999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

雙核釕-DMBA雙芳香炔化合物的合成和電化學性質

2017-11-13 12:22:07SusannahBanzigerEileenJudkinsMatthiasZeller
無機化學學報 2017年11期

Susannah D.Banziger Eileen C.Judkins Matthias Zeller 任 彤

(Department of Chemistry,Purdue University,West Lafayette,Indiana 47907,USA)

雙核釕-DMBA雙芳香炔化合物的合成和電化學性質

Susannah D.Banziger Eileen C.Judkins Matthias Zeller 任 彤*

(Department of Chemistry,Purdue University,West Lafayette,Indiana 47907,USA)

摘要: 在弱堿性條件下,雙核釕(Ⅲ)配合物 Ru2(DMBA)4(NO3)2(DMBA=tetrakis-N,N′-dimethylbenzamidinate)與不同芳香炔反應(其中芳香基團包括:NAPme,N-甲基-1,8-萘二甲酰亞胺;NAPiso,N-異丙基-1,8-萘二甲酰亞胺;Naphth,萘;Ant,蒽),制備了相應的端基炔取代配合物 trans-Ru2(DMBA)4(C2Ar)2(Ar=NAPme,1;NAPiso,2;Naphth,3;Ant,4)。 利用 X 射線晶體衍射測定了它們的結構。 所有化合物的Ru-Ru鍵長處于單鍵范圍(0.245 0~0.249 1 nm),它們均是抗磁性物質。進一步通過1H NMR和UV-Vis-NIR光譜進行了表征。電化學研究表明,所有化合物顯示出與芳香基團有關的2個可逆的單電子氧化還原過程(包括一個氧化過程和一個還原過程)。

雙核釕;炔基;1,8-萘二甲酰亞胺;萘基;蒽基

0 Introduction

Conjugated metal-alkynylcompounds are of interest to both the inorganic and materials chemistry communities[1-3]and have been studied as prototypical molecular wires[4-7],light emitting materials[8-9]and photovoltaic materials[10].Recent interesting examples of linearly conjugated metal alkynyl or metal alkenyl species include those based on mono-and bimetallic Ru compounds supported by phosphine[11-14]and PtAu2heterometallics[15-16].

Diruthenium compounds bearing axial alkynyl ligands are known for their capacity to undergo multiple reversible one-electron oxidation/reduction[2],strongly couple across oligoyn-diyl bridges[17-19],mediate couplings between two ferrocenyls[20],facilitate the formation of supramolecules[21-22],and function as the active species in molecular devices[23-24].Among N,N′-bidentate ligands used to support the Ru2core,DMBA(N,N′-dimethylbenzamidinate)and its derivatives are the most electron donating and support a variety of Ru2(Ⅲ,Ⅲ)bis-alkynyls[25-27]and Fe-Ru2heterometallic complexes[28].Reported in this contribution are four new trans-Ru2(DMBA)4(C2Ar)2type compounds with Ar as 4-N-methyl-1,8-naphthalimide (1),4-N-isopropyl-1,8-naphthalimide (2),1-naphthalene (3)and 9-anthracene(4),as sketched in Scheme 1.

1 Experimental

1.1 Materials and measurements

[Ru2(DMBA)4(NO3)]wasprepared according to literature procedures[29].Also prepared according literature procedures were 1-ethynylnaphthalene[30],9-ethynylanthracene[31],and 4-ethynyl-N-methyl-1,8-naphthalimide[32].THF was distilled over Na/benzophenone under a N2atmosphere.Diisopropylamine was purchased from Acros Organics and distilled over potassium hydroxide.The synthesis of Ru2compoundswas performed underambientatmosphere.Allother reactions were carried out using Schlenk techniques under N2.UV-Vis-NIR spectra were obtained with a JASCO V-670 UV-Vis-NIR spectrophotometer.Infrared spectra were obtained on a JASCO FT-IR 6300 spectrometer via ATR on a ZnSe crystal.1H NMR spectra were recorded on a Varian MERCURY300 NMR.Cyclic voltammograms were recorded in 0.1 mol·L-1n-Bu4NPF6and 1.0 mmol·L-1ruthenium species solution (THF,Ar degassed)using a CHI620A voltammetric analyzerwith aglassycarbon workingelectrode(Diameter=2 mm),Pt-wire counter electrode,and an Ag/AgCl reference electrode with ferrocene used as an internal reference.

1.2 Preparation of 4-Ethynyl-N-isopropyl-1,8-naphthalimide and its precursors

4-Bromo-1,8-naphthalic anhydride (1.00 g,3.61 mmol)and isopropylamine (1.00 mL,11.66 mmol)were added to degassed ethanol (30 mL).The mixture was refluxed under nitrogen for 18 hours to yield a dark yellow solution and then placed in an ice bath.A light yellow precipitate formed which was then filtered,and rinsed with methanol(30 mL)to afford 0.89 g of 4-bromo-N-isopropyl-1,8-naphthalimide (77%based on 4-bromo-1,8-naphthalic anhydride).1H NMR (CD3OD):δ 8.64 (dd,J=7.3,1.1 Hz,1H),8.55 (dd,J=8.5,1.1 Hz,1H),8.40 (d,J=7.9 Hz,1H),8.03 (d,J=7.9 Hz,1H),7.84 (dd,J=8.5,7.4 Hz,1H),5.42 (hept,J=7.0 Hz,1H),1.60 (d,J=7.0 Hz,6H).IR (cm-1):C=O:1 656 (s),1 700 (s).

4-Bromo-N-isopropyl-1,8-naphthalimide (890 mg,2.80 mmol),Pd(PPh3)2Cl2(40 mg,0.057 mmol)and CuI (11 mg,0.058 mmol)were dried under vacuum for 3 hours,upon which 35 mL of diisopropylamine and ethynyltrimethylsilane (0.8 mL,5.78 mmol)were added.The dark brown solution was allowed to stir at room temperature for 30 minutes and then heated to reflux for 30 minutes until the solvent became black.Upon rotary evaporation,the off-white solid was redissolved in EtOAc,rinsed through a short silica plug,and purified by column chromatography (SiO2,VCH2Cl2/Vhexanes=1)to afford 855 mg of 4-ethynyltrimethylsilyl-N-isopropyl-1,8-naphthalimide (91% based on 4-bromo-N-isopropyl-1,8-naphthalimide).Desilylation of 4-ethynyltrimethylsilyl-N-isopropyl-1,8-naphthalimide(675 mg,2.01 mmol)was accomplished using K2CO3in a MeOH/CH2Cl2(2∶1,V/V)solution to afford 524 mg of 4-ethynyl-N-isopropyl-1,8-naphthalimide (98%).1H NMR (CD3OD):δ 8.63 (dd,J=8.6 Hz,2H),8.51 (d,J=7.5 Hz,1H),7.93 (d,J=7.7 Hz,1H),7.82 (t,J=7.9 Hz,1H),5.43 (hept,1H),3.72 (s,1H),1.60 (dd,J=7.0,0.6 Hz,6H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):350 (35 240),366 (32 580).IR (cm-1):C=O:1653 (s),1700 (s);C≡C:2102 (m);C≡C-H:3 227 (s).

1.3 Preparation of 1

Ru2(DMBA)4(NO3)2(45.2 mg,0.049 mmol),4-ethynyl-N-methyl-1,8-naphthalimide (70.1 mg,0.298 mmol),and Et3N (0.6 mL)were dissolved in 50 mL THF and reacted for 4 h to yield a dark red solution.Upon solvent removal,the residue was purified by column chromatography (SiO2,Vhexanes/VTHF=9).Unreacted ligand eluted first,followed closely by the desired product as a deep red band.Upon solvent removal,the red fraction was recrystallized from hexanes-THF to afford 43.7 mg of 1 (70%based on Ru).ESI-MS(m/z): [M]+,1 260.0.1H NMR (CD3OD):δ 8.82 (d,J=8.2 Hz,2H),8.54 (d,J=7.4 Hz,2H),8.43 (d,J=7.8 Hz,2H),7.60(d,J=7.8 Hz,2H),7.53~7.46 (m,12H),7.41 (d,J=7.8 Hz,2H),7.07 (d,J=7.1 Hz,8H),3.53 (s,6H),3.40 (s,24H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):322(16 160),460 (15 200),550 (28 200),877 (1 690).IR(cm-1):C=O:1 654 (s),1 691 (s);C≡C:2 047 (s).Anal.Found (Calcd.)for C70H68N10O5Ru2(1·THF,%):C,63.28 (63.14);H,5.04 (5.14);N,10.52 (10.52).

1.4 Preparation of 2

Ru2(DMBA)4(NO3)2(93mg,0.102mmol),4-ethynyl-N-isopropyl-1,8-naphthalimide (134 mg,0.508 mmol)and Et3N (0.3 mL)were reacted in 100 mL of THF for 3 h.The reaction mixture was purified similarly to that of 1 to afford 112 mg of 2 (84%based on Ru).ESI-MS(m/z): [M]+,1 316.1.1H NMR (CD3OD): δ 8.78(dd,J=8.3,1.3 Hz,2H),8.50 (dt,J=7.3,1.6 Hz,2H),8.40 (dd,J=7.8,1.8 Hz,2H),7.74~7.27 (m,16H),7.10~7.02 (m,8H),5.47~5.34 (m,2H),3.40 (d,J=1.8 Hz,24H),1.57 (dd,J=3.1,1.9 Hz,12H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):323 (20 940),462 (20 050),549 (37 140),870 (2 450).IR (cm-1):C=O:1 653 (s),1 690 (s);C≡C:2 049 (s).Anal.Found (Calcd.)for C74H80N10O7Ru2(2·THF·2H2O,%):C,62.31 (62.43);H,5.40 (5.66);N,9.82 (9.83).

1.5 Preparation of 3

Ru2(DMBA)4(NO3)2(0.095 g,0.104 mmol)was added to a solution of 1-ethynylnaphthalene (0.043 g,0.28 mmol)and 3 mL Et3N in THF (30 mL)and stirred for 4 h.The crude solution was run over a silica plug,eluting 3 with a solvent mixture with Vhexanes∶VEtOAc∶VTHF=89∶10∶1.The ensuing recrystallization from THF/MeOH yielded 3 as deep red,crystalline solid (52 mg,0.048 mmol,46%based on Ru).ESI-MS(m/z):[M+H]+,1094.1H NMR (CDCl3): δ 8.59 (dd,J=7.9,1.4 Hz,2H),7.71 (dd,J=6.9,1.3 Hz,2H),7.51~7.32 (m,22H),7.10~7.03 (m,8H),3.42 (s,24H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):372sh (32 162),391 (33 184),508 (18 195),681sh (1 791),892 (3 214).IR (cm-1):C ≡C:2 063 (s).Anal.Found (Calcd.)for C60H60N8O1Ru2(3·H2O,%):C,64.85 (64.85);H,5.64(5.44);N,9.97 (10.08).

1.6 Preparation of 4

Ru2(DMBA)4(NO3)2(0.085 g,0.093 mmol)was added to a solution of 9-ethynylanthracene (0.055 g,0.27 mmol)and 1.5 mL Et2NH in THF (20 mL)and stirred 12 h.The crude solution was purified similarly to that of 3 to afford 50 mg of 4 (0.042 mmol,45%based on Ru).ESI-MS (m/z): [M+H]+,1195.1H NMR(CDCl3): δ 8.88 (d,J=8.4 Hz,4H),7.93 (s,2H),7.86(d,J=8.5 Hz,4H),7.51~7.30 (m,20H),7.13 (d,J=6.8 Hz,8H),3.55 (s,24H).Visible spectra,λmax/nm (ε /(L·mol-1·cm-1):283sh (35 544),289 (49 953),502(41 938),699sh (1 785),903 (2 291).IR (cm-1):C≡C:2045 (s).Anal.Found (Calcd.)for C72H73N8O2.5Ru2(4·1.5H2O·THF,%):C,66.97 (66.91);H,5.76 (5.69);N,8.53 (8.67).

CCDC:1555598,1;1555599,2;1555609,3;1555611,4.

2 Results and discussion

2.1 Syntheses

As shown in Scheme 1,compounds 1~4 were prepared from the direct reaction between Ru2(DMBA)4(NO3)2[29]and HC2Ar in the presence of Et3N/Et2NH in satisfactory to very good yields after purification.Consistentwith the previous studies ofrelated compounds,compounds 1~4 are diamagnetic,which facilitate their characterization using1H NMR.In addition,the purity of these compounds was also confirmed by combustion analysis.

2.2 Crystal structures

Molecularstructuresofcompounds 1~4 have been determined using single crystal X-ray diffraction and structural plots are shown in Fig.1.While molecules 2~4 do not contain a crystallographic symmetry element,there is a C2axis passing through the midpoint of the Ru-Ru bond and relating two adjacent DMBA ligands in 1.It is clear from Fig.1 that all compounds adopt the expected paddlewheel geometry with four equatorial bridging DMBA and two axial arylethynyl ligands.The Ru-Ru bond lengths are within a narrow range of 0.245 0~0.249 1 nm,which agrees with the values reported for other Ru2(DMBA)4(C2R)2type compounds[2]and is consistent with the presence of a Ru-Ru single bond.The Ru-C bond lengths in 1~4 (0.196~0.201 nm)are also in agreement with the previous reports[2,33].

A notable structural feature of the Ru2(DMBA)4(C2Ar)2type compounds is the significant distortion of the first coordination sphere of the Ru2core from an idealized paddlewheel structure (D4h).The origin of such distortion is rooted in a second order Jahn-Teller effect,as originally proposed to rationalize the structures of the Ru2(DArF)4(C2Ph)2type compounds (DArF=N,N′-diarylformamidinate)[34].The structural distortion is typically reflected by (i)the large variation in Ru-N bond lengths, (ii)both acute and obtuse Ru-Ru-N angles,and (iii)significantly nonlinear Ru-Ru-C angles.These are clearly the case for the structures of 1~3.However,the distortion is completely suppressed in 4:Ru-N bond lengths are within a narrow range,Ru-Ru-N angles are all acute and Ru-Ru-C angles are fairly linear.We surmise that the steric effect of anthracene may be responsible for a more symmetric structure.

Fig.1 ORTEP plots of compounds 1 (a),2 (b),3 (c)and 4 (d)at 30%probability level

Table 1 Selected bond lengths (nm)and angles (°)for compounds 1~4*

Continued Table 1

2.3 Vis-NIR spectroscopy and voltammetry

As noted earlier,all four compounds have a deep wine red color with a slight variation in hue.The Vis-NIR absorption spectra of 1~4 are shown in Fig.2,featuring a distinctive NIR band around ca.880 nm that is responsible for the wine red color.This absorption is likely attributed to the π*(Ru2)→δ*(Ru2)transition according to a prior TD-DFT analysis of related Ru2(DMBA)4(C2R)2compounds[20].TheVis region is dominated by a very intense band with a transition energy depending on the nature of Ar.While the λmaxfor Ar as both NAPme(1)and NAPiso(2)are 550 nm,the λmaxfor Ar as Naphth (3)and Ant (4)are blue-shifted to 508 and 502 nm,respectively.This absorption may be assigned to the δ(Ru2)+π(C≡C)→σ*(Ru-C)transition based on the said TD-DFT study,which provides a ready rationale for the observed energy dependence on Ar.Electron donating Naphth and Ant destabilize σ*(Ru-C)more significantly than electron withdrawing NAPmeand NAPiso,which led to significantly wider optical gaps for 3 and 4.The Vis spectra of both 1 and 2 also feature a shoulder at ca.450 nm that is absent in the spectra of 3 and 4,pointing to a possible NAP based transition.Also noteworthy is that while all four aryl ligands are strongly fluorescent,compounds 1~4 are non-emissive,reflecting the efficient quenching by the Ru2(DMBA)4core.

Fig.2 Vis-NIR spectra of compounds 1~4 recorded in THF solution

Ru2(DMBA)4(C2R)2type compounds often display rich electrochemical characteristics[20,26-27,33]and compounds 1~4 are no exception.As shown in Fig.3,their cyclic voltammograms (CV)all consist of two reversible one-electron couples,an oxidation (A)and a reduction (B),and both are Ru2-based.It is also clear that the electrode potentials of compounds 1 and 2 are far more positive than those of the corresponding couples in 3 and 4,reflecting the electron-deficient nature of NAP ligands.Since the oxidation and reduction potentials can be respectively correlated with the HOMO and LUMO energies[35-36],the electrochemical HOMO-LUMO gap (Eg)can be directly calculated from the difference between E1/2(A)and E1/2(B),and the values for 1 ~4 are listed in Table 2.Interestingly,the Egremains fairly constant across the series despite the large variance in electrode potentials.Clearly,both the HOMO and LUMO are Ru2-based,and the inductive ligand effects on their energies are about the same within the experimental errors.

Fig.3 Cyclic voltammograms of compounds 1~4 recorded in 0.10 mol·L-1THF solution of Bu4NBF4at the scan rate of 100 mV·s-1

Table 2 Electrode potentials of observed redox couples in Ru2(DMBA)4(C2Ar)2

3 Conclusions

Four new Ru2(DMBA)4(C2Ar)2compounds have been prepared and structurally characterized.While both the voltammetric responses and electronic absorption spectra are dominated by the Ru2-centered processes,both the electrode potentials and excitation energies exhibitsignificant dependence on the arylethynyl ligands.

[1]Paul F,Lapinte C.Coord.Chem.Rev.,1998,178-180:431-509

[2]Ren T.Organometallics,2005,24:4854-4870

[3]Costuas K,Rigaut S.Dalton Trans.,2011,40:5643-5658

[4]Blum A S,Ren T,Parish D A,et al.J.Am.Chem.Soc.,2005,127:10010-10011

[5]Meng F B,Hervault Y M,Norel L,et al.Chem.Sci.,2012,3:3113-3118

[6]ZHANG Xiang-Yi(張相宜),ZHENG Qi(鄭啟),QIAN Chen-Xi(錢晨熹),et al.Chinese J.Inorg.Chem.(無機化學學報),2011,27:1451-1464

[7]Wen H M,Yang Y,Zhou X S,et al.Chem.Sci.,2013,4:2471-2477

[8]Chen Z N,Zhao N,Fan Y,et al.Coord.Chem.Rev.,2009,253:1-20

[9]Yam V W-W.Acc.Chem.Res.,2002,35:555-563

[10]Wong W Y,Ho C L.Acc.Chem.Res.,2010,43:1246-1256

[11]Liu S H,Xia H P,Wen T B,et al.Organometallics,2003,22:737-743

[12]Liu S H,Hu Q Y,Xue P,et al.Organometallics,2005,24:769-772

[13]Kong D D,Xue L S,Jiang R,et al.Chem.Eur.J.,2015,21:9895-9904

[14]Ou Y P,Zhang J,Zhang F X,et al.Dalton Trans.,2016,45:6503-6516

[15]Xu L J,Zeng X C,Wang J Y,et al.ACS Appl.Mater.Interfaces,2016,8:20251-20257

[16]Zhang L Y,Xu L J,Wang J Y,et al.Dalton Trans.,2017,46:865-874

[17]Xu G L,Zou G,Ni Y H,et al.J.Am.Chem.Soc.,2003,125:10057-10065

[18]Cao Z,Xi B,Jodoin D S,et al.J.Am.Chem.Soc.,2014,136:12174-12183

[19]Wong K T,Lehn J M,Peng S M,et al.Chem.Commun.,2000:2259-2260

[20]Xu G L,Crutchley R J,DeRosa M C,et al.J.Am.Chem.Soc.,2005,127:13354-13363

[21]Zuo J L,Herdtweck E,de Biani F F,et al.New J.Chem.,2002,26:889-894

[22]Zuo J L,Herdtweck E,Kühn F E.Dalton Trans.,2002:1244-1246

[23]Mahapatro A K,Ying J,Ren T,et al.Nano Lett.,2008,8:2131-2136

[24]Zhu H,Pookpanratana S J,Bonevich J E,et al.ACS Appl.Mater.Interfaces,2015,7:27306-27313

[25]Ying J W,Cordova A,Ren T Y,et al.Chem.Eur.J.,2007,13:6874-6882

[26]Ying J W,Liu I P C,Xi B,et al.Angew.Chem.Int.Ed.,2010,49:954-957

[27]Cai X M,Zhang X Y,Savchenko J,et al.Organometallics,2012,31:8591-8597

[28]Wang C F,Zuo J L,Ying J W,et al.Inorg.Chem.,2008,47:9716-9722

[29]Xu G L,Jablonski C G,Ren T.Inorg.Chim.Acta,2003,343:387-390

[30]Chang N H,Mori H,Chen X C,et al.Chem.Lett.,2013,42:1257-1259

[31]Takahashi S,Kuriyama Y,Sonogashira K,et al.Synthesis,1980:627-630

[32]McAdam C J,Morgan J L,Murray R E,et al.Aust.J.Chem.,2004,57:525-530

[33]Xu G L,Campana C,Ren T.Inorg.Chem.,2002,41:3521-3527

[34]Lin C,Ren T,Valente E J,et al.J.Chem.Soc.,Dalton Trans.,1998:571-576

[35]Ren T.Coord.Chem.Rev.,1998,175:43-58

[36]Loutfy R O,Loutfy R O.Can.J.Chem.,1976,54:1454-1463

Diruthenium-DMBA Bis-Alkynyl Compounds with Hetero-and Extended-Aryl Appendant:Preparation and Electrochemical Property

Susannah D.Banziger Eileen C.Judkins Matthias Zeller Tong Ren*
(Department of Chemistry,Purdue University,West Lafayette,Indiana 47907,USA)

Under weak base conditions,diruthenium(Ⅲ) tetrakis-N,N′-dimethylbenzamidinate (DMBA)nitrate Ru2(DMBA)4(NO3)2was reacted with arylethyne ligands,where aryl=NAPme(N-methyl-1,8-naphthalimide),NAPiso(N-isopropyl-1,8-naphthalimide),Naphth (naphthalene)and Ant (anthracene),to afford four new compounds:trans-Ru2(DMBA)4(C2Ar)2(Ar=NAPme,1;NAPiso,2;Naphth,3;Ant,4).Molecular structures of new compounds were determined using single crystal X-ray diffraction,and the Ru-Ru bond lengths (0.245 0~0.249 1 nm)are consistent with the existence of a Ru-Ru single bond.These compounds are diamagnetic and were further characterized with1H NMR and UV-Vis-NIR spectroscopic techniques.Cyclic voltammograms of compounds 1~4 consist of two reversible one-electron processes,an oxidation and a reduction,and their potentials depend on the nature of Ar.CCDC 1555598,1;1555599,2;1555609,3;1555611,4.

diruthenium;alkynyl;naphthalimide;naphthalene;anthracene

O614.82+1

A

1001-4861(2017)11-2103-07

10.11862/CJIC.2017.238

2017-06-14。收修改稿日期:2017-08-23。

美國國家科學基金會(No.CHE 1362214,CHE 1625543)資助項目。

*通信聯系人。E-mail:tren@purdue.edu

主站蜘蛛池模板: 精品国产网站| 国产色网站| 麻豆精选在线| 丰满少妇αⅴ无码区| 久久综合AV免费观看| 97国产精品视频人人做人人爱| 亚洲伊人电影| 免费观看精品视频999| 亚洲天堂自拍| 亚洲第一黄色网址| 亚洲中文精品人人永久免费| 亚洲中文在线看视频一区| 无码精品福利一区二区三区| 久久99热这里只有精品免费看| 在线不卡免费视频| 99热这里只有精品免费| 免费观看无遮挡www的小视频| 99伊人精品| 色综合五月| 亚洲日本精品一区二区| 欧美激情福利| 伊伊人成亚洲综合人网7777| 有专无码视频| 国产剧情国内精品原创| 国产欧美日韩在线一区| 青青青视频蜜桃一区二区| 亚洲精品成人7777在线观看| 国产白浆在线观看| 亚洲一级毛片在线观播放| 亚洲美女一区| 精品成人一区二区三区电影 | 色综合久久无码网| 亚洲成人精品在线| 蝴蝶伊人久久中文娱乐网| 亚洲精品图区| 91精品在线视频观看| 一本久道久久综合多人| 极品av一区二区| 亚洲码一区二区三区| 日韩欧美国产成人| 久久青草免费91观看| 特级毛片8级毛片免费观看| 久久精品国产电影| A级毛片无码久久精品免费| 97超碰精品成人国产| 她的性爱视频| 免费看a毛片| 狠狠色成人综合首页| 日韩成人免费网站| 国产精品亚洲五月天高清| 免费看av在线网站网址| 伊人久综合| 国产在线观看一区二区三区| 免费a在线观看播放| 凹凸精品免费精品视频| 久久不卡国产精品无码| 72种姿势欧美久久久大黄蕉| 噜噜噜久久| 在线观看欧美国产| 国产美女91呻吟求| 国产凹凸视频在线观看 | 九色在线视频导航91| 久久成人免费| 亚洲美女操| 国产男人的天堂| 性色一区| 在线国产你懂的| 欧美一区二区自偷自拍视频| 国产一区二区三区免费| 亚洲日韩精品无码专区97| 一级毛片视频免费| 久久国产热| 亚洲成人精品| 久久特级毛片| 日韩最新中文字幕| 欧美一区二区丝袜高跟鞋| 麻豆国产在线观看一区二区| 国产人人射| 亚洲第一成年人网站| 91精品专区国产盗摄| 这里只有精品在线| 国产二级毛片|