、Jmax、Tp、a等階段特異性參數和gm、Rd等共同參數,而擬合的關鍵點是3個子模型分界點Ci的確定。一般,把Rubisco酶活性限制階段到RuBP再生速率限制階段轉換點的Ci記為Ci_CJ;RuBP再生速率限制到TPU限制轉換點的Ci記為Ci_JP。根據分界點Ci確定方法的不同,可以把現有的擬合方案大致分為3類[17]。第1類方案認為Ci_CJ在20—40Pa的范圍內變化[21- 22],并且TPU限制階段在田間試驗中很少出現。第2類方案利用CO2響應曲線中的全部數據同時來擬合FvCB模型[23-24]。第3類方案認為FvCB模型是變點模型,并采用特有的擬合方法進行模型擬合[20]。第1類方案的擬合過程相對簡單,但有很多潛在的問題。首先,共同參數的取值不好確定。對2個子模型分別進行擬合,會獲得2組不相等的gm和Rd參數,實踐中一般取平均值。其次,轉換點Ci_CJ的不確定性。大量研究表明Ci_CJ隨物種和環境條件的不同而不同[21,25],并且Ci_CJ的錯誤會影響參數擬合的準確性[21]。第2類方案雖然克服了人為確定Ci_CJ的缺點,但其擬合獲得的最佳階段分配組合可能不符合Rubisco酶活性限制、RuBP再生速率限制和TPU限制的實際順序。第3類方案不僅克服3個階段人為劃分的缺點,而且符合3個階段的實際順序,是較好的擬合方法,但是,其計算過程復雜,難以普遍使用。
1.6 參數的溫度相關性
根據FvCB模型的溫度相關性,不同溫度下Kc、Ko和Γ*等參數的取值不同。為此,一般把25℃下的Kc、Ko和Γ*等參數值作為標準(如表1),并根據參數的溫度相關性函數來計算某測量溫度下的參數值[26]。實踐中,一般用阿倫尼烏斯方程來建立參數與溫度間的函數關系:
PT=P(25℃)e{[T-25]E/[298R(273+T)]}
(32)
式中,T為測量溫度、P(T)為測量溫度T下的參數(Kc、Ko和Γ*)、P(25℃)為25℃下的參數、E為活化能、R為通用的氣體常數。

表1 25℃下的Kc、Ko、Γ*、E等參數[26]
經過30多年的發展,FvCB模型已基本完善,并通過大量實驗的驗證。但在RuBP再生速率限制階段中,光合電子傳遞全為線性電子傳遞的假設及ATP需求的忽略[1]會影響FvCB模型及其參數估計的準確性。由于gm的組分非常復雜,而FvCB模型把gm作為一個復合參數進行估計,這也會影響模型參數估計的準確性。由于FvCB模型可以不進行葉片離體實驗,而根據簡單的氣體交換數據獲得葉片Vcmax、Jmax、Tp、gs、gm等光合生理生化信息[3],它在植物光合生理與環境因子相互關系的研究中有廣泛的應用。接下來將對FvCB模型在葉片光合生理對環境因子響應的應用研究進展進行論述。
2 FvCB模型在葉片光合生理對環境因子響應的應用研究進展
FvCB模型結合葉片Rubisco酶、細胞色素f(cyt f)和ATP合成酶等生理指標可以揭示葉片活體光合系統對光照、CO2濃度、溫度、水分和N養分等環境因子變化的響應機制,其中,Vcmax反映光合系統中Rubisco酶最大羧化能力、Jmax反映光合電子傳遞鏈的最大電子傳遞能力、Tp反映磷酸丙糖的合成能力、gs和gm反映CO2擴散阻力對光合作用的限制。
2.1 光照
在不同環境光強下,葉片的形態和生化成分發生改變[27- 28],其光合機構也會發生變化。大量研究表明陽生葉片的細胞色素f(cyt f)、ATP合成酶、Rubisco酶等含量均大于陰生葉片[29-31],導致陽生葉片Vcmax和Jmax參數均顯著大于陰生葉片[32-33],由此,陽生葉片的光合能力顯著大于陰生葉片。Hanba等發現陽生葉片的氣孔密度顯著大于陰生葉片[31],這可能導致陽生葉片的gs顯著大于陰生葉片[32,34]。Piel等發現陽生葉片gm有效路徑的長度顯著小于陰生葉片[32]。另外,有研究表明槭樹和水青岡陽生葉片中單位面積葉綠體暴露在胞間的面積(Sc)顯著大于陰生葉片[32,34]。這兩個因素可能導致陽生葉片的gm顯著大于陰生葉片。
雖然瞬時光強對葉片Vcmax和Jmax參數沒有顯著影響,但對CO2擴散阻力有顯著的影響。研究表明gs與瞬時光強呈正相關[35- 36]。有人認為葉片光合系統與保衛細胞之間可能存在信號傳遞[35- 36],使葉片可以通過改變氣孔的張開程度來平衡gs與光合速率的大小。有研究發現水稻[35]、桉樹[36]、煙草[22]和班克木[37]等葉片的gm隨測量光強增大而增加,但小麥和煙草葉片的gm在不同瞬時光強下保持穩定不變[38-39]。Douthe等認為不同物種光合特性的差異可能導致gm隨瞬時光強的響應情況不同[36]。另外,水通道蛋白基因的表達速率隨光強的增加而加快[40- 41],而水通道蛋白的含量與CO2的跨膜轉運過程直接相關[42- 43],所以,光強的瞬時變化可能通過調控水通道蛋白基因的表達來改變gm。
2.2CO2濃度
在長期高CO2濃度下,植物葉片的結構和成分會發生變化,從而影響其光合作用[44]。長期高CO2濃度下生長的植株葉片Rubisco酶含量及活性和葉片N含量均顯著小于正常CO2濃度下生長的植株[45- 46]。而葉片N含量可以影響光合系統中Rubisco酶含量及活性、光捕獲組分、光合電子傳遞鏈組分的功能[47- 48],進而影響葉片的光合能力,從而使得長期高CO2濃度下生長植株的葉片Vcmax[45]和Jmax[49- 50]等均顯著小于在正常CO2濃度下生長的植株。長期高CO2濃度下生長的植株gs[44- 45]和gm[50]均小于在正常CO2濃度下生長的植株。研究發現在長期高CO2處理后,植株葉片的氣孔特性和表皮細胞密度發生改變[51- 52],這可能使得gs減小。Kürschner等發現長期高CO2濃度下生長的植株葉片厚度大于正常條件下生長的植株[53],而葉片厚度的增大可能會增大gm的有效路徑,導致gm減小。
CO2濃度的短期變化不影響葉片的Vcmax和Jmax參數,但對CO2擴散阻力有顯著影響。Flexas等發現gs與CO2濃度的短期變化呈負相關關系[22],對此,一般有3種解釋:1)Hedrish等發現葉片質外體中的pH值和膜電位[54]會隨CO2濃度的增加而發生改變,并伴隨著氣孔關閉,從而導致gs變小。2)CO2濃度的大小會影響葉肉細胞中蘋果酸的釋放,蘋果酸又可以調控保衛細胞質膜中陰離子的釋放代謝,從而調控氣孔行為[55]。3)CO2濃度變化還可能通過ATP調節機制[56]對gs進行調控。大量研究表明gm與CO2濃度呈負相關關系[22,36,57],但也有部分研究表明gm與CO2濃度不相關[58- 59]。對此,一般有2種解釋:1)由于水通道蛋白基因的表達速率受CO2濃度變化的影響[60],gm對CO2濃度短期變化的快速響應可能受水通道蛋白的調節。2)Sharkey發現葉綠體的變形可能會減小葉肉導度[61]。而且Tholen認為葉綠體的移動對gm有顯著的影響[62]。由此可知,葉綠體的行為可能與不同CO2濃度下gm的快速調控有關。
2.3 溫度
FvCB模型常用于研究溫度(不對植物產生損傷)對葉片光合系統內在變化狀況的影響。有研究發現Rubisco酶羧化能力、光合電子傳遞能力和CO2擴散過程均隨溫度的變化而改變。由于Rubisco酶及其激活酶活性均隨溫度的增加而增大(10—40℃),Kc、Ko、Vcmax會隨溫度的增加而增大[63- 64]。Bernacchi等用指數函數來描述Vcmax的溫度相關性[64]。光系統II(PSII)電子傳遞速率、光系統I(PSI)和光系統II(PSII)間的電子傳遞速率(質體醌PQ和質體藍素PC)[65- 66]和循環電子傳遞速率[63,67]均隨溫度的增加而增大,從而導致Jmax隨溫度的增加而增大[68]。溫度不僅影響葉片的光合能力,而且影響CO2的擴散阻力。盡管gs與溫度變化不相關[69- 70],但gm會隨溫度的增加而增大[35,70]。Evans等認為Sc、細胞壁厚度(Tcell_wall)、細胞液和葉綠體膜厚度等細胞結構特點會影響gm[71],而von Caemmerer等發現CO2的質膜滲透性和CO2擴散的液相路徑長度也受溫度的影響[70]。由此可以推測溫度可能通過改變葉肉細胞結構來調控gm。另外,Kuwagata等發現水通道蛋白基因的表達速度會隨溫度的增加而增大[72],所以,溫度還可能通過控制水通道蛋白基因的表達速率來調控gm。
2.4 干旱或鹽脅迫
干旱和鹽脅迫可以直接導致植物缺水[73],進而影響植物光合作用。有研究表明干旱或鹽脅迫盡管對Vcmax和Jmax參數沒有顯著影響[74- 75],但對CO2的擴散阻力有顯著影響[76]。在干旱或鹽脅迫條件下,植株為減少蒸騰作用,葉片氣孔會關閉。另外,在鹽脅迫條件下,鹽離子會在葉片保衛細胞內積累進而干擾氣孔功能[77- 78],導致氣孔關閉。因此,在干旱或鹽脅迫條件下植株葉片gs顯著小于在正常條件下生長的植株[79- 80]。大量研究表明在干旱或鹽脅迫條件下生長的植株葉片gm顯著小于在正常條件下生長植株的葉片[74,79-80]。長期干旱或鹽脅迫顯著減少了表皮細胞和葉肉細胞的斷面面積、寬度和半徑[81-82],從而使gm減小。另外,由于水通道蛋白基因的表達速率受干旱或鹽脅迫的影響[83],干旱或鹽脅迫可能通過控制水通道蛋白基因的表達來調控gm。
2.5 葉片N含量
由于葉肉細胞光合系統中的Rubisco酶、光捕獲組分(葉綠素和相關蛋白)和cty f等均含有大量的N元素[84],葉片N含量對光合作用有顯著影響。FvCB模型常用于研究葉片N含量對葉片光合系統內在變化狀況的影響。大量研究表明葉片Rubisco酶含量與葉片N含量呈正相關[35,85],而葉片Rubisco酶含量及活性決定Vcmax的大小,從而使得葉片Rubisco酶的羧化能力與葉片N含量呈正相關[47- 48]。Nakano等發現葉綠素和Cyt f等含量均與葉片N含量呈正相關[47],從而使得Jmax與葉片N含量呈正相關[84,86]。葉片N含量不僅影響光合能力,還影響CO2的擴散阻力。有研究表明葉片N含量與gs呈正相關[35]。雖然已知gs與氣孔特點(大小和密度)、氣孔張開程度有關,但氣孔對葉片N含量變化的具體響應機制還不清楚。大量研究表明葉片N含量與gm呈正相關[35,87]。大量研究表明Tcell_wall、單位葉面積葉肉細胞接觸胞間間隙的面積(Sm)、Sc等細胞結構特點與gm直接相關[71,88]。Xiong等研究發現Sc會隨葉N含量的增加而增大[35]。Yong還發現葉綠體的尺寸與葉片N含量呈正相關[89]。由此可知,葉片N含量可能通過改變葉片結構來調控gm。另外,由于葉片N含量的增加可以促進水通道蛋白的基因表達[90],不同葉片N含量還可能通過控制水通道蛋白的表達來調控gm。
目前關于植物光合生理與環境因子的關系已有大量研究,但這些研究多停留在單因子水平,更沒有考慮相互作用的生物因素與環境因素協同作用對植物光合生理的影響。同時,盡管人們已經提出多種假設來解釋光合生理反應隨環境因子變化的響應機制,但尚缺乏直接的實驗證據。因此,結合植物生理分子實驗與FvCB模型進行綜合分析是研究不同環境因子下植物光合生理響應機制的有效途徑。
3 研究展望
FvCB模型光合參數的準確估計不僅有利于正確理解植物光合生理對環境變化的響應機理,而且可以更精確地估計作物產量和全球氣候變暖情況[91]。光合電子傳遞、碳反應ATP需求和葉肉細胞內CO2的具體擴散路徑等方面的假設影響FvCB模型理論及參數估計的準確性,從而制約相關領域的研究。此外,盡管科學家已經開展了大量植物光合作用對環境條件變化響應等方面的研究,但是,在光合作用對環境因子變化的響應機制的研究中仍然存在很多問題。為此,未來需加強以下幾個方面的研究。
1)羧化速率與光合電子傳遞速率間的聯系
羧化速率與光合電子傳遞速率間的聯系直接影響到RuBP再生速率限制階段的子模型,進而影響Jmax、Vcmax、Tp、Rd、gm等參數估計的準確性。在RuBP再生速率限制階段,Farquhar等忽略了假電子傳遞、循環電子傳遞以及碳反應的ATP需求,并根據碳反應的NADPH消耗速率與J相等來獲得RuBP再生速率限制階段的子模型[1]。盡管人們已經開展J和NADPH/ATP生成速率等相關的研究[92],但J與ATP生成速率之間的關系比較復雜,目前仍未研究清楚[2]。因此,未來應該加強光合電子傳遞、NADPH/ATP代謝化學計量學等方面研究,以正確地建立Vc與J間的聯系。
2)葉肉細胞內CO2的擴散阻力
Sun等發現gm對Vcmax、Jmax、Tp等的參數估計有很大的影響[93]。目前,人們認為細胞壁、細胞膜、細胞質、葉綠體膜和葉綠體基質均對CO2的擴散有限制作用。并且,線粒體呼吸作用和光呼吸釋放的CO2有一部分會被光合作用重新固定。這部分CO2需通過線粒體膜、細胞質、葉綠體膜和葉綠體基質最終到達Rubisco酶羧化位點[94],這使得CO2的擴散路徑變得非常復雜。目前,有研究已經把gm區分為細胞壁阻力和葉綠體膜阻力[12,95],但gm各組分的估計還有待進一步的研究。因此,未來可以結合細胞顯微結構觀察、葉肉細胞內CO2擴散同位素跟蹤技術和FvCB模型對gm各組分的參數估計進行研究。
3)gs和gm對環境因子變化的具體調控機制
大量研究表明gs[34,36,70,79]和gm[31,35,36,39]隨環境因子的變化而改變。盡管人們已經提出多種與氣孔相關的調控機制,但其具體調控機制還不清楚,未來的研究可結合氣孔調控相關生理指標測量、光合機構信號傳導和FvCB模型等3方面的實驗對氣孔的調控機制進行深入研究。目前,人們已經提出細胞結構特點、水通道蛋白和葉綠體行為等幾種假說來解釋gm的調控機制,但缺乏直接的實驗證據。因此,未來的研究要重點研究不同環境條件下葉片細胞結構、水通道蛋白代謝和葉綠體行為的改變情況,并結合FvCB模型來研究gm的調控機制。而gm的相關研究需多領域的科學家共同參與
[1] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta, 1980, 149(1): 78- 90.
[2] von Caemmerer S. Steady-state models of photosynthesis. Plant, Cell and Environment, 2013, 36(9): 1617- 1630.
[3] Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, 54(392): 2393- 2401.
[4] Zhu X G, Portis A R Jr, Long S P. Would transformation of C3crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant, Cell and Environment, 2004, 27(2): 155- 165.
[5] Sellers P J, Randall D A, Collatz G J, Berry J A, Field C B, Dazlich D A, Zhang C, Collelo G D, Bounoua L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. Journal of Climate, 1996, 9(4): 676- 705.
[6] Collatz G J, Ribas-Carbo M, Berry J A. Coupled photosynthesis-stomatal conductance model for leaves of C4plants. Australian Journal of Plant Physiology, 1992, 19(5): 519- 538.
[7] von Caemmerer S, Furbank R T. The modeling of C4photosynthesis//Sage R, Monson R, eds. The Biology of C4Photosynthesis. New York: Academic Press, 1999: 169- 207.
[8] 黃紅英, 竇新永, 孫蓓育, 鄧斌, 吳國江, 彭長連. 兩種不同生態型麻瘋樹夏季光合特性的比較. 生態學報, 2009, 29(6): 2861- 2867.
[9] 王海珍, 韓路, 徐雅麗, 牛建龍. 胡楊異形葉光合作用對光強與CO2濃度的響應. 植物生態學報, 2014, 38(10): 1099- 1109.
[10] 高志奎, 高榮孚, 何俊萍, 王梅, 鐘傳飛. 溫室茄子(SolanummelongenaL.)光合數學模型與光合生化模型模擬分析. 生態學報, 2007, 27(6): 2265- 2271.
[11] Sharkey T D. Photosynthesis in intact leaves of C3plants: physics, physiology and rate limitations. The Botanical Review, 1985, 51(1): 53- 105.
[12] Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H. Mesophyll conductance to CO2: current knowledge and future prospects. Plant, Cell and Environment, 2008, 31(5): 602- 621.
[13] Laing W A, Ogren W L, Hageman R H. Regulation of soybean net photosynthetic CO2fixation by the interaction of CO2, O2, and ribulose- 1,5-diphosphate carboxylase. Plant Physiology, 1974, 54(5): 678- 685.
[14] Farquhar G D, von Caemmerer S. Modelling of photosynthetic response to environmental conditions//Lange O L, Nobel P S, Osmond C B, Ziegler H, eds. Physiological Plant Ecology II. Berlin Heidelberg: Springer, 1982: 549- 587.
[15] Keys A J, Bird I F, Cornelius M J, Lea P J, Wallsgrove R M, Miflin B J. Photorespiratory nitrogen cycle. Nature, 1978, 275(5682): 741- 743.
[16] Farquhar G D, Wong S C. An empirical model of stomatal conductance. Australian Journal of Plant Physiology, 1984, 11(3): 191- 210.
[17] Sharkey T D, Vassey T L. Low oxygen inhibition of photosynthesis is caused by inhibition of starch synthesis. Plant Physiology, 1989, 90(2): 385- 387.
[18] Harley P C, Sharkey T D. An improved model of C3photosynthesis at high CO2: reversed O2sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 1991, 27(3): 169- 178.
[19] Ethier G J, Livingston N J. On the need to incorporate sensitivity to CO2transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell and Environment, 2004, 27(2): 137- 153.
[20] Gu L H, Pallardy S G, Tu K, Law B E, Wullschleger S D. Reliable estimation of biochemical parameters from C3leaf photosynthesis-intercellular carbon dioxide response curves. Plant, Cell and Environment, 2010, 33(11): 1852- 1874.
[21] Manter D K, Kerrigan J.A/Cicurve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. Journal of Experimental Botany, 2004, 55(408): 2581- 2588.
[22] Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M. Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant, Cell and Environment, 2007, 30(10): 1284- 1298.
[23] Dubois J J B, Fiscus E L, Booker F L, Flowers M D, Reid C D. Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist, 2007, 176(2): 402- 414.
[24] Yin X Y, Struik P C, Romero P, Harbinson J, Evers J B, van der Putten P E L, Vos J. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticumaestivum) canopy. Plant, Cell and Environment, 2009, 32(5): 448- 464.
[25] Wullschleger S D. Biochemical limitations to carbon assimilation in C3plants---a retrospective analysis of theA/Cicurves from 109 species. Journal of Experimental Botany, 1993, 44(5): 907- 920.
[26] von Caemmerer S. Biochemical Models of Leaf Photosynthesis. Collingwood: CSIRO Publishing, 2000: 44- 45.
[27] Niinemets ü, Kull O, Tenhunen J D. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 1998, 18(10): 681- 696.
[28] Terashima I, Araya T, Miyazawa S I, Sone K, Yano S. Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise. Annals of Botany, 2005, 95(3): 507- 519.
[29] Hikosaka K, Terashima I, Katoh S. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (IpomoeatricolorCav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 1994, 97(4): 451- 457.
[30] Makino A, Sato T, Nakano H, Mae T. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta, 1997, 203(3): 390- 398.
[31] Hanba Y T, Kogami H, Terashima I. The effect of growth irradiance on leaf anatomy and photosynthesis inAcerspecies differing in light demand. Plant, Cell and Environment, 2002, 25(8): 1021- 1030.
[32] Piel C, Frak E, Le Roux X, Genty B. Effect of local irradiance on CO2transfer conductance of mesophyll in walnut. Journal of Experimental Botany, 2002, 53(379): 2423- 2430.
[33] Schultz H R. Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (VitisviniferaL. cvv. White Riesling and Zinfandel). Functional Plant Biology, 2003, 30(6): 673- 687.
[34] Warren C R, L?w M, Matyssek R, Tausz M. Internal conductance to CO2transfer of adultFagussylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environmental and Experimental Botany, 2007, 59(2): 130- 138.
[35] Xiong D L, Liu X, Liu L M, Douthe C, Li Y, Peng S B, Huang J L. Rapid responses of mesophyll conductance to changes of CO2concentration, temperature and irradiance are affected by N supplements in rice. Plant, Cell and Environment, 2015, 38(12): 2541- 2550.
[36] Douthe C, Dreyer E, Epron D, Warren C R. Mesophyll conductance to CO2, assessed from online TDL-AS records of13CO2discrimination, displays small but significant short-term responses to CO2and irradiance inEucalyptusseedlings. Journal of Experimental Botany, 2011, 62(15): 5335- 5346.
[37] Hassiotou F, Ludwig M, Renton M, Veneklaas E J, Evans J R. Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. Journal of Experimental Botany, 2009, 60(8): 2303- 2314.
[38] Tazoe Y, von Caemmerer S, Badger M R, Evans J R. Light and CO2do not affect the mesophyll conductance to CO2diffusion in wheat leaves. Journal of Experimental Botany, 2009, 60(8): 2291- 2301.
[39] Yamori W, Evans J R, von Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO2assimilation rate in tobacco leaves. Plant, Cell and Environment, 2010, 33(3): 332- 343.
[40] Cochard H, Venisse J S, Barigah T S, Brunel N, Herbette S, Guilliot A, Tyree M T, Sakr S. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology, 2007, 143(1): 122- 133.
[41] Voicu M C, Cooke J E K, Zwiazek J J. Aquaporin gene expression and apoplastic water flow in bur oak (Quercusmacrocarpa) leaves in relation to the light response of leaf hydraulic conductance. Journal of Experimental Botany, 2009, 60(14): 4063- 4075.
[42] Terashima I, Ono K. Effects of HgCl2on CO2dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2diffusion across the plasma membrane. Plant and Cell Physiology, 2002, 43(1): 70- 78.
[43] Flexas J, Ribas-Carbó M, Hanson D T, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2invivo. The Plant Journal, 2006, 48(3): 427- 439.
[44] Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. The New Phytologist, 2005, 165(2): 351- 371.
[45] Harley P C, Thomas R B, Reynolds J F, Strain B R. Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell and Environment, 2006, 15(3): 271- 282.
[46] Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 1999, 22(6): 583- 621.
[47] Nakano H, Makino A, Mae T. The effect of elevated partial pressures of CO2on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiology, 1997, 115(1): 191- 198.
[48] Makino A, Nakano H, Mae T. Responses of ribulose- 1,5-bisphosphate carboxylase, cytochromef, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis. Plant Physiology, 1994, 105(1): 173- 179.
[49] Curtis P S. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment, 1996, 19(2): 127- 137.
[50] Singsaas E L, Ort D R, Delucia E H. Elevated CO2effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant, Cell and Environment, 2004, 27(1): 41- 50.
[51] Ferris R, Nijs I, Behaeghe T, Impens I. Elevated CO2and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Annals of Botany, 1996, 78(4): 489- 497.
[52] Masle J. The effects of elevated CO2concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiology, 2000, 122(4): 1399- 1415.
[53] Kürschner W M, Stulen I, Wagner F, Kuiper P J C. Comparison of palaeobotanical observations with experimental data on the leaf anatomy of durmast oak [Quercuspetraea(Fagaceae)] in response to environmental change. Annals of Botany, 1998, 81(5): 657- 664.
[54] Hedrich R, Neimanis S, Savchenko G, Felle H H, Kaiser W M, Heber U. Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. Planta, 2001, 213(4): 594- 601.
[55] Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt H W. Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2concentration. The Plant Journal, 1994, 6(5): 741- 748.
[56] Buckley T N, Mott K A, Farquhar G D. A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment, 2003, 26(10): 1767- 1785.
[57] Flexas J, Barbour M M, Brendel O, Cabrera H M, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio J P, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets ü, Peguero-Pina J J, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren C R. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science, 2012, 193- 194: 70- 84.
[58] von Caemmerer S, Evans J R. Determination of the average partial pressure of CO2in chloroplasts from leaves of several C3plants. Australian Journal of Plant Physiology, 1991, 18(3): 287- 305.
[59] Loreto F, Harley P C, Di Marco G, Sharkey T D. Estimation of mesophyll conductance to CO2flux by three different methods. Plant Physiology, 1992, 98(4): 1437- 1443.
[60] Alguacil M D M, Kohler J, Caravaca F, Roldán A. Differential effects ofPseudomonasmendocinaandGlomusintraradiceson lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2and drought. Microbial Ecology, 2009, 58(4): 942- 951.
[61] Sharkey T D, Vassey T L, Vanderveer P J, Vierstra R D. Carbon metabolism enzymes and photosynthesis in transgenic tobacco (NicotianatabacumL.) having excess phytochrome. Planta, 1991, 185(3): 287- 296.
[62] Tholen D, Boom C, Noguchi K O, Ueda S, Katase T, Terashima I. The chloroplast avoidance response decreases internal conductance to CO2diffusion inArabidopsisthalianaleaves. Plant, Cell and Environment, 2008, 31(11): 1688- 1700.
[63] Sage R F, Kubien D S. The temperature response of C3and C4photosynthesis. Plant, Cell and Environment, 2007, 30(9): 1086- 1106.
[64] Bernacchi C J, Singsaas E L, Pimentel C, Portis A R Jr, Long S P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 2001, 24(2): 253- 259.
[65] Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiology, 2002, 128(3): 1087- 1097.
[66] Yamori W, Noguchi K, Kashino Y, Terashima I. The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. Plant and Cell Physiology, 2008, 49(4): 583- 591.
[67] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermo tolerance provided by isoprene. Plant, Cell and Environment, 2005, 28(3): 269- 277.
[68] Bernacchi C J, Pimentel C, Long S P.Invivotemperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell and Environment, 2003, 26(9): 1419- 1430.
[69] Warren C R, Dreyer E. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. Journal of Experimental Botany, 2006, 57(12): 3057- 3067.
[70] von Caemmerer S, Evans J R. Temperature responses of mesophyll conductance differ greatly between species. Plant, Cell and Environment, 2014, 38(4): 629- 637.
[71] Evans J R, Kaldenhoff R, Genty B, Terashima I. Resistances along the CO2diffusion pathway inside leaves. Journal of Experimental Botany, 2009, 60(8): 2235- 2248.
[72] Kuwagata T, Ishikawa-Sakurai J, Hayashi H, Nagasuga K, Fukushi K, Ahamed A, Takasugi K, Katsuhara M, Murai-Hatano M. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants. Plant and Cell Physiology, 2012, 53(8): 1418- 1431.
[73] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30(3): 239- 264.
[74] Flexas J, Barón M, Bota J, Ducruet J M, GalléA, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, Tomàs M, Medrano H. Photosynthesis limitations during water stress acclimation and recovery in the drought-adaptedVitishybrid Richter- 110 (V.berlandieri×V.rupestris). Journal of Experimental Botany, 2009, 60(8): 2361- 2377.
[75] James R A, von Caemmerer S, Condon A G, Zwart A B, Munns R. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology, 2008, 35(2): 111- 123.
[76] Flexas J, Bota J, Loreto F, Cornic G, Sharkey T D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3Plants. Plant Biology, 2004, 6(3): 269- 279.
[77] Gibberd M R, Turner N C, Storey R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot (DaucuscarotaL.). Annals of Botany, 2002, 90(6): 715- 724.
[78] James R A, Rivelli A R, Munns R, von Caemmerer S. Factors affecting CO2assimilation, leaf injury and growth in salt-stressed durum wheat. Functional Plant Biology, 2002, 29(12): 1393- 1403.
[79] Perez-Martin A, Michelazzo C, Torres-Ruiz J M, Flexas J, Fernández J E, Sebastiani L, Diaz-Espejo A. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany, 2014, 65(12): 3143- 3156.
[80] Chen T W, Kahlen K, Stützel H. Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations to photosynthesis. Plant, Cell and Environment, 2015, 38(8): 1528- 1542.
[81] Hu Y C, Fromm J, Schmidhalter U. Effect of salinity on tissue architecture in expanding wheat leaves. Planta, 2005, 220(6): 838- 848.
[82] Tosens T, Niinemets ü, Vislap V, Eichelmann H, Díez P C. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities inPopulustremula: how structure constrains function. Plant, Cell and Environment, 2012, 35(5): 839- 856.
[83] Kawase M, Hanba Y T, Katsuhara M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. Journal of Plant Research, 2013, 126(4): 517- 527.
[84] Walcroft A S, Whitehead D, Silvester W B, Kelliher F M. The response of photosynthetic model parameters to temperature and nitrogen concentration inPinusradiataD. Don. Plant, Cell and Environment, 1997, 20(11): 1338- 1348.
[85] Yamori W, Nagai T, Makino A. The rate-limiting step for CO2assimilation at different temperatures is influenced by the leaf nitrogen content in several C3crop species. Plant, Cell and Environment, 2011, 34(5): 764- 777.
[86] Sage R F, Sharkey T D, Pearcy R W. The effect of leaf nitrogen and temperature on the CO2response of photosynthesis in the C3dicot MChenopodiumalbumL. Australian Journal of Plant Physiology, 1990, 17(2): 135- 148.
[87] Warren C R. The photosynthetic limitation posed by internal conductance to CO2movement is increased by nutrient supply. Journal of Experimental Botany, 2004, 55(406): 2313- 2321.
[88] Muir C D, Hangarter R P, Moyle L C, Davis P A. Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanumsect.Lycopersicon, sect.Lycopersicoides; Solanaceae). Plant, Cell and Environment, 2014, 37(6): 1415- 1426.
[89] Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. Light-saturated photosynthetic rate in high-nitrogen rice (OryzasativaL.) leaves is related to chloroplastic CO2concentration. Journal of Experimental Botany, 2009, 60(8): 2351- 2360.
[90] Guo S W, Kaldenhoff R, Uehlein N, Sattelmacher B, Brueck H. Relationship between water and nitrogen uptake in nitrate- and ammonium-suppliedPhaseolusvulgarisL. plants. Journal of Plant Nutrition and Soil Science, 2007, 170(1): 73- 80.
[91] Sun Y, Gu L H, Dickinson R E, Norby R J, Pallardy S G, Hoffman F M. Impact of mesophyll diffusion on estimated global land CO2fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15774- 15779.
[92] Yin X, van Oijen M, Schapendonk A H C M. Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3photosynthesis. Plant, Cell and Environment, 2004, 27(10): 1211- 1222.
[93] Sun Y, Gu L H, Dickinson R E, Pallardy S G, Baker J, Cao Y H, Damatta F M, Dong X J, Ellsworth D, Van Goethem D, Jensen A M, Law B E, Loos R, Vitor Martins S C, Norby R J, Warren J, Weston D, Winter K. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant, Cell and Environment, 2014, 37(4): 978- 994.
[94] Tholen D, éthier G, Genty B. Mesophyll conductance with a twist. Plant, Cell and Environment, 2014, 37(11): 2456- 2458.
[95] Tholen D, Ethier G, Genty B, Pepin S, Zhu X G. Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant, Cell and Environment, 2012, 35(12): 2087- 2103.
Advancesinphoto-physiologicalresponsesofleavestoenvironmentalfactorsbasedontheFvCBmodel
TANG Xinglin1,2, CAO Yonghui1,2, GU Lianhong3, ZHOU Benzhi1,2,*
1ResearchInstituteofSubtropicalForestry,ChineseAcademyofForestry,Hangzhou311400,China2QianjiangyuanForestEcosystemResearchStation,StateForestryAdministration,Hangzhou311400,China3EnvironmentalSciencesDivision,OakRidgeNationalLaboratory,OakRidge,TN37831,USA
Biochemical models of leaf photosynthesis are invaluable tools for exploring the photo-physiological responses to environmental factors and identify potential targets to improve the efficiency of CO2fixation. The FvCB model can be used to fit CO2response curves developed under different environmental conditions and predict underlying photosynthetic biochemistry. However, to do this successfully it is important to improve chloroplast electron transport modeling, and gain a better understanding of internal CO2diffusion limitations and elucidate the mechanisms of stomatal (gs) and mesophyll (gm) conductance responses to environmental factors. The FvCB model and its application in determining the photo-physiological responses to environmental factors, such as light, CO2, water, temperature, and N nutrition have been reviewed in this paper. To improve the veracity of the parameter estimations and reveal the mechanism of photo-physiological responses to environmental factors, the following studies should be emphasized in the future: 1) the relationship between the carboxylation rate of Rubisco and chloroplast electron transport rate; 2) the CO2diffusion limitations in mesophyll cells and its effect on parameter estimations; and 3) the regulation ofgsandgmresponses to different environmental conditions.
C3plants; photosynthesis; FvCB model; photosynthetic physiology; environmental factors
國家林業局948項目(2014- 4- 57);浙江省自然科學基金項目(LY13C160002);中央級公益性科研院所基本科研業務費專項資金(RISF2013002)資助
2016- 07- 16; < class="emphasis_bold">網絡出版日期
日期:2017- 05- 27
*通訊作者Corresponding author.E-mail: benzhi_zhou@126.com
10.5846/stxb201607161450
唐星林,曹永慧,顧連宏,周本智.基于FvCB模型的葉片光合生理對環境因子的響應研究進展.生態學報,2017,37(19):6633- 6645.
Tang X L, Cao Y H, Gu L H, Zhou B Z.Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model.Acta Ecologica Sinica,2017,37(19):6633- 6645.