魏佳+黃佳玥
摘 要:結合斯蒂芬森迭代和牛頓迭代,用拋物線插值函數的導函數取代f(x)的一階導數,提出一種新的可達到四階收斂的迭代方法,新的迭代公式每步計算僅需計算三次函數值,且無需計算導函數。
關鍵詞:牛頓法;斯蒂芬森方法;拋物線插值
DOI:10.15938/j.jhust.2017.06.025
中圖分類號: O24
文獻標志碼: A
文章編號: 1007-2683(2017)06-0131-03
Abstract:A new fourthorder convergent iterative method formed by Newton′s method and Steffensen method is presented to solve nonlinear equations in this paper. The new iteration formula uses derivative of quadratic interpolation as substitute for derivative of function, so it is totally free from derivatives. Furthermore, this method requires only three evaluations of the function by each iteration.
Keywords:Newton′s method; Steffensen method; quadratic interpolation
0 引 言
求解非線性方程f(x)=0是數學界經久不衰的研究課題,究其原因就是其在科學研究以及生產生活中的廣泛應用,而迭代法又是求解非線性方程最為常用的方法之一。迭代法中最為經典的就是牛頓法,除此之外比較有代表性的還有:三階Halley迭代[1],Chebyshev迭代[2],SuperHalley迭代[3],還有四階King迭代[4]等等。前人在此領域也做出了大量的探索和努力,主要致力于收斂階數的提高,計算量的減少等方面[5-14]。本文結合牛頓法和斯蒂芬森法用拋物線插值函數在該點的導函數取代f(x)的一階導,提出一種新的可達到四階收斂的迭代方法,新的迭代公式每步計算僅需計算三次函數值,且無需計算導函數。
1 新方法與收斂性分析
斯蒂芬森迭代法無需求導且能達到二階收斂,其迭代公式每步運算需計算兩個函數值。
3 結 論
本文提出的求解非線性方程單根的四階收斂迭代方法,每步迭代過程只需計算三次函數值就能達到四階的收斂效果,而且不必計算導數。數值試驗結果表明該方法具有較好的優越性,它豐富了非線性方程求根的方法,在理論上和應用上都具有較高的價值和意義。
參 考 文 獻:
[1] HALLEY E. A New, Exact and Easy Method for Finding the Roots of Equations Generally and withOut Any Previous Reduction[J]. Philos. Trans. R. Soc.Lond., 1694(18): 136-148.
[2] KOU J, LI Y. Modified Chebyshev′s Method Free from Second Derivative for Nonlinear Equations[J]. J. Appl. Math. Comput., 2007, 187(2): 1027-1032.
[3] GUTIERREZ J M, HERNANDEZ M A. An Acceleration of Newton′s Method: Super Halley Method[J]. J. Appl. Math. Comput., 2001, 117(2): 223-239.
[4] KING R F. A Family of Fourth Order Methods for Nonlinear Equations[J]. SI AMJ. Numer. Anal., 1973(10): 876-879.
[5] LIU Z, ZHENG Q, ZHAO P. A Variant of Ste Ensens Method of Fourthorder Convergence and Its Applications[J]. Applied Mathematics and Computation, 2010, 216(7): 1978-1983.
[6] OSTROWSKI A M. Solutions of Equations and Systems of Equations[M]. New York, Academic Press, 1966.
[7] KUNG H T, TRAUB J F. Optimal Order of Onepoint and Multipoint Iteration[J]. J. Assoc. Comput. Mach., 1974,21: 643-651.
[8] BI W, REN H, WU Q. Threestep Iterative Methods with Eighthorder Convergence for Solving Nonlinear Equations[J]. J. Comput. Appl. Math., 2009, 255: 105-112.
[9] CORDERO A, HUESO J L, MARTNEZ E, et al. New Modifications of Po traPtks Method with Optimal Fourth and Eighth Order of Convergence[J]. J. Comput. Appl. Math., 2010, 234: 2969-2976.
[10]CORDERO A, TORREGROSA J R, Vassileva M P. A Family of Modified Ostrowskis Method with Optimal Eighth Order of Convergence[J]. Appl. Math. Lett., 2011, 24(12): 2082-2086.
[11]LIU L, WANG X. Eighthorder Methods with High Efficiency Index for Solving Nonlinear Equations[J]. Appl. Math. Comput., 2010, 215: 3449-3454.
[12]SHARMA J R, SHARMA R. A Family of Modified Ostrowskis Methods with Accelerated Eighth Order Convergence[J]. Numer. Algoritms, 2010(54): 445-458.
[13]THUKRAL R, PETKOVIC M S. A Family of Threepoint Methods of Optimal Order for Solving Nonlinear Equations[J]. J. Comput. Appl. Math., 2010, 233: 2278-2284.
[14]SOLEYMANI F, KARIMI B S, KHAN M, et al. Some Modifications of Kings Family with Optimal Eighth Order of Convergence[J]. Math. Comput. Model., 2012(55): 1373-1380.
(編輯:王 萍)endprint