
圖10 一年之內(nèi)的溫度循環(huán)Fig.10 Temperature cycle in one year
對四段溫度進(jìn)行分別分析.
1)0→aΔT升溫階段. 燕尾榫從受拉卡緊狀態(tài)進(jìn)入相對運(yùn)動狀態(tài),此時(shí)拉壓彈簧的剛度為K0. 應(yīng)變?yōu)椋害う?Δε1+Δε2.
2)aΔT→ΔT升溫階段. 燕尾榫處于受壓卡緊狀態(tài),梁端不再有位移,此時(shí)拉壓彈簧的剛度為無窮大,應(yīng)變?yōu)椋害う?Δε2.
3) ΔT→bΔT降溫階段. 燕尾榫從受壓卡緊狀態(tài)進(jìn)入相對運(yùn)動狀態(tài),此時(shí)拉壓彈簧的剛度為K0.應(yīng)變?yōu)椋害う?Δε1+Δε2.
4)bΔT→0 降溫階段. 燕尾榫處于受拉卡緊狀態(tài),梁端不再有位移,此時(shí)拉壓彈簧的剛度為無窮大,應(yīng)變?yōu)椋害う?Δε2.
升溫段和降溫段中榫卯的狀態(tài)改變是對稱的,且兩段中的相對運(yùn)動距離相同,所以有a+b=1.
3 工程應(yīng)用
3.1 監(jiān)測系統(tǒng)簡介
在某藏式古建筑的回廊結(jié)構(gòu)(見圖11)布置了健康監(jiān)測系統(tǒng),在結(jié)構(gòu)的梁和柱上安裝了光纖光柵傳感器,測試結(jié)構(gòu)的應(yīng)變和環(huán)境溫度. 回廊中共在6根梁上 (命名為梁a~梁f)安裝了傳感器,所有梁傳感器均位于木構(gòu)排架的中間跨,安裝在梁的底部跨中位置,如圖12所示.

圖11 回廊排架結(jié)構(gòu)Fig.11 The frame structure of the corridor

圖12 梁傳感器Fig.12 The beam sensor
3.2 實(shí)例計(jì)算
以回廊中梁a為例進(jìn)行梁底部跨中應(yīng)變的理論計(jì)算. 在實(shí)際監(jiān)測工程中,結(jié)構(gòu)的材料性能、邊界條件等計(jì)算參數(shù)均具有一定的不確定性,而木結(jié)構(gòu)相對于其他材料具有更大的離散性,故計(jì)算參數(shù)的取值應(yīng)在一定的范圍內(nèi). 此木梁的尺寸為:b×h×l=140 mm×220 mm×3 662 mm,弓木長lg=2 392 mm;梁的上部荷載q=130 kN /m;藏青楊古木材順紋方向的彈性模量E的取值范圍為:4 400~9 350 MPa[5];轉(zhuǎn)動剛度Kr的取值范圍為:265~550 kN·m/rad[8];順紋方向熱膨脹系數(shù)α的取值范圍為:3.9~4.5με/℃[2];拉壓彈簧的初始剛度K0由榫卯間的摩擦和擠壓提供,K0的取值范圍為:16.87~500 kN/m[11-14]. 取2013-02-01—2014-01-31的數(shù)據(jù)作為一個(gè)溫度循環(huán)區(qū)間. 由于回廊在白天會有大量游客,為了消除人群荷載的影響,取每天7:00無人時(shí)刻的應(yīng)變和溫度數(shù)據(jù),作出一年的數(shù)據(jù)曲線如圖13所示. 一年中最大溫差ΔT=16 ℃,并假定a=b=1/2,則一個(gè)溫度循環(huán)的過程為:0 ℃→8 ℃→16 ℃→8 ℃→0 ℃.

圖13 一個(gè)溫度循環(huán)的數(shù)據(jù)曲線Fig.13 The data curve in a temperature cycle


圖14 應(yīng)變-溫度關(guān)系曲線計(jì)算值Fig.14 The calculated curve of strain and temperature
若采用已有簡化模型計(jì)算,將梁與梁之間簡化為只有轉(zhuǎn)動剛度的半剛接[5],則計(jì)算應(yīng)變時(shí)只有Δε2而沒有Δε1. 一個(gè)溫度循環(huán)中,應(yīng)變隨溫度的變化曲線如圖15所示,升溫段與降溫段重合而沒有分成兩部分.

圖15 已有模型應(yīng)變-溫度關(guān)系曲線計(jì)算值Fig.15 The calculated curve of strain and temperature for existing model
由于傳感器在實(shí)測過程中會受到外界因素的干擾,將梁a實(shí)測的應(yīng)變和溫度數(shù)據(jù)用SSA方法[15]進(jìn)行分解,并取其第一階趨勢項(xiàng),做出實(shí)測值的應(yīng)變與溫度的關(guān)系圖,并與計(jì)算值做對比,如圖16(a)所示,二者吻合較好. 考慮計(jì)算參數(shù)的離散性,將回廊中每根梁的計(jì)算參數(shù)均在合理的取值范圍內(nèi)調(diào)整取值,并將計(jì)算值與實(shí)測值做比較,使二者能夠吻合良好,如圖16所示. 各梁計(jì)算參數(shù)的取值如表1所示,每根梁的參數(shù)取值有所差別,但均在合理的取值范圍內(nèi). 古建筑中的木材由于存在初始缺陷、材料退化、結(jié)構(gòu)損傷等問題,故同一建筑中相同材料的木梁,其參數(shù)也會有所不同. 圖16中,計(jì)算值與實(shí)測值的應(yīng)變-溫度曲線的升溫段和降溫段均分為兩部分,且拐點(diǎn)位于溫度的最高點(diǎn). 由于測量誤差等原因,實(shí)測值的應(yīng)變沒有回到原點(diǎn). 對比圖15和圖16,可知已有簡化模型無法體現(xiàn)實(shí)測數(shù)據(jù)中的分段性質(zhì).

表1 各梁的參數(shù)取值
4 參數(shù)分析
4.1 不同溫度起點(diǎn)分析
在上述分析中,溫度循環(huán)起點(diǎn)選在溫度最低點(diǎn),即0 ℃. 而實(shí)際工程中,溫度起點(diǎn)不一定在最低點(diǎn). 下面分析溫度起點(diǎn)分別為升溫段4 ℃,升溫段12 ℃和降溫段12 ℃時(shí)的應(yīng)變-溫度曲線.
以起點(diǎn)為升溫段4℃為例進(jìn)行分析,燕尾榫初始處于受拉卡緊狀態(tài),當(dāng)溫度循環(huán)至0 ℃時(shí),溫度循環(huán)可以分為四段:4 ℃→12 ℃→16 ℃→8 ℃→0 ℃,分別為相對運(yùn)動階段、受壓卡緊階段、相對運(yùn)動階段、受拉卡緊階段. 即當(dāng)溫度循環(huán)至0 ℃時(shí),燕尾榫處于受拉卡緊階段. 應(yīng)變-溫度曲線如圖17(a)所示,圖中點(diǎn)A為溫度的起點(diǎn),點(diǎn)B為溫度最低點(diǎn). 當(dāng)進(jìn)入第二年的溫度循環(huán)時(shí),初始狀態(tài)為溫度為0 ℃且燕尾榫處于受拉卡緊狀態(tài),與第3部分中的假定相同. 圖17(b)為前2個(gè)溫度循環(huán)的應(yīng)變-溫度曲線,第二年的曲線與圖14相同. 同樣可分別作出溫度起點(diǎn)為升溫段12 ℃、降溫段12 ℃時(shí)的應(yīng)變-溫度曲線,如圖17和圖18所示. 從圖17~圖19可看出,無論初始溫度為何值,當(dāng)?shù)谝淮窝h(huán)至最低溫時(shí),燕尾榫一定處于受拉卡緊狀態(tài). 從第二個(gè)循環(huán)開始,應(yīng)變-溫度曲線即和圖14相同. 對于古建筑的監(jiān)測而言,分析起點(diǎn)選在溫度最低點(diǎn)的假定是合理的.

圖16 6根梁的應(yīng)變計(jì)算值與實(shí)測值比較Fig.16 Comparison of calculated and measured strain for six beams
4.2 參數(shù)敏感性分析
在公式(22)中,應(yīng)變的計(jì)算結(jié)果會受到各個(gè)參數(shù)的影響. 木材的離散性較大,參數(shù)的取值具有一定的不確定性,且各個(gè)參數(shù)對計(jì)算結(jié)果的影響程度各不相同. 參數(shù)的敏感性分析是模型不確定性量化的重要環(huán)節(jié),有助于識別關(guān)鍵參數(shù),減少參數(shù)的不確定性影響[16]. 不確定的參數(shù)有:木材熱膨脹系數(shù)α,邊界條件(Kr和K0),彈性模量E,溫度分段情況等. 各個(gè)參數(shù)的取值均可控制在一定合理的范圍內(nèi),據(jù)此可計(jì)算應(yīng)變對各參數(shù)的敏感性.

(a)(b)圖17 初始溫度為升溫段4℃的應(yīng)變-溫度曲線Fig.17 Thestrain-temperaturecurvewhentheinitialtemperatureis4℃attemperatureincreasingstage(a)(b)圖18 初始溫度為升溫段12℃的應(yīng)變-溫度曲線Fig.18 Thestrain-temperaturecurvewhentheinitialtemperatureis12℃attemperatureincreasingstage(a)(b)圖19 初始溫度為降溫段12℃的應(yīng)變-溫度曲線Fig.19 Thestrain-temperaturecurvewhentheinitialtemperatureis12℃attemperaturedecreasingstage
Morris方法是一種常用的敏感性分析方法. 其計(jì)算原理是選取模型中的一個(gè)設(shè)計(jì)變量Xi,其余參數(shù)值固定不變,自變量Xi以設(shè)定好的變幅變化運(yùn)行模型得到目標(biāo)函數(shù)y(x)=y(X1,X2,…,Xn)的值,用影響值Si判斷參數(shù)變化對輸出值的影響程度[17-18].Si的計(jì)算公式為:

(23)

(24)
式中:yi為參數(shù)變化后的輸出值;y0為參數(shù)變化前的輸出值;X0為初始參數(shù)值;Δi為參數(shù)變化的幅度. 靈敏度判別因子S取Si的平均值,即:
(25)
α,Kr,K0和E的取值范圍見3.2部分,溫度分段中以第一段的溫度ΔT1為變化參數(shù),分別取ΔT1的值為:4 ℃,6 ℃,8 ℃,10 ℃,12 ℃. 根據(jù)Morris方法,計(jì)算得到各個(gè)參數(shù)對應(yīng)變最大值的判別因子的結(jié)果見表2. 結(jié)果表明,應(yīng)變增量對5個(gè)參數(shù)的敏感性排序?yàn)椋篍>α>ΔT1>Kr>K0,材料的彈性模量E對應(yīng)變的影響最大,燕尾榫的拉壓剛度K0對應(yīng)變的影響最小.

表2 各參數(shù)的判別因子
5 結(jié) 論
通過本文分析,可得到以下結(jié)論:
1) 根據(jù)藏式古建筑木梁構(gòu)造特點(diǎn),提出了藏式古建筑木梁的應(yīng)變-溫度計(jì)算模型. 溫度作用下,梁端反力對梁底的二階彎矩作用會引起梁底的附加應(yīng)變.
2)一個(gè)循環(huán)之內(nèi),升溫段和降溫段的曲線沒有重合而是分成了兩部分. 在一個(gè)溫度循環(huán)結(jié)束之后,溫度增量和應(yīng)變增量均回到了初始值.
3) 不同溫度起點(diǎn)的設(shè)定對分析結(jié)果沒有影響.
4)根據(jù)敏感性分析結(jié)果,在模型各個(gè)參數(shù)中,材料的彈性模量對應(yīng)變的影響最大,燕尾榫的拉壓剛度對應(yīng)變的影響最小.
[1] 王娟,楊娜,楊慶山. 適用于遺產(chǎn)建筑的結(jié)構(gòu)健康監(jiān)測系統(tǒng)[J]. 北京交通大學(xué)學(xué)報(bào),2012,34(1):100-104.
WANG J,YANG N,YANG Q S. Structural health monitoring system for heritage[J]. Journal of Beijing Jiaotong University,2012,34(1):100-104. (In Chinese)
[2] 王陽. 殿堂式古建筑木構(gòu)有限元分析與可靠度評估[D]. 北京:北京交通大學(xué)土木建筑工程學(xué)院,2014:14-21.
WANG Y. Finite element analysis and reliability assessment of hall-style ancient wooden structure[D]. Beijing:Scholl of Civil Engineering, Beijing Jiaotong University,2014:14-21. (In Chinese)
[3] GREEN D W,EVANS J W. The immediate effect of temperature on the modulus of elasticity of green and dry lumber[J]. Wood and Fiber Science,2008,40(3):374-383.
[4] YARNOLD M T,MOON F L. Temperature-based structural health monitoring baseline for long-span bridges[J]. Engineering Structures,2015,86:157-167.
[5] 李鵬.藏式古建筑木構(gòu)架梁柱節(jié)點(diǎn)力學(xué)機(jī)理研究[D]. 北京:北京交通大學(xué)土木建筑工程學(xué)院,2009:62-69.
LI P. Mechanical mechanism of beam-column joints in wooden frame of Tibetan ancient architecture[D]. Beijing:Scholl of Civil Engineering,Beijing Jiaotong University,2009:62-69. (In Chinese)
[3] CAO P L,YANG Q S,LAW S S. Nonlinear analytical model of a two-layer wooden beam in a heritage structure[J]. Engineering Structures,2015,101:494-508.
[7] WANG J,HE J X,YANG N,etal. Study on aseismic characteristics of Tibetan ancient timber structure [J]. Advances in Materials Science and Engineering,2017(1):1-15.
[8] 閆會春. 藏式古建筑木構(gòu)梁柱連接力學(xué)性能試驗(yàn)研究及有限元分析 [D]. 北京:北京交通大學(xué)土木建筑工程學(xué)院,2011:34-44.
YAN H C. Experimental research and finite element analysis of timber beam-column connection of Tibetan ancient architecture[D]. Beijing:Scholl of Civil Engineering,Beijing Jiaotong University,2011:34-44. (In Chinese)
[9] 胡習(xí)兵. T型鋼半剛性連接節(jié)點(diǎn)的性能研究[D]. 長沙:湖南大學(xué)土木工程學(xué)院,2004:58-61.
HU X B. The research on the behavior of T-stub semi-rigid connections [D]. Changsha:College of Civil Engineering,Hunan University,2004:58-61. (In Chinese)
[10] 陳驥. 鋼結(jié)構(gòu)穩(wěn)定理論與設(shè)計(jì)[M]. 北京:科學(xué)出版社,2011:77-82.
CHEN J. Stability of steel structures theory and design [M]. Beijing:Science Press,2011:77-82. (In Chinese)
[11] 蘇軍,高大峰. 中國木結(jié)構(gòu)古建筑抗震性能的研究[J]. 西北地震學(xué)報(bào),2008,30(3):239-244.
SU J,GAO D F. Study on the seismic performance of Chinese ancient timber structure[J]. Northwestern Seismological Journal,2008,30(3):239-244. (In Chinese)
[12] 高大峰,丁新建,曹鵬男. 西安清真寺木牌樓結(jié)構(gòu)特性與抗震性能分析[J]. 地震工程與工程振動,2011,31(2):108-114
GAO D F,DING X J,CAO P N. Analysis of structural properties and seismic performance of the Pai-lou gateways in Xi’an Great Mosque [J]. Journal of Earthquake Engineering and Engineering Vibration,2011,31(2):108-114. (In Chinese)
[13] 權(quán)吉柱. 木結(jié)構(gòu)古建筑殿堂型結(jié)構(gòu)的耗能減震機(jī)理分析[D]. 西安:西安建筑科技大學(xué)土木工程學(xué)院,2007:62-65.
QUAN J Z. Analysis on passive energy dissipation mechanism of ancient timber lifted beam structure[D]. Xi’an:School of Civil Engineering,Xi’an University of Architecture and Technology,2007:62-65. (In Chinese)
[14] SEO J M,CHOI I K. Static and cyclic behavior of wooden frames with tenon joints under lateral load [J]. Journal of Structural Engineering,1999,125(3):344-349.
[15] LIU K,LAW S S,XIA Y,etal. Singular spectrum analysis for enhancing the sensitivity in structural damage detection[J]. Journal of Sound and Vibration,2014,33(2):392-417.
[16] 張望喜,張勇,易偉建,等. RC框架結(jié)構(gòu)pushover方法定點(diǎn)位移的敏感性分析[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2014,41(2):14-18.
ZHANG W X,ZHANG Y,YI W J,etal. Sensitivity analysis of the top displacement of the pushover analysis method of reinforced concrete frame structure [J]. Journal of Hunan University:Natural Sciences,2014,41(2):14-18. (In Chinese)
[17] FRANCOS A,LORZA F J. Sensitivity analysis of distributed environmental simulation models:understanding the model behavior in hydrological studies at the catchment scale[J]. Reliability Engineering and System Safety,2003,79(2):205-218.
[18] 周冰,黃曉婷,耿元. 基于Morris法分析的液壓參數(shù)對互聯(lián)懸架的影響[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版,2016,43(2):70-76.
ZHOU B,HUANG X T,GENG Y. Influence of hydraulic parameters on hydraulically interconnected suspension based on Morris[J]. Journal of Hunan University:Natural Sciences,2016,43(2):70-76. (In Chinese)
Strain-temperature Model Analysis of Tibetan Ancient TimberBeam in Long-term Monitoring
BAI Xiaobin,YANG Na?
(School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China)
According to the construction and loading features of Tibetan ancient timber beam,a nonlinear spring was added at the end of the beam and the simplified mechanical model of temperature effect on the timber beam was established. Considering the second order of the counterforce of beam end,a theoretical model of the strain in the grain direction of the mid-span beam bottom under temperature effect was proposed. The strain in a temperature cycle was divided into four parts for calculations. A timber beam of a Tibetan ancient building from a monitoring system was employed as a calculation example. The results show that the strain returns to the initial value in a temperature cycle,while the curves of the temperature rising stage and temperature decreasing stage are not coincident but divided into two parts. The calculated strain curve matches well with the measurement. Finally,the parameter analysis of the structure parameters affecting the strain variations was proceed,and the results show that the different starting temperature makes no difference for the analysis results. Elasticity module is the most sensitive parameter,while the tension and compression stiffness of the dovetail joint is the least sensitive parameter.
Tibetan ancient timber beam;temperature effect;dovetail joint;second order moment;sensitivity analysis
TU366.2
A
1674-2974(2017)11-0117-09
10.16339/j.cnki.hdxbzkb.2017.11.014
2017-01-03
國家自然科學(xué)基金重點(diǎn)項(xiàng)目(51338001),Key Program of the National Natural Science Foundation of China(51338001);國家自然科學(xué)基金優(yōu)秀青年基金項(xiàng)目(51422801),National Natural Science Foundation of China(51422801);北京市自然科學(xué)基金重點(diǎn)項(xiàng)目(8151003), Key Program of the National Natural Science Foundation of Beijing(8151003);國家科技支撐計(jì)劃項(xiàng)目(2015BAK01B02),National Key Technology R&D Program(2015BAK01B02)
白曉彬(1988―),男,山東聊城人,北京交通大學(xué)博士研究生
?通訊聯(lián)系人,E-mail:nyang@bjtu.edu.cn