999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

賦Luxemburg范數的Musielak-Orlicz-Sobolev空間中的凸性

2017-11-22 03:15:07季丹丹
關鍵詞:數學

季丹丹

(牡丹江師范學院 數學科學學院,黑龍江 牡丹江 157011)

?

賦Luxemburg范數的Musielak-Orlicz-Sobolev空間中的凸性

季丹丹

(牡丹江師范學院 數學科學學院,黑龍江 牡丹江 157011)

克服了Musielak-Orlicz-Sobolev空間的結構復雜性,吸取了Musielak-Orlicz空間中凸性的研究方法,給出并證明了賦Luxemburg范數的Musielak-Orlicz-Sobolev空間具有嚴格凸性的充要條件.

Musielak-Orlicz-Sobolev空間; 嚴格凸性;Luxemburg范數;Δ2條件

1 基礎知識

凸性是Banach空間幾何理論基本內容之一,具有鮮明的直觀幾何意義. 凸性的研究最早是從Banach空間單位球的研究開始的. Clarkson[1]于1936年引入了一致凸空間并在這種空間中討論了向量測度,為這方面的研究指明了方向. 而后引入了各種凸性,并討論了它們的基本性質以及在最佳逼近和不動點理論中的應用. Musielak-Orlicz-Sobolev空間是一類復雜的Banach空間,本文將給出該空間中凸性的研究.

關于Musielak-Orlicz函數、函數的模、函數的Luxemburg范數、Musielak-Orlicz函數M所滿足的Δ2條件,以及Musielak-Orlicz空間的定義見文獻[2-3];對于Musielak-Orlicz-Sobolev空間

Wm,M(Ω)={u∈LM(Ω):?αu∈LM(Ω),

(1)

在下文中, 若M?Δ2,只考慮情形i), 其他兩種情況不予考慮.

在本文中令

則稱v是M關于t的非嚴格凸點. M關于t的非嚴格凸點全體記為Kt(見文獻[3]).

2 主要結果

定理1 Wm,M是嚴格凸的充要條件是

(a) M∈Δ2;

證明 充分性.注意到實數集是凸集,由文獻[3]中定理5.11知LM是嚴格凸的,又由引理1知Wm,M是嚴格凸的.

必要性.用反證法.先證明充要條件(b).

從而

所以

類似可證‖z‖≤‖x+f‖≤1.

這與Wm,M是嚴格凸的矛盾.故M∈Δ2.

[1]CLARKSON J A. Uniformly convex spaces[J]. Trans. Math. Soc, 1936,40: 396-414.

[2] HUDZIK H, LIU X B, WANG T F. Points of monotonicity in Musielak-Orlicz function spaces endowed with the Luxemburg norm[J]. Arch.Math, 2004, 82: 534-545.

[3] CHEN S T. Geometry of Orlicz paces[M].[S.l.]:Dissertations Mathematicae Warszawa, 1996.

[4]季丹丹, 賀鑫, 王玉文. Musielak-Orlicz-Sobolev空間中的單調性[J]. 數學的實踐與識, 2013, 43(23): 213-218.

[5] 趙靜, 陳述濤. Orlicz-Sobolev空間的中點局部一致凸性[J]. 數學雜志, 2005, 25(5): 567-570.

[6]陳述濤, 胡長英. Orlicz-Sobolev空間關于Luxemburg范數的端點與嚴格凸性[J]. 哈爾濱師范大學自然科學學報, 2001, 17(2): 1-6.

(編輯:郝秀清)

Rotundity in Musielak-Orlicz-Sobolev spaces with Luxemburg

JI Dan-dan

(School of Mathematical Sciences, Mudanjiang Normal College,Mudanjiang 157011,China)

This article is to overcome the difficulties of the structure, and adopt the research methods of rotundity in Musielak-Orlicz spaces. Necessary and sufficient conditions for rotundity of Musielak-Orlicz-Sobolev spaces with Luxemburg norm are given and proved.

Musielak-Orlicz-Sobolev spaces;rotundity;Luxemburg norm;condition Δ2

2016-02-25

牡丹江師范學院一般項目(YB201604); 牡丹江市科學技術項目(G2015K1980)

季丹丹, 女,jidandan1014@126.com

1672-6197(2017)01-0039-04

O

A

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产一级毛片yw| 国产高清无码麻豆精品| 国产一级裸网站| 白丝美女办公室高潮喷水视频| 欧美在线网| 免费国产黄线在线观看| 一级全黄毛片| 青青操视频在线| 亚洲欧美不卡中文字幕| 亚洲国产综合精品中文第一| 青青热久麻豆精品视频在线观看| 超清无码一区二区三区| 97超碰精品成人国产| 啪啪免费视频一区二区| 国产成人1024精品| 亚欧美国产综合| 91精品国产自产在线观看| 真人高潮娇喘嗯啊在线观看| 毛片网站在线看| 亚洲第一天堂无码专区| 广东一级毛片| 欧美高清国产| 婷婷六月在线| 色婷婷电影网| 国产亚洲精品精品精品| 久久精品国产一区二区小说| 2024av在线无码中文最新| 免费va国产在线观看| 一级成人a毛片免费播放| 69av免费视频| 亚洲天堂777| a欧美在线| 精品一区二区无码av| 国产丰满大乳无码免费播放| 国产欧美在线观看视频| 亚洲成人网在线观看| 国产一区二区精品高清在线观看| 成人福利在线视频免费观看| 亚洲免费成人网| AV老司机AV天堂| 久久无码高潮喷水| 午夜不卡视频| 亚洲国产精品成人久久综合影院| 亚洲AⅤ综合在线欧美一区| 午夜毛片免费观看视频 | 国产精品林美惠子在线观看| 伊人久久福利中文字幕| 国产精品亚洲欧美日韩久久| 天天综合色网| 国产福利小视频在线播放观看| 国产熟女一级毛片| 色九九视频| 91无码人妻精品一区二区蜜桃| 亚洲AV永久无码精品古装片| 色婷婷在线播放| 色综合成人| 国内丰满少妇猛烈精品播| 精品一区二区三区自慰喷水| 99re热精品视频国产免费| 精品人妻一区无码视频| 人妻免费无码不卡视频| 午夜不卡福利| 国产成人a毛片在线| 欧美日韩精品一区二区视频| 一边摸一边做爽的视频17国产| 国产 日韩 欧美 第二页| 麻豆国产精品一二三在线观看| 91视频精品| 亚洲嫩模喷白浆| 成人福利视频网| 久久精品亚洲专区| 久久99国产精品成人欧美| 精品久久久久久中文字幕女| 九九九久久国产精品| 不卡的在线视频免费观看| 呦女精品网站| 2021国产精品自产拍在线| 麻豆精品在线| 综合社区亚洲熟妇p| 日本精品中文字幕在线不卡| 国产精品专区第1页| 免费人成又黄又爽的视频网站|