文/鄢 睿
人工智能視域下網絡輿情監測的變革之道
文/鄢 睿
喻國明教授在其所撰寫的論文《人工智能提升網絡輿情分析能力》中,就人工智能技術對網絡輿情分析的作用給予了肯定,并提出了“人工智能技術支撐下的網絡輿情分析的新范式”,提倡對人工智能技術加以有效應用。另外幾位學者舒予、王偉等,從人工智能技術的角度對網絡輿情監測進程進行了探索。舒予在其論文中提出一種基于小波分析和人工神經網絡的網絡輿情建模和預測方法;王偉則提出了二次聚類的方法設計,系統地提取輿情熱點特征詞,為網絡輿情預警工作打好基礎。在互聯網及移動互聯網信息泛濫、膨脹給輿情監測帶來挑戰的當下,人工智能技術結合大數據分析技術為網絡輿情監測工作帶來了新的機遇。
網絡輿情監測工作是指網絡信息工作的部門或人員在特定時期或者在特定的事件中對公眾在互聯網上發表的言論和意見進行監視、收集、分析、整理及預測的行為,這些言論被稱為網絡輿情。
當前的網絡輿情監測工作平臺主要是基于信息采集、整合技術和智能處理技術,通過對互聯網海量信息的自動抓取、自動分類聚類、主題檢測、專題聚焦,實現對用戶的網絡輿情監測,并由相關部門形成輿情工作報告、輿情信息簡報等,為輿論引導提供可靠的分析依據。
進入大數據時代,網絡輿論呈現的新特點,促使網絡輿情監測工作暴露出諸多不足之處,這為網絡輿情監測工作帶來了諸多挑戰。
網絡輿論信息格局發生變化,輿情分析質量亟待提高。據人民網權威發布的《2016年中國互聯網輿情分析報告》顯示,在2016年,伴隨著移動互聯網應用不斷向社會各層面滲透,網絡輿論的格局發生了很大變化,如網民結構與社會人口結構趨同,網民產生代際更新導致網絡流行議題和文化熱點發生轉換,微博、微信平臺化,專業自媒體步入興盛等。在這樣的變局下,網絡輿情監測工作面臨著新的挑戰。然而,有些部門的輿情信息收集工作仍然停留在報刊、門戶網站、BBS、微博等開源信息的收集階段,并未將新聞客戶端、微信、直播等平臺打通,難以保證輿情信息分析的全面性以及輿情熱度指標的準確性。《2016年中國互聯網輿情分析報告》還對近五年來參與當年最具網絡關注度的20個輿情熱點事件討論的320萬微博用戶樣本進行了分析,發現關注新聞事件和聚焦熱點話題的網民發生了代際交替,在性別方面,女性的比例明顯上升;在地域上,三、四線城市用戶增長迅猛。受眾層面發生的這些變化,也將在輿情監測工作中體現出來。然而在目前的輿情監測工作中,相關信息部門的輿情信息報送在內容上只是就事論事、停留在現象層面,對受眾的成分、熱點事件的社會背景以及事件背后所反映出來的社會問題沒有進行細致深入的研究分析;在形式上,網絡輿情監測工作的報送還停留在工作動態報告或者事件日志等形式的報送上。這樣就造成了網絡輿情信息的價值作用降低、服務能力減弱的問題。
熱點事件話語體系不可控,輿情預警能力亟待增強。縱觀近年來發生的熱點公共突發事件,可以發現,在以大數據為基礎的社交平臺上,公眾的話語體系呈現出了一些全新特征,如輿論發布主體的匿名性、參與渠道的多元化、生成議題的自發性、交流觀點的無界性、匯集意見的實時性、發展趨勢的不確定性等。這些特征與輿論話語體系在傳統媒體的呈現完全不同,網絡輿論熱點事件話語體系的不可控性大大增強。
在社交媒體平臺上,自媒體呈現出來的話語體系最為龐雜。許多輿情信息不僅包含結構化數據,還涉及大量非結構化數據,若對其準確性、真實性逐一核查,既耗費人力又耗費時間。就內容而言,較多負面、虛假輿情具有較強的隱蔽性,單純以關鍵詞或主題詞進行搜索容易產生誤判、遺漏。話語體系的不可控性增加了輿情監測工作的難度,這要求工作人員必須具備過硬的專業敏感性以及較強的網絡操作技能。但是目前大多數輿情監測工作部門的信息工作人員缺乏專業化的訓練,輿情信息工作水平參差不齊。就輿情監測平臺系統來說,對于輿情信息的跟蹤分析靈敏度較低,在有些熱點事件的處理上沒有按照公共突發事件的分類標準進行準確的分級,從而導致網絡輿情信息的分析判斷力體現不出其應有的情報價值,預警能力也隨之削弱。
輿情監測的技術體系落后,人機不協調問題亟待解決。網絡輿論的實時性及其發展的不確定性要求網絡輿情監測必須迅速、及時,但很多單位部門的輿情監測平臺的方法技術體系滯后,部分單位采用了網絡監控系統、有害信息過濾系統等方式進行網絡輿情監測,而有些單位為了節省輿情監測設備的成本,甚至將網絡輿情監測工作依托于人工網頁搜索及瀏覽的“人工盯梢”方式上,這成為監測工作的一大阻礙,監測工作出現疏忽錯判也在所難免。排除資金、人力等客觀因素,現階段的網絡輿情監測工作中技術方法體系的不足主要歸因于“人機不協調”。機器與人工的協同分工模式不成熟、機器的輔助力量不夠,導致人工智能技術在預測監測體系中分析情感、預測走勢、檢查效果等方面應用還稍顯粗淺、機械,而在需要人工進行的高級維度分析、提出應對策略等層面,機器的應用又顯得粗糙以及同質化。
網絡輿情監測要適應大數據時代人工智能的要求,就必須順勢而為,積極進行變革,主要包括網絡輿情監測技術體系的變革、網絡輿情監測研究范式的變革以及網絡輿情監測管理思維的變革三個方面。
網絡輿情監測技術體系的變革。將人工智能技術應用于網絡輿情是為了更好地對輿情進行分析研判,通過直觀、簡明的方式描述網絡輿情信息的產生,進一步推導信息傳播主體的態度傾向性、情緒感染性以及初衷、意圖等,從而預測網絡輿情信息的發展趨勢。
如果說在“小數據”環境下,網絡輿情監測工作還可以依托于“人工盯梢”的方式來完成,那么在“大數據”環境下,當數據的量級達到了EB甚至ZB級別后,以人工監測來把握輿情脈絡已成為不可能完成的任務。而那些隱含在網絡輿情信息中的觀點、態度及情緒的表達,更難以從泛濫成災的信息碎片中被真正發掘出來。加之海量信息的不共享所帶來的“信息盲區”,更使得輿情信息分析不夠嚴謹,易偏離實際,而這些問題都需要依托搭建智能化的網絡輿情監管平臺來解決。在平臺上可以通過三種人工智能技術實現數據分析與人工智能研判相結合,再借助如眼動儀、腦電儀等受眾檢驗儀器對網絡輿情信息進行綜合化分析。三種主要的人工智能技術主要包括:一是Web挖掘技術,該技術把互聯網與數據挖掘技術結合起來,對網絡上結構化數據如文字言論,以及非結構化的數據如視音頻、圖像等信息進行采集,完成信息前期處理的第一步;二是語義識別技術,該技術是利用采集到的信息,通過對語句中的關鍵詞進行詞義推斷處理以及句子語法結構的分析,從而將復雜信息簡單化,這是對采集的信息數據做進一步識別推斷的過程;三是TFDF信息聚類技術,該技術主要提升數據信息的分析和分類速度,使網絡輿情監測工作的處理更加及時,反應更加靈敏,提高采取措施的時效性。
人工智能技術的介入將有利于對信息進行挖掘、采集、分類、整理,從而找尋出最核心的關鍵性數據。在此基礎上,還可以運用人工神經網絡預測模型,對網絡輿情的性質、發展趨勢進行正確描述,并提出相應的對策。
網絡輿情監測研究范式的變革。
人工智能和大數據對網絡輿情監測工作及其研究產生了頗為深刻的影響,輿情監測的研究范式從多角度發生了轉向。
第一,輿情監測工作視角的轉向:從單一化到多元化。在社交媒體平臺上,受眾的角色首先發生了轉向,由信息的被動接收者轉變為信息的參與者和傳播者。這一轉向給網絡輿情監測工作帶來了新的挑戰,當受眾是單純的信息接收方時,網絡信息的可控性強,輿情監測工作形式單一,把關相對容易。而受眾角色發生變化以后,網絡信息傳播的不可控性大大增加,信息傳播速度加快,信息傳播呈現多元化特征,把關難度增加,網絡輿情監測工作也從單一轉向多元化,還需要對信息進行疏導、研判處理。
第二,研究視角的轉向:從內容研究轉向“內容+關系”研究。傳統的網絡輿情信息研究最重視的是受眾借助網絡進行的話語表達,其研究視角主要集中在內容層面。隨著人工智能技術的介入,這一單向視角將發生轉變,潛藏在內容層面背后的網絡受眾心理、行為、動機、訴求等多方面因素都將被關注到。借助人工智能技術及大數據分析技術,網絡輿情信息的研究視角將透過內容層面深入到關系層面,轉向對網絡受眾社會心理描繪、社會關系呈現、社會話語表達等多維度的研究。
第三,研究重點的轉向:由輿情監測轉向輿情預測。當前的網絡輿情監測工作主要通過對當下網絡輿情的動態信息進行隨機采樣來收集、整理、分析,更多的是關注已經發生的事件在過去及當下的動向,對未來的發展預測難以兼顧。而借助人工神經網絡預測模型,通過自然語言處理、模式識別及機器學習等人工智能技術,可以對網絡輿情的性質、發展趨勢進行正確描述,再結合大數據分析處理整群數據來實現預測功能。比如,著名的搜索引擎公司谷歌通過關注用戶搜索中的“流感”關鍵詞來預測實際流感發生的時間,往往可以提前兩三個周對流感的爆發進行預報及預防。
網絡輿情監測管理思維的變革。在以人工智能技術為支撐的網絡輿情監測平臺出現之前,相關輿情監測部門的管理者往往由一人或幾人的小團隊組成,在監測信息數據量級不大的情況下,這種小作坊式單打獨斗、面面俱到的輿情監控管理思維可以基本滿足需求。但是隨著人工智能技術的發展及大數據時代的到來,這種小作坊式的輿情監測體系面臨瓦解。當前,商業化運營的軟件監測團隊多達幾百家,這些監測軟件服務商通過開發相應的輿情監測軟件為政府部門、企業主體以及科研院所提供服務,進行簡單的輿情信息數據采集及分類處理工作。在數據開源的情況下,這些軟件服務商的競爭逐漸由粗放型、低層次化向數據處理的優化、人機互動、機器算法的精進等層面轉變。
在以上變化的基礎上,輿情監測的管理思維也必須轉向,組建一支人員分工明確、高度聚合集約的輿情分析團隊勢在必行。輿情管理的思維變革依托于人工智能監控系統改變團隊的組織結構及管理方式,通過智能化的輿情監測系統代替低效的人工操作,其專業性要求頗高,而最佳處理模式就是專業化團隊加人工智能技術。按照這樣的管理思維,未來輿情監測團隊的分工將更加明確,行業內部集約聚合程度將進一步提高,行業有機化程度也將逐步增強。
作者單位 山西傳媒學院
本文系2016年度山西省高等學校人文社科重點研究基地項目“山西省輿情監測平臺建設研究”(項目編號:2016336)的階段性研究成果。