董琪琪 胡海豹,?,2) 陳立斌 余思瀟
*(西北工業(yè)大學航海學院,西安710072)
?(西北工業(yè)大學深圳研究院,深圳518057)
矩形疏水溝槽表面水滴振蕩特性1)
董琪琪*胡海豹*,?,2)陳立斌*余思瀟*
*(西北工業(yè)大學航海學院,西安710072)
?(西北工業(yè)大學深圳研究院,深圳518057)
液滴振蕩行為是液滴運動中的重要伴隨現(xiàn)象,具有重要科研價值.由于液滴撞擊疏水溝槽板時運動行為與光滑表面明顯不同,可以推測疏水溝槽表面液滴振蕩特性也將會呈現(xiàn)與眾不同的行為特點.采用高速攝像技術(shù),研究了矩形疏水溝槽表面上水滴高度和接觸線振蕩行為隨溝槽尺寸和撞擊速度的變化規(guī)律.結(jié)果發(fā)現(xiàn),矩形疏水溝槽造成的各向潤濕異性使得振蕩過程中水滴在平行溝槽方向上的接觸線長度大于垂直方向,但并不影響水滴高度方向上衰減振蕩的周期,即水滴振蕩周期與溝槽間距無關;同時由于疏水溝槽表面上存在能壘束縛效應,致使水滴振蕩過程中接觸線的鋪展和回縮運動不服從典型阻尼振蕩規(guī)律,而呈現(xiàn)振蕩數(shù)次后直接趨穩(wěn)的特點.如水滴以0.61m/s撞擊時,接觸線經(jīng)歷2次振蕩后即維持穩(wěn)定,但此時水滴仍在持續(xù)振蕩中.另外,還初步分析了水滴振蕩周期與溝槽間距無關的原因.
矩形疏水溝槽,水滴,振蕩,三相接觸線
液滴撞擊壁面的現(xiàn)象出現(xiàn)在很多工程應用中,例如噴墨打印、噴涂、噴霧冷卻、電纜結(jié)冰等[1-8].當液滴撞擊在潤濕壁面后,會出現(xiàn)鋪展、振蕩、破裂、反彈等現(xiàn)象[9-16],具有重要科研價值.其中,液滴振蕩行為已經(jīng)被用于提高DNA微數(shù)列熒光性[17]和測量水滴表面張力和黏度[18].
在液滴振蕩試驗研究方面,Wang等[19]發(fā)現(xiàn)液滴在玻璃壁面振蕩三個周期(0.085s)后達到平衡,而在石蠟壁面卻能持續(xù) 28個周期(0.266s).Wang等[20]發(fā)現(xiàn)壁面潤濕性和液滴撞擊速度對液滴振蕩高度影響較明顯,而表面活性劑對其影響較弱.Banks等[21]則提出親水性表面阻礙液滴振蕩,而疏水表面能維持振蕩,且低黏度液滴振蕩時間比高黏度液滴更長.通過數(shù)值模擬,Miller等[22]分析了黏性振蕩液滴浸入到另一種液體時的色散方程,通過小振蕩的頻率和阻尼率可以計算出液滴尺寸和界面黏彈性系數(shù).Prosperetti[23]利用Laplace變換,解決了當黏性效應不能忽略時,氣泡和液滴在液體中的小振幅(線性)自由振蕩所引起的初值問題.Tsamopoulos等[24]獲得了無黏性、大幅度振動液滴的振幅振蕩的一般理論,最明顯的結(jié)果是液滴形狀的振蕩頻率表現(xiàn)出隨振幅的升高而降低,在小幅度理論中頻率隨幅度的變化而沒有改變.Damir等[25]得出在真空中黏彈性液滴振蕩的特征方程,從液體的性質(zhì)上發(fā)現(xiàn)一些令人關注的問題.Zhang等[26]指出運動黏度對液滴振蕩高度和速度的影響大于液滴表面張力.陳石等[10]則指出液滴的鋪展半徑在黏性力的作用下衰減振蕩,并且黏性力越大,鋪展半徑衰減越快.液滴振蕩最大鋪展半徑、高度隨著液滴大小和初始鋪展速度的增大而增大,而隨著表面張力的增大而減小.液滴的振蕩是等幅振蕩,并且振幅隨著表面張力的增大而減小,頻率隨著表面張力的增大而增大.
與光板潤濕行為不同,Range等[27]研究了液滴對粗糙固體表面的撞擊,發(fā)現(xiàn)水滴飛濺的最小韋伯數(shù)與水滴半徑、表面粗糙度系數(shù)有關.Kannan等[28]發(fā)現(xiàn),溝槽結(jié)構(gòu)改變了液體薄片在溝槽表面上的形狀.施瑤等[29]發(fā)現(xiàn),在平板上加工規(guī)則的溝槽能有效改變壁面的潤濕性,致使壁面潤濕展現(xiàn)出各向異性.Hu等[30]發(fā)現(xiàn)在較高的沖擊速度下,擴散過程是在平行于微溝槽的表面上進行的,在垂直于微溝槽的方向上反而被阻止.Song等[31]進一步發(fā)現(xiàn)液滴在部分微溝槽表面上時,平行于溝槽的接觸角大于光滑表面上的接觸角,而微觀結(jié)構(gòu)對垂直于溝槽的接觸角影響不大.由上可知,液滴撞擊疏水溝槽板時的運動行為與光滑表面明顯不同.可以推測,疏水溝槽表面液滴振蕩特性也將會呈現(xiàn)與眾不同的行為特點.為此,本文重點研究矩形疏水溝槽壁面上水滴振蕩特性,并初步分析其產(chǎn)生原因.
實驗裝置主要由采集計算機、微量泵、平頭針、高速攝像機和試件等組成 (如圖 1).其中,采集計算機用于實驗數(shù)據(jù)記錄、處理;平頭針與微量泵連接,用于產(chǎn)生體積恒定的水滴;高速攝像機 (RED LAKE,IDT N4)用于水滴在平行和垂直于試件兩方向的動態(tài)形態(tài)捕捉,采集頻率為3000fps.同時,為觀測水滴細微形態(tài)變化,這里給高速攝像機加裝了顯微鏡頭.實驗圖像則采用Image-Pro Plus軟件進行處理.實驗用水為去離子水,實驗溫度為20?C.

圖1 實驗裝置簡圖1:采集計算機,2:微量泵,3:可調(diào)節(jié)支架,4:光源,5:平頭針,6:移動導軌,7:高速攝像機(裝配顯微鏡頭),8:試件Fig.1 Schematic diagram of experimental apparatus 1:Acquisition computer,2:Micro pump,3:Adjustable frame,4:Light source,5:Flat face needle,6:Moving rail,7:High-speed camera(micro lens),8:Specimen
試件材料(圖1(b))為黃銅,表面矩形溝槽采用LIGA-like技術(shù)加工,其中,s為槽寬度(s=0.5mm),h0為槽深度 (h0=0.1mm),l為槽間距 (l=0.2~0.6mm).疏水化處理前,首先將溝槽試件分別在乙醇和丙酮中超聲洗滌3次,然后用氧氣等離子體處理2min以去除表面污染物.然后將其浸入大分子引發(fā)劑溶液中(溶劑為DMF),室溫避光條件下浸泡24h后,取出并用大量DMF和乙醇沖洗以除去表面物理吸附的聚合物,然后用氮氣流吹干.最后,分別取適量GO懸浮水和CNTs粉末加入1.0mg/mL的大分子引發(fā)劑溶液中,并在室溫避光下攪拌24h后離心分離,再分別用DMF和乙醇離心洗滌2次以除去物理吸附的引發(fā)劑.經(jīng)過以上步驟,便可以獲得穩(wěn)定的疏水性溝槽壁面.對不同矩形疏水溝槽試件上水滴靜態(tài)接觸角進行測試,發(fā)現(xiàn)接觸角的變化呈規(guī)律性的波動,且垂直溝槽方向上接觸角始終大于平行溝槽向(圖2),這與文獻[29]中的結(jié)論基本一致,而具體波動的原因有待進一步研究.

圖2 矩形疏水溝槽壁面上靜潤濕狀態(tài)隨槽間距l(xiāng)的變化規(guī)律Fig.2 The variation of wetting state with the width of the slot l on the rectangular hydrophobic grooves
與文獻報道一致[9-16],隨撞擊韋伯數(shù)We的增大,疏水溝槽壁面上水滴會呈現(xiàn)出鋪展、彈跳、和破碎等不同行為.當We6 13.13時,水滴會經(jīng)歷多次鋪展和收縮過程,即呈現(xiàn)不穩(wěn)定的振蕩過程.圖3為直徑為2.57mm水滴以U=0.44m/s的速度撞擊到槽間距l(xiāng)=0.2mm溝槽壁面上的振蕩過程.其中,圖3(a)為垂直于溝槽方向水滴振蕩過程,圖3(b)為平行于溝槽方向水滴振蕩過程,這里t=0為水滴接觸壁面的瞬時.可以發(fā)現(xiàn),在0~25.0ms期間,水滴外形變化幅度很大,呈現(xiàn)快速衰減特征.其中,在t=1.7ms時,水滴呈葫蘆狀,即下半部分為半徑較大的橢球狀,上半部分為半徑較小的橢球狀.t=4.7ms時,水滴中心部分則呈錐型.t=6.7ms時,水滴中心出現(xiàn)一股反沖向水滴內(nèi)部的射流.t=11.3ms時,水滴高度達到最高.隨后,在t為25~166ms期間,水滴外形則無大幅度變化,呈現(xiàn)緩慢衰減振蕩特征(因該過程持續(xù)很多個振蕩周期,圖3中僅給出4張典型水滴狀態(tài)照片).同時可以看出,在平行和垂直于溝槽方向上,雖然振蕩現(xiàn)象相似,但平行向水滴接觸線的長度要長于垂直向(圖中垂直向接觸線的寬度等于白色細線長度,而平行向接觸線的寬度大于白色細線長度).這與垂直溝槽向的靜態(tài)接觸角大于平行溝槽向上靜態(tài)接觸角的規(guī)律正好對應,說明垂直溝槽方向上存在更大能量壁壘(能壘),即溝槽對其垂直方向上接觸線移動的束縛更強.

圖3 水滴撞擊矩形疏水溝槽表面的典型振蕩形態(tài)Fig.3 Typical shapes of water droplet impinging on the surface of rectangular hydrophobic grooves
為觀察典型矩形疏水溝槽上水滴振蕩周期的變化,這里詳細統(tǒng)計了10種不同溝槽上水滴振蕩高度的變化情況,圖4僅給出了槽間距l(xiāng)為0.2mm,0.6mm,1.0mm時矩形疏水溝槽壁面上水滴高度的振蕩曲線.從中也可以清晰發(fā)現(xiàn),水滴高度振蕩可分為快速衰減振蕩階段和緩慢衰減振蕩階段.為準確提取水滴振蕩周期信息,文中采用線性衰減振蕩函數(shù)對第二振蕩階段進行數(shù)值擬合,即棄用前兩個振蕩周期的試驗數(shù)據(jù),而選取從第三個振蕩周期開始的試驗數(shù)據(jù)來擬合.采用擬合函數(shù)表達式為


圖4 典型矩形疏水溝槽壁面上水滴高度振蕩(中小圖為槽間距l(xiāng)=0.2mm壁面上振蕩擬合曲線)Fig.4 Oscillation of the water droplet in the height direction on the surface of the typical rectangular hydrophobic grooves(Illustration is the curve fi tting for oscillation on the surface of l=0.2mm)
式中,H為液滴最終穩(wěn)定高度,A為高度振蕩幅值,a0為衰減模量(1/a0為衰減系數(shù)),為圓頻率(T為周期).圖4內(nèi)的插圖為槽間距l(xiāng)=0.2mm矩形疏水溝槽壁面上水滴高度振蕩擬合曲線,與試驗數(shù)據(jù)吻合良好.
圖5為擬合處理得到的矩形疏水溝槽壁面上水滴振蕩周期T隨槽間距l(xiāng)的變化關系.令人驚訝的是,水滴高度的振蕩周期維持不變,即溝槽間距不影響水滴高度的振蕩周期.

圖5 水滴振蕩周期T隨槽間距l(xiāng)的變化Fig.5 The variation of water droplet oscillation period T with the width of the slot l
不同試件上溝槽間距和潤濕性(平行向及垂直向潤濕性)存在明顯差異,卻展示出幾乎完全相同的振蕩周期.為探索其原因,論文從疏水溝槽表面水滴體積及振蕩周期的理論預測方面進行了詳細分析.水滴穩(wěn)定在疏水矩形溝槽壁面后呈現(xiàn)Cassie狀態(tài),這里假定水滴在垂直于溝槽壁面方向呈球缺狀(圖6(a)),而在平行方向呈橢球缺狀(圖6(b)).圖6中,R2和R1分別為平行向剖面橢圓的半長軸和垂直向的剖面圓的半徑.

圖6 矩形疏水溝槽壁面上水滴接觸示意圖Fig.6 Schematic diagram of water droplet on the surface of rectangular hydrophobic grooves
橢球缺體積計算公式為[32]而在垂直溝槽方向上水滴截面成球缺,所以體積V可以寫為

這里,θc為球缺在垂直溝槽方向上水滴的接觸角,H為球缺高度.將式(3)代入式(2)中,可獲得理想橢球缺的接觸角、高度與體積之間的關系

同時,再代入文獻[33]給出的R2與液滴滴落前球體半徑之間的關系 (θp為平行溝槽方向上水滴接觸角)

則可推出

由文獻[34]知,固體表面上水滴的振蕩周期公式為

根據(jù)矩形疏水溝槽壁面上平行向和垂直向接觸角的差異性,這里假定矩形疏水溝槽壁面上水滴的振蕩周期為平行垂直兩方向的幾何平均.式(7)給出的振蕩周期公式可以修正為

式中,K2為上述幾何平均運算引入的誤差修正常量.
為考察式(6)和式(8)中三角函數(shù)項的關系,這里令

并將試件θc和θp數(shù)值代入.圖7為該批試驗中C1和C2數(shù)值關系,其中散點為由試驗數(shù)據(jù)計算獲得的數(shù)值,實線為最小二乘法獲得的擬合曲線,證實二者滿足C2=?2.5×C1+4.4.

圖7 參數(shù)C1和C2數(shù)值關系圖Fig.7 Relational graph between parameter C1and C2
將C1和C2之間關系式及式(6)一起代入式(8)可得

為簡化方程形式,這里取式(9)右邊第一項中的常數(shù)項運算等于K3,則可表示為

圖8給出了振蕩周期T與液滴最終穩(wěn)定高度H的關系,其中,散點為由試驗數(shù)據(jù),實線則為用式(10)對試驗數(shù)據(jù)擬合得到的曲線,二者基本吻合.由此可以初步推測,水滴高度的振蕩周期確實與接觸角的大小沒有關系,繼而與潤濕性和試件表面溝槽間距無關,而僅與水滴最終穩(wěn)定高度有關.

圖8 振蕩周期T隨穩(wěn)定高度H的變化曲線Fig.8 The variation of oscillating period T with stable height H
圖9給出了不同撞擊速度時水滴振蕩過程中接觸線鋪展因子dc/D(dc為接觸線寬度,D為液滴直徑)隨時間t的變化情況.其中,圖 9(a)和圖 9(c)為垂直溝槽方向的測量結(jié)果,圖9(b)和圖9(d)為平行溝槽方向上的測量結(jié)果.可以看出,在快速衰減振蕩階段,接觸線的移動呈現(xiàn)出與水滴高度相同的振蕩頻率,但相位相差半個周期(高度減小時接觸線外移,高度增大時接觸線回縮);但在緩慢衰減振蕩過程中,接觸線卻基本不動.這說明疏水溝槽表面上存在的能壘束縛效應,使得水滴振蕩過程中,接觸線鋪展和回縮運動不再服從典型阻尼振蕩規(guī)律.例如,水滴以U=0.61m/s撞擊后接觸線經(jīng)歷2次振蕩就可維持穩(wěn)定;以U=0.44m/s撞擊后接觸線則經(jīng)歷1次振蕩,但此后水滴仍會持續(xù)振蕩較長時間.通過對比垂直和平行溝槽向的接觸線移動曲線,還可以看出,平行溝槽方向水滴的接觸線振蕩持續(xù)時間明顯長于其在垂直向的持續(xù)時間.


圖9 水滴速度對接觸線鋪展因子的影響Fig.9 In fl uence of water droplet velocity on contact wire spreading factor
該過程的物理機制如下:水滴撞擊壁面后發(fā)生形變,其初始動能被轉(zhuǎn)化為表面能,然后又在表面張力的驅(qū)動下發(fā)生反復的變形振蕩,即其動能和張力勢能不斷相互轉(zhuǎn)移.水滴振蕩期間,存在固液界面間摩擦阻力耗散和液體內(nèi)部的黏性耗散作用(隨水滴振蕩的衰減,其能量耗散速度放緩),致使水滴總機械能不斷減小,即水滴變形振蕩幅度(高度振幅和接觸線移動振幅)逐漸衰減.同時,由于試件表面上存在潤濕異性(實際壁面上均會呈現(xiàn)一定程度的各向潤濕異性)導致的能壘,致使接觸線能否移動取決于接觸線處流體質(zhì)點的能量是否克服此處的能量壁壘.在撞擊后的初始振蕩階段,水滴機械能充足,其接觸線會發(fā)生移動并伴隨振蕩;但當水滴機械能快速減小無法克服能壘后,水滴接觸線不能繼續(xù)移動,即接觸線振蕩現(xiàn)象消失.另外,隨著水滴撞擊速度的提高,水滴振蕩的初始機械能增大,水滴接觸線振蕩持續(xù)時間延遲;同理,在能壘大的方向上,接觸線振蕩幅度小,且持續(xù)時間更短.
進一步觀測圖9還發(fā)現(xiàn),撞擊速度U=0.61m/s時,在槽間距l(xiāng)為0.2mm,0.6mm的試件上水滴會發(fā)生彈跳行為(接觸線寬度能減小至0),而槽間距l(xiāng)=1.0mm的試件上并未發(fā)生彈跳行為.同樣,撞擊速度U=0.44m/s時,只有槽間距l(xiāng)=0.2mm的試件上發(fā)生了彈跳行為.這說明疏水溝槽間距越小,越利于水滴發(fā)生彈跳.其原因在于:水滴撞擊疏水溝槽壁面時界面一直處于Cassie潤濕狀態(tài).文中疏水溝槽表面的槽寬度s和槽深度h0均相等,隨槽間距l(xiāng)的減少,其表面固體分數(shù)不斷減少,即液滴下氣墊面積越大,液滴自然容易反彈.
通過研究矩形疏水溝槽表面上水滴高度和接觸線振蕩行為,發(fā)現(xiàn):
(1)矩形疏水溝槽表面水滴振蕩過程可分為快速衰減振蕩階段和緩慢衰減振蕩階段,且前者持續(xù)時間相對短暫.
(2)矩形疏水溝槽表面的潤濕異性使得振蕩過程中水滴在平行溝槽方向上的接觸線長度大于垂直方向;但水滴振蕩周期卻與溝槽間距引起的潤濕性差異無關,僅是水滴最終穩(wěn)定高度的函數(shù).
(3)與水滴高度振蕩行為不同,水滴三相接觸線的鋪展和回縮運動僅發(fā)生在撞擊壁面后的初始振蕩階段(此時接觸線處流體質(zhì)點能量能克服能壘束縛),且振蕩相位相反,隨后則不隨水滴高度振蕩而移動.
(4)疏水矩形溝槽的槽間距越小,水滴接觸固體面積越小,即液滴下氣墊面積越大,越有利于水滴發(fā)生撞擊彈跳行為.
1 Hao CL,Li J,Liu Y,et al.Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.Nature Communications,2015,6:7986
2 秦夢曉,張旭輝,湯成龍.液滴撞擊不同粗糙度固體表面動力學行為實驗研究.西安交通大學學報,2017,51(9):1-5(Qin Mengxiao,Zhang Xuhui,Tang Chenglong.An experimental study on the droplet impact on solid surface with di ff erent roughness.Journal of Xi’an Jiaotong University,2017,51(9):1-5(in Chinese))
3 王剛,徐守萍,皮丕輝等.液滴在梯度潤濕銅表面上的定向鋪展.中國科技論文,2016,11(6):659-663(WangGang,XuShouping,Pi Pihui,et al.Directional spreading of droplet on copper surface with wettability gradient.China Science Paper,2016,11(6):659-663(in Chinese))
4 朱軍悅,段遠源,王曉東等.流體在固體表面超鋪展特性的研究進展.化工學報,2014,65(3):765-776(Zhu Junyue,Duan Yuanyuan,Wang Xiaodong,et al.Review of super-spreading of fluids on solid substrates.Journal of Chemical Industry and Engineering,2014,65(3):765-776(in Chinese))
5 于程,張程賓,陳永平等.液滴在粗糙固體表面上的鋪展特性.工程熱物理學報,2014,35(1):145-147(Yu Cheng,Zhang Chengbin,Chen Yongping,et al.Spreading of droplet on a rough solid surface.Journal of Engineering Thermophysics,2014,35(1):145-147(in Chinese))
6 焦云龍,劉小君,劉焜.離散型織構(gòu)表面液滴的鋪展及其接觸線的力學特性分析.力學學報,2016,48(2):353-360(Jiao Yunlong,Liu Xiaojun,Liu Kun.Mechanical analysis of a droplet spreading on the discrete textured surfaces.Chinese Journal of Theoretical and Applied Mechanics,2016,48(2):353-360(in Chinese))
7 楊淑燕,郭峰,馬沖等.固液潤濕性對流體動壓潤滑薄膜的影響.摩擦學學報,2010,30(2):203-208(Yang Shuyan,Guo Feng,Ma Chong,et al.In fl uences of the liquid/solid wettability on thin hydrodynamic lubrication fi lms.Tribology,2010,30(2):203-208(in Chinese))
8 Zhang HY,Li W,Fang GP.A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces.Applied Surface Science,2012,258(7):2707-2716
9 高全杰,彭承燾,鄧云峰等.霧化噴涂過程中的液滴特性研究.武漢科技大學學報(自然科學版),2010,33(4):417-419(Gao Quanjie,Peng Chengtao,Deng Yunfeng,et al.Characteristics of droplets during atomization and spraying process.Journal of Wuhan University of Science and Technology(Natural Science Edition),2010,33(4):417-419(in Chinese))
10 陳石,王輝,沈勝強等.液滴振蕩模型及與數(shù)值模擬的對比.物理學報,2013,62(20)(Chen Shi,Wang Hui,Shen Shengqiang,et al.The drop oscillation model and the comparison with the numerical simulations.Acta Phys Sin,2013,62(20)(in Chinese))
11 Rioboo R,Marengo M,Tropea C.Outcomes from a drop impact on solid surfaces.Atomization&Sprays,2001,11(2):155-166
12 陸軍軍,陳雪莉,曹顯奎等.液滴撞擊平板的鋪展特征.化學反應工程與工藝,2007,23(6):505-511(Lu Junjun,Chen Xueli,Cao Xiankui,et al.Characteristic phenomenonan and analysis of a single liquid droplet impacting on dry surfaces.Chemical Recation Engineering and Technology,2007,23(6):505-511(in Chinese))
13 魏明銳,劉明嘉,顏伏伍等.液滴平壁鋪展過程分析.內(nèi)燃機學報,2012(6):538-543(Wei Mingrui,Liu Mingjia,Yan Fuwu,et al.Analysis of spreading process of droplet on fl at surface.Transactions of CSICE,2012(6):538-543(in Chinese))
14 李春曦,楊保才,葉學民.分離壓對波狀基底上活性劑液滴鋪展過程的影響.力學學報,2015,47(1):71-81(Li Chunxi,Yang Baocai,Ye Xuemin.E ff ect of disjoining pressure on spreading of liquid droplet containing surfactant over corrugated topography surface.Chinese Journal of Theoretical and Applied Mechanics,2015,47(1):71-81(in Chinese))
15 閻凱,寧智,呂明等.圓環(huán)旋轉(zhuǎn)黏性液體射流破碎液滴粒徑與速度數(shù)量密度分布相關性研究.力學學報,2016,48(3):566-575(Yan Kai,Ning Zhi,LMing,et al.Study on correlation of breakup droplet size and velocity distributions of an annular swirling viscous liquid sheet.Chinese Journal of Theoretical and Applied Mechanics,2016,48(3):566-575(in Chinese))
16 趙西增,付英男,張大可等.緊致插值曲線方法在流向強迫振蕩圓柱繞流中的應用.力學學報,2015,47(3):441-450(Zhao Xizeng,Fu Yingnan,Zhang Dake,et al.Application of a cip-based nu-merical simulation of flow past an in-line forced oscillating circular cylinder.Chinese Journal of Theoretical and Applied Mechanics,2015,47(3):441-450(in Chinese))
17 劉大漁,梁廣鐵,雷秀霞等.基于液滴技術(shù)的毛細管DNA提取//第一屆國際微納尺度生物醫(yī)學分離和分析技術(shù)學術(shù)會議,上海,2010年 10月17-20日(Liu Dayu,Liang Guangtie,Lei Xiuxia,et al.DNA puri fi cation in a polytetra fl uoraethylene capillary,1st International Symposium on Micro/Nano-scale Biomedical Separation and Analysis,Shanghai,2010-10-17-20(in Chinese))
18 王飛龍,孫一寧,孫志斌等.基于PSD的靜電懸浮液滴振蕩技術(shù)在表面張力與黏度測量中的應用.儀表技術(shù)與傳感器,2016(12):173-175(Wang Feilong,Sun Yining,Sun Zhibin,et al.Application of electrostatic levitation droplet oscillation technique in surface tension and viscosity measurement based on PSD.Instrument Technique and Sensor,2016(12):173-175(in Chinese))
19 Wang MJ,Lin FH,Ong JY,et al.Dynamic behaviors of droplet impact and spreading-water on glass and paraffin.Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,339(1-3):224-231
20 Wang MJ,Hung YL,Lin FH,et al.Dynamic behaviors of droplet impact and spreading:A universal relationship study of dimensionless wetting diameter and droplet height.Experimental Thermal and Fluid Science,2009,33(7):1112-1118
21 Banks D,Ajawara C,Sanchez R,et al.E ff ects of liquid and surface characteristics on oscillation behavior of droplets upon impact.Atomization and Sprays,2014,24(10):895-913
22 Miller CA,Scriven LE.The oscillation of a fl uid droplet immersed in anther fl uid.Journal of Fluid Mechanics,1968,32:417-435
23 Prosperetti A.Free oscillations of drops and bubbles:the initialvalue problem.Journal of Fluid Mechanics,1980,100:333-347
24 Tsamopoulos JA,Brown RA.Nonlinear oscillations of inviscid drops and bubbles.Journal of Fluid Mechanics,1983,127:519-537
25 Khismatullin DB,Nadim A.Shape oscillation of a viscoelastic drop.Physical Review E Statistical Nonlinear&Soft Matter Physics,2001,63(6Pt1):061508
26 Zhang JL,Liu QZ,Meng SJ.Numerical simulation of oscillation phenomenon for droplet spreading on solid surface by lattice Boltzmann method.Indian Journal of Physics,2016,90(5):589-594
27 Range K,Feuillebois F.In fl uence of surface roughness on liquid drop impact.Journal of Colloid and Interface Science,1998,203(1):16-30
28 Kannan R,Sivakumar D.Drop impact process on a hydrophobic grooved surface.Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,317(1-3):694-704
29 施瑤,胡海豹,黃蘇和等.條紋溝槽表面潤濕性的試驗研究.測控技術(shù),2011,30(11):119-121,126(Shi Yao,Hu Haibao,Huang Suhe,et al.Experimental Research on Wettability of Riblet Structure Surface.Measurement&Control Technology,2011,30(11):119-121,126(in Chinese))
30 Hu HB,Huang SH,Chen LB.Droplet impact on regular microgrooved surfaces.Chinese Physics B,2013,22(8):084702-1-084702-6
31 Song D,Song BW,Hu HB,et al.Contact angle and impinging process of droplets on partially grooved hydrophobic surfaces.Applied Thermal Engineering,2015,85:356-364
32 朱建澤.球缺、橢球缺及其實際應用.數(shù)學教學與研究,2011(29):77-78(Zhu Jianze.Ball,ellipsoid and its application.Mathematics Teaching and Research,2011(29):77-78(in Chinese))
33 黃蘇和,胡海豹,陳立斌等.剪切氣流驅(qū)動下微溝槽表面液滴受力分析.上海交通大學學報,2014,48(2):260-264(Huang Suhe,Hu Haibao,Chen Libin,et al.Force analysis of liquid droplets on micro-grooved surfaces with air fl ow.Journal of Shanghai Jiaotong University,2014,48(2):260-264(in Chinese))
34 Fedorchenko AI,Wang AB,Wang YH.The formation and dynamics of a blob on free and wall sheets induced by a drop impact on surfaces.Physics of Fluids,2004,16(11):3911-3920
CHARACTERISTIC OF DROPLET OSCILLATION ON THE SURFACE OF RECTANGULAR HYDROPHOBIC GROOVES1)
Dong Qiqi*Hu Haibao*,?,2)Chen Libin*Yu Sixiao*
*(College of Marine,Northwestern Polytechnical University,Xi’an710072,China)
?(Research&Development Institute in Shenzhen,Northwestern Polytechnical University,Shenzhen518057,China)
Droplet oscillation is an important phenomenon in nature,it has important scienti fi c research value.Since the liquid droplet behavior when impinging on the hydrophobic plate surface with grooved texture is obviously di ff erent from that on the smooth plate surface,the characteristics of the oscillation of the height and the contact line of water droplet on the rectangular hydrophobic grooves are studied via high-speed camera.Due to the anisotropic wetting of the rectangular hydrophobic grooves,the length of the contact line of water droplet in the parallel direction of the groove is longer than that in the vertical direction.However,it does not a ff ect the period of the attenuation oscillation in the height direction,which means the droplet oscillation period has no relationship with the width of the slot.What’s more,due to the binding e ff ect of the barrier on the surface within hydrophobic grooves,the spreading and retraction of the contact line do not follow the typical damping oscillation law.It stabilizes rapidly after several oscillations.For example,when the velocity of water droplet is 0.61m/s,the contact line is stable after 2 oscillations,but the water droplet is still oscillating.In addition,we give the reason why the water droplet oscillation period is irrelevant to the groove size.
rectangular hydrophobic grooves,water droplet,oscillation,contact line
O353.4
A doi:10.6052/0459-1879-17-225
2017–06–19 收稿,2017–08–07 錄用,2017–08–11 網(wǎng)絡版發(fā)表.
1)深圳市基礎研究項目(JCYJ20160510140747996)和陜西省自然科學基礎研究計劃項目(2016JM1002)資助.
2)胡海豹,教授,主要研究方向:表界面力學行為機理與控制.E-mail:huhaibao@nwpu.edu.cn
董琪琪,胡海豹,陳立斌,余思瀟.矩形疏水溝槽表面水滴振蕩特性.力學學報,2017,49(6):1252-1259
Dong Qiqi,Hu Haibao,Chen Libin,Yu Sixiao.Characteristic of droplet oscillation on the surface of rectangular hydrophobic grooves.Chinese Journal of Theoretical and Applied Mechanics,2017,49(6):1252-1259