999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

皮膚創(chuàng)傷愈合和增生性瘢痕動(dòng)物模型的研究進(jìn)展

2018-01-15 12:12:35周思政綜述李青峰審校
組織工程與重建外科雜志 2018年1期
關(guān)鍵詞:小鼠實(shí)驗(yàn)模型

周思政 綜述 李青峰 審校

人皮膚深層創(chuàng)傷后通過纖維性修復(fù)的方式進(jìn)行愈合[1]。該過程中,創(chuàng)面基底肉芽組織增生,支持創(chuàng)緣表皮增殖,并向創(chuàng)面中央遷移,最終覆蓋創(chuàng)面,完成愈合[2-3]。由于皮膚的修復(fù)能力有一定的限度,大面積皮膚缺損往往愈合時(shí)間較長(zhǎng);同時(shí),一些基礎(chǔ)疾病可能會(huì)干擾創(chuàng)傷愈合的進(jìn)程,使傷口遷延不愈,這些問題目前在臨床上仍缺乏良好的對(duì)策[4-5]。皮膚傷口的纖維性修復(fù)雖然恢復(fù)了皮膚的完整性和表皮的屏障作用,但主要是通過肉芽組織增生填補(bǔ)皮膚的缺損,愈合后不可避免地遺留瘢痕[6]。皮膚傷口愈合后產(chǎn)生的普通瘢痕,在形成后迅速進(jìn)入成熟期,期間細(xì)胞發(fā)生凋亡、膠原重排、血管密度降低,瘢痕顏色逐漸變淡、質(zhì)地變軟[7-8]。若皮膚創(chuàng)傷愈合過程中炎癥反應(yīng)過度[9-10],或創(chuàng)面受到機(jī)械張力牽拉[11],則可能誘導(dǎo)增生性瘢痕的產(chǎn)生。增生性瘢痕的增生期明顯,期間細(xì)胞增殖活躍、膠原大量沉積、多種生長(zhǎng)因子(如轉(zhuǎn)化生長(zhǎng)因子β1、胰島素樣生長(zhǎng)因子1等)異常高表達(dá)[12-13],導(dǎo)致瘢痕隆起、顏色發(fā)紅、質(zhì)地變硬、易產(chǎn)生攣縮,可導(dǎo)致患者局部外觀和功能受損,并產(chǎn)生嚴(yán)重的心理影響,是臨床一大難題[14]。

長(zhǎng)期以來(lái),大量的研究針對(duì)皮膚創(chuàng)面愈合、瘢痕形成的病理生理機(jī)制及治療方法進(jìn)行探索。由于人皮膚創(chuàng)面和瘢痕標(biāo)本在臨床的取材常常受到限制,因此這一領(lǐng)域的大部分研究需建立實(shí)驗(yàn)動(dòng)物模型。但是,種系間的差異使得常用的實(shí)驗(yàn)動(dòng)物從皮膚結(jié)構(gòu)、創(chuàng)面愈合過程到瘢痕形成、瘢痕增生等多個(gè)環(huán)節(jié),均與人體存在較大差別[15],為實(shí)驗(yàn)研究帶來(lái)了很大的困難。本文針對(duì)目前皮膚創(chuàng)傷愈合和增生性瘢痕動(dòng)物模型的研究進(jìn)展進(jìn)行綜述,以期為最終攻克瘢痕難題提供線索。

1 皮膚創(chuàng)傷愈合模型

1.1 嚙齒類動(dòng)物創(chuàng)傷模型

嚙齒類動(dòng)物易管理,建模方法相對(duì)簡(jiǎn)便,基因編輯、在體示蹤等生物學(xué)技術(shù)在該類動(dòng)物中的應(yīng)用日趨成熟。因此,嚙齒類動(dòng)物的創(chuàng)傷模型在實(shí)驗(yàn)研究中最為常用。在上世紀(jì)40年代即有報(bào)道利用小鼠觀察致癌物對(duì)皮膚創(chuàng)傷愈合的影響[16],之后SD大鼠、Lewis大鼠、BALB/c小鼠、C57BL/6小鼠等均用于建立皮膚創(chuàng)傷愈合模型[17-20]。在嚙齒類動(dòng)物中建立的模型包括線性切割傷口模型、皮膚切除創(chuàng)傷模型、熱損傷模型、感染性創(chuàng)面模型等。

線性切割傷口模型、皮膚切除創(chuàng)傷模型通常于嚙齒類動(dòng)物背部皮膚進(jìn)行,傷口大小不一、深度各異。除了應(yīng)用手術(shù)刀、手術(shù)剪制造傷口外,為了提高建模的穩(wěn)定性和使傷口標(biāo)準(zhǔn)化,皮膚打孔器[21]、植皮刀[22]等亦常用于該類模型的建立。熱損傷模型有多種建模方式,有將動(dòng)物皮膚浸泡于熱水中引起皮膚燙傷的[23],亦有應(yīng)用加熱的金屬對(duì)皮膚進(jìn)行熱損傷的[24]。感染性創(chuàng)面的建模,則通過局部涂抹或注射微生物懸液制備,較多的是采用金黃色葡萄球菌[25]和銅綠假單胞菌[26]。

嚙齒類動(dòng)物皮膚創(chuàng)傷愈合模型被用于觀察傷口愈合過程及新治療方法的效果。但是,嚙齒類動(dòng)物皮膚伸縮性較強(qiáng),皮膚與皮下組織間較為疏松,皮下存在易于收縮的肉膜層,導(dǎo)致了創(chuàng)面形成后創(chuàng)緣容易收縮[22,27],使創(chuàng)面縮小。Chen等[28]報(bào)道小鼠背部傷口愈合過程中,傷口閉合約60%的力量來(lái)自于創(chuàng)緣收縮。因此,嚙齒類動(dòng)物創(chuàng)面閉合的速度相對(duì)較快,愈合過程中肉芽增生較弱,病理生理過程與人體差異較大。另外,嚙齒類動(dòng)物在皮膚愈合后,創(chuàng)面瘢痕會(huì)繼續(xù)收縮,出現(xiàn)明顯的萎縮,大創(chuàng)面愈合后約2個(gè)月時(shí)可出現(xiàn)毛囊再生等現(xiàn)象[29],與人體皮膚存在根本性地差異。應(yīng)用藥物或基因敲除技術(shù)可建立糖尿病小鼠或大鼠模型[30-31],這類動(dòng)物皮膚創(chuàng)面的愈合功能受損,創(chuàng)面收縮減弱,但由于動(dòng)物存在基礎(chǔ)疾病,使這類動(dòng)物模型的應(yīng)用受到限制。Wu等[32]在大鼠背部傷口皮下植入明膠海綿,使傷口的炎癥反應(yīng)加重,愈合后瘢痕的寬度擴(kuò)大了11倍,但該方法在創(chuàng)面引入了異物,對(duì)創(chuàng)面修復(fù)的過程形成了干擾。Wang等[33]提出,在背部創(chuàng)面周圍使用一硅膠圈防止創(chuàng)緣收縮,可更好地模擬人創(chuàng)面愈合、瘢痕形成的過程,但嚙齒類動(dòng)物較為活躍,實(shí)驗(yàn)過程中硅膠圈易損壞或脫落,導(dǎo)致建模的穩(wěn)定性欠佳。

1.2 豬皮膚創(chuàng)傷愈合模型

常用于建立皮膚創(chuàng)傷愈合模型的豬種包括約克郡豬[34]、杜洛克豬[35]和體型較小的尤卡坦豬[36]、漢福德豬[37]等。豬皮膚創(chuàng)傷愈合模型包括皮膚切除模型和熱損傷模型,與嚙齒類動(dòng)物建模方式類似,分別用手術(shù)器械、皮膚打孔器、植皮刀或加熱后的金屬來(lái)制造損傷。

豬皮膚創(chuàng)傷愈合模型的最大優(yōu)勢(shì)在于豬皮膚的結(jié)構(gòu)、創(chuàng)傷愈合過程與人皮膚較為接近。豬皮膚表皮與真皮厚度之比和毛發(fā)密度等,與人皮膚接近,且表皮、真皮細(xì)胞表達(dá)標(biāo)志物與人皮膚細(xì)胞有一定的相似性[38],其創(chuàng)傷愈合過程以肉芽組織增生與表皮再生為主,與人創(chuàng)傷纖維性修復(fù)的模式也較為接近。同時(shí),豬皮膚創(chuàng)傷愈合后可形成較明顯的皮膚瘢痕[15]。Sullivan等總結(jié)了180篇文獻(xiàn),發(fā)現(xiàn)78%以豬為實(shí)驗(yàn)動(dòng)物的創(chuàng)面研究結(jié)果與臨床研究結(jié)果一致,這一比例高于小動(dòng)物實(shí)驗(yàn)(53%)與體外實(shí)驗(yàn)(57%)[39]。但是,豬作為實(shí)驗(yàn)動(dòng)物,其飼養(yǎng)、管理?xiàng)l件和經(jīng)濟(jì)成本較高,更為重要的是很多新興的生物學(xué)手段,如基因編輯技術(shù)等,在豬模型上應(yīng)用較少,不利于對(duì)創(chuàng)面愈合的基因、分子機(jī)制進(jìn)行深入研究[40],因此豬皮膚創(chuàng)傷愈合模型并未獲得大量的應(yīng)用。

2 皮膚增生性瘢痕模型

增生性瘢痕是皮膚創(chuàng)傷愈合過程中修復(fù)反應(yīng)過度而產(chǎn)生的病理性瘢痕,病理生理機(jī)制尚不明確。目前認(rèn)為增生性瘢痕的產(chǎn)生與過度炎癥反應(yīng)[41]和機(jī)械張力作用有關(guān)[11,42]。一般的實(shí)驗(yàn)動(dòng)物創(chuàng)面愈合后形成的瘢痕不明顯,而且消退較快,因此增生性瘢痕模型的建立是該領(lǐng)域的一大難題。

2.1 兔耳增生性瘢痕模型

Morris等[43]發(fā)現(xiàn)兔耳皮膚創(chuàng)傷愈合后可自發(fā)形成較為穩(wěn)定、持久的增生性瘢痕,有69%的兔耳創(chuàng)面愈合后形成明顯隆起的瘢痕,且可持續(xù)90 d,組織學(xué)染色提示瘢痕組織明顯高于周邊正常皮膚,具備人增生性瘢痕的組織學(xué)特點(diǎn)。Kloeters等[44]改進(jìn)了此模型,使形成的增生性瘢痕更加穩(wěn)定。他們?cè)谕枚辖⒅睆綖? mm的創(chuàng)面,并去除兔耳的軟骨膜,使創(chuàng)面收縮變緩、愈合速度減慢,成纖維細(xì)胞持續(xù)在創(chuàng)面張力的作用下,最終導(dǎo)致增生性瘢痕的發(fā)生。進(jìn)一步研究表明,直徑7 mm的兔耳創(chuàng)面與5 mm的創(chuàng)面相比,在瘢痕過程中表達(dá)的Ⅰ型膠原和TGF-β1顯著升高[45],提示適當(dāng)擴(kuò)大創(chuàng)面、延遲創(chuàng)面愈合可形成更明顯的增生性瘢痕。Qian等[41]在兔耳創(chuàng)面中加入病原體相關(guān)分子模式和損傷相關(guān)分子模式,使創(chuàng)面持續(xù)發(fā)生炎癥反應(yīng),創(chuàng)面多核白細(xì)胞數(shù)量、白介素-6表達(dá)明顯升高,創(chuàng)面愈合延遲,創(chuàng)面愈合后形成的增生性瘢痕隆起更為明顯,中性粒細(xì)胞浸潤(rùn)增多,該模型可用于炎癥性創(chuàng)面與增生性瘢痕的研究。Friedrich等[46]在兔耳上建立燒傷創(chuàng)面,與皮膚切除創(chuàng)面相比,其形成的瘢痕面積顯著增加,適合用于燒傷病理生理過程、燒傷后瘢痕形成的研究。

但是,兔耳模型暴露了兔耳的軟骨,使得創(chuàng)面基底與一般情況下人皮膚創(chuàng)面的基底條件有差異;另外,兔耳瘢痕增生的同時(shí)出現(xiàn)了軟骨的增生[44],提示兔耳瘢痕增生的機(jī)制可能與人增生性瘢痕形成的機(jī)制存在差別。

2.2 免疫缺陷小鼠移植模型

Polo等[47]成功地將人增生性瘢痕標(biāo)本移植至免疫缺陷小鼠皮下,移植的瘢痕組織可保留人增生性瘢痕的特點(diǎn)。隨后,Momtazi等[48-49]指出,將人刃厚皮片移植至免疫缺陷小鼠背部皮膚缺損處亦可產(chǎn)生瘢痕,瘢痕組織內(nèi)可見成纖維細(xì)胞、肥大細(xì)胞浸潤(rùn),同時(shí)decorin表達(dá)下降、二聚糖表達(dá)上升,符合人增生性瘢痕的特點(diǎn)。他們還發(fā)現(xiàn)該模型在TCRαβ-/-γδ-/-、RAG-1-/-和RAG-2-/-γc-/-免疫缺陷小鼠中均可建立,有利于研究不同類型的免疫細(xì)胞(T細(xì)胞、B細(xì)胞、自然殺傷細(xì)胞)在增生性瘢痕形成中的作用[50]。Zhu等[51]在此類模型中應(yīng)用氯膦酸二鈉脂質(zhì)體誘導(dǎo)裸鼠體內(nèi)巨噬細(xì)胞凋亡,發(fā)現(xiàn)瘢痕內(nèi)的肌成纖維細(xì)胞數(shù)量、膠原合成均下降,提示巨噬細(xì)胞促進(jìn)裸鼠皮片移植導(dǎo)致的增生性瘢痕形成。

此類模型中,移植的增生性瘢痕所處的微環(huán)境與人增生性瘢痕差異較大,瘢痕的形成由皮膚移植而非創(chuàng)傷愈合導(dǎo)致。同時(shí),裸鼠免疫系統(tǒng)存在缺陷,所以該類模型亦存在局限性。

2.3 豬增生性瘢痕模型

雌性杜洛克豬皮膚具有和人皮膚類似的皮膚錐體結(jié)構(gòu),其皮膚創(chuàng)面愈合后可形成纖維增生性的瘢痕[52-53],所形成的瘢痕在膠原排列、膠原表達(dá)、生長(zhǎng)因子(TGF-β1、IGF-1、VEGF)表達(dá),以及蛋白聚糖表達(dá)、一氧化氮(NO)表達(dá)、神經(jīng)密度和微血管密度等方面,與人增生性瘢痕有較高的相似性[53-57]。研究提示,雌性杜洛克豬皮膚創(chuàng)傷后第2天、第4天可在創(chuàng)面處檢測(cè)到與組織纖維化相關(guān)的纖維細(xì)胞[58]。體外實(shí)驗(yàn)表明,雌性杜洛克豬與約克郡豬相比,其皮膚中的成纖維細(xì)胞黏附性、收縮性較強(qiáng),遷移減弱,同時(shí)TGF-β1、α-SMA及Ⅰ型膠原表達(dá)上升、decorin表達(dá)下降,成纖維細(xì)胞的這些促纖維化特性可能導(dǎo)致了杜洛克豬易于形成增生性瘢痕[59]。Travis等[60]發(fā)現(xiàn)杜洛克豬瘢痕外周色素加深,該區(qū)域中黑色素、α-黑素細(xì)胞刺激素等表達(dá)升高,黑色素細(xì)胞的激活更為顯著,提示該模型亦可用于研究創(chuàng)傷愈合和瘢痕形成中黑色素細(xì)胞的作用。

盡管豬瘢痕模型在組織學(xué)、病理生理學(xué)方面與人體較為接近,但其形成的瘢痕在外觀上并未發(fā)紅、隆起,豬深層創(chuàng)面愈合需要約3個(gè)月,建模時(shí)間較長(zhǎng);另外,動(dòng)物管理、費(fèi)用等問題,亦限制了此模型的廣泛應(yīng)用。

2.4 小鼠皮膚傷口牽張模型

臨床觀察發(fā)現(xiàn),人體皮膚傷口受到機(jī)械牽張與增生性瘢痕的發(fā)生具有相關(guān)性,應(yīng)用減張的方法可有效減少增生性瘢痕的發(fā)生[61]。因此,Arabi等[11]在小鼠背部安裝一皮膚牽張器,對(duì)小鼠背部切割傷口在愈合后施加10 d的機(jī)械牽張力,誘導(dǎo)了增生性瘢痕的產(chǎn)生,并符合人皮膚增生性瘢痕的特點(diǎn)。該研究證實(shí),在此模型中,機(jī)械張力使瘢痕內(nèi)成纖維細(xì)胞凋亡受到抑制,從而使膠原沉積、瘢痕增生。同時(shí),他們發(fā)現(xiàn)機(jī)械張力通過輔助T細(xì)胞介導(dǎo)小鼠瘢痕內(nèi)出現(xiàn)持續(xù)慢性炎癥反應(yīng),巨噬細(xì)胞、成纖維細(xì)胞募集增多,促纖維化生長(zhǎng)因子表達(dá)升高,導(dǎo)致增生性瘢痕的產(chǎn)生[62],提示該模型在增生性瘢痕形成的免疫學(xué)機(jī)制上與人有相似之處。進(jìn)一步的研究中,他們還利用基因芯片分析,發(fā)現(xiàn)機(jī)械張力激活一類與細(xì)胞連結(jié)、遷移相關(guān)的分子——局部粘著斑激酶(FAK),通過FAKERK-MCP-1信號(hào)傳導(dǎo)通路,導(dǎo)致瘢痕內(nèi)炎癥反應(yīng)加重,瘢痕增生[63]。該發(fā)現(xiàn)將增生性瘢痕發(fā)生的二大因素——機(jī)械力與炎癥反應(yīng)相聯(lián)系,一定程度上解釋了生物力學(xué)在瘢痕增生中所起的具體作用,該模型成為目前較為常用的增生性瘢痕模型。但由于小鼠活動(dòng)活躍,建模過程中牽張器經(jīng)常受損脫落,導(dǎo)致模型建立不穩(wěn)定,影響實(shí)驗(yàn)研究的可重復(fù)性。

2.5 藥物誘導(dǎo)小鼠增生性瘢痕的產(chǎn)生

博來(lái)霉素被用于建立肺纖維化、硬皮病的動(dòng)物模型[64-65]。因此,Cameron等[66]在BALB/c小鼠背部皮下置入微泵,以恒定的速度注入博來(lái)霉素,發(fā)現(xiàn)可誘導(dǎo)皮膚產(chǎn)生增生性瘢痕,所產(chǎn)生的瘢痕組織具備人皮膚增生性瘢痕的特點(diǎn),認(rèn)為此模型可用于增生性瘢痕的研究。但是,這樣的瘢痕并非由皮膚損傷發(fā)展而來(lái),其形成過程與人皮膚增生性瘢痕相差較遠(yuǎn),并且皮下應(yīng)用博來(lái)霉素后,可能與瘢痕的藥物治療、細(xì)胞治療等發(fā)生相互作用,影響實(shí)驗(yàn)的科學(xué)性。另外,博來(lái)霉素停止輸注后,模型的瘢痕組織可能消退,不利于長(zhǎng)期觀察[67]。

3 現(xiàn)狀與展望

皮膚創(chuàng)傷愈合、瘢痕形成一直是臨床試圖攻克的難點(diǎn),良好的動(dòng)物模型是深入研究的基礎(chǔ),對(duì)研究結(jié)果的可靠性有重要影響。然而,由于創(chuàng)傷愈合、瘢痕形成有明顯的種系特異性,纖維性修復(fù)、瘢痕增生等過程往往在實(shí)驗(yàn)動(dòng)物上難以很好地重現(xiàn),各種動(dòng)物模型的優(yōu)缺點(diǎn)均很明顯。豬在皮膚結(jié)構(gòu)、創(chuàng)傷愈合、瘢痕形成、瘢痕增生等方面與人體皮膚有較好的相似性,但新興生物學(xué)技術(shù)尚無(wú)法應(yīng)用。目前針對(duì)創(chuàng)傷愈合、皮膚瘢痕化的研究已達(dá)基因和分子學(xué)層面[68-69],對(duì)于基因轉(zhuǎn)錄、信號(hào)傳導(dǎo)的研究常需利用基因編輯技術(shù)、在體示蹤技術(shù),這些方面的不足限制了豬模型的應(yīng)用。嚙齒類動(dòng)物管理方便、費(fèi)用較低、生物學(xué)技術(shù)應(yīng)用廣泛,成為實(shí)驗(yàn)動(dòng)物的首選。但嚙齒類動(dòng)物在創(chuàng)傷愈合、瘢痕增生過程中與人體皮膚存在明顯差異,為新治療方法的臨床轉(zhuǎn)化帶來(lái)了困難。總而言之,對(duì)于皮膚創(chuàng)傷愈合和增生性瘢痕動(dòng)物模型的研究仍不完善,還需要進(jìn)一步的積極探索。目前,利用實(shí)驗(yàn)工具(如硅膠圈、皮膚牽張器等)干預(yù)動(dòng)物皮膚傷口、瘢痕,以更好地模擬人病理生理過程為建模研究的新趨勢(shì)。另外,嚙齒類動(dòng)物中基因編輯技術(shù)日臻成熟,能否利用該技術(shù)在動(dòng)物中重現(xiàn)人皮膚創(chuàng)傷愈合、瘢痕化的過程,值得進(jìn)一步探索。

[1]Takeo M,Lee W,Ito M.Wound healing and skin regeneration[J].Cold Spring Harb Perspect Med,2015,5(1):a023267.

[2]Diegelmann RF,Evans MC.Wound healing:an overview of acute,fibrotic and delayed healing[J].Front Biosci,2004,9:283-289.

[3]Reinke JM,Sorg H.Wound repair and regeneration[J].Eur Surg Res,2012,49(1):35-43.

[4]Mahjour SB,Fu X,Yang X,et al.Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute fullthickness wound repair[J].Burns,2015,41(8):1764-1774.

[5]Liu H,Duan Z,Tang J,et al.A short peptide from frog skin accelerates diabetic wound healing[J].Febs J,2014,281(20):4633-4643.

[6]Zielins ER,Atashroo DA,Maan ZN,et al.Wound healing:an update[J].Regen Med,2014,9(6):817-830.

[7]Bond JS,Duncan JA,Sattar A,et al.Maturation of the human scar:an observational study[J].Plast Reconstr Surg,2008,121(5):1650-1658.

[8]Kelf TA,Gosnell M,Sandnes B,et al.Scar tissue classification using nonlinear optical microscopy and discriminant analysis[J].JBiophotonics,2012,5(2):159-167.

[9]Bai X,He T,Liu J,et al.Loureirin Binhibitsfibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF-beta/Smad pathway[J].Exp Dermatol,2015,24(5):355-360.

[10]Stramer BM,Mori R,Martin P.The inflammation-fibrosis link?A Jekyll and Hyde role for blood cells during wound repair[J].J Invest Dermatol,2007,127(5):1009-1017.

[11]Aarabi S,Bhatt KA,Shi Y,et al.Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J].Faseb J,2007,21(12):3250-3261.

[12]Gao Y,Lu J,Zhang Y,et al.Baicalein attenuates bleomycininduced pulmonary fibrosis in rats through inhibition of miR-21[J].Pulm Pharmacol Ther,2013,26(6):649-654.

[13]Ghahary A,Shen YJ,Nedelec B,et al.Enhanced expression of mRNA for insulin-like growth factor-1 in post-burn hypertrophic scar tissue and its fibrogenic role by dermal fibroblasts[J].Mol Cell Biochem,1995,148(1):25-32.

[14]Xiao Z,Zhang F,Lin W,et al.Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar:a preliminary report[J].Aesthetic Plast Surg,2010,34(4):424-427.

[15]Nuutila K,Katayama S,Vuola J,et al.Human Wound-healing research:issues and perspectives for studies using wide-scale analytic platforms[J].Adv Wound Care(New Rochelle),2014,3(3):264-271.

[16]Silberberg M,Silberberg R.Course of wound healing in the skin of mice under the influence of carcinogens[J].Arch Pathol(Chic),1946,42:193-205.

[17]Perini JA,Angeli-Gamba T,Alessandra-Perini J,et al.Topical application of Acheflan on rat skin injury accelerates wound healing:ahistopathological,immunohistochemical and biochemical study[J].BMCComplement Altern Med,2015,15:203.

[18]Alves CC,Torrinhas RS,Giorgi R,et al.TGF-beta1 expression in wound healing is acutely affected by experimental malnutrition and early enteral feeding[J].Int Wound J,2014,11(5):533-539.

[19]Mehraein F,Sarbishegi M,Aslani A.Evaluation of effect of oleuropein on skin wound healing in aged male BALB/c mice[J].Cell J,2014,16(1):25-30.

[20]Okizaki S,Ito Y,Hosono K,et al.Suppressed recruitment of alternatively activated macrophages reduces TGF-beta1 and impairs wound healing in streptozotocin-induced diabetic mice[J].Biomed Pharmacother,2015,70:317-325.

[21]van Solingen C,Araldi E,Chamorro-Jorganes A,et al.Improved repair of dermal wounds in mice lacking microRNA-155[J].J Cell Mol Med,2014,18(6):1104-1112.

[22]Davidson JM.Animal models for wound repair[J].Arch Dermatol Res,1998,290 Suppl:S1-S11.

[23]Wu JC,Rose LF,Christy RJ,et al.Full-thickness thermal injury delays wound closure in a murine model[J].Adv Wound Care(New Rochelle),2015,4(2):83-91.

[24]Wang CZ,El Ayadi A,Goswamy J,et al.Topically applied metal chelator reduces thermal injury progression in a rat model of brass comb burn[J].Burns,2015,41(8):1775-1787.

[25]Eyarefe OD,Idowu A,Afolabi JM.Healing potentials of oral moringa oleifera leaves extract and tetracycline on methicillin resistant staphylococcus aureus infected wounds of Wistar rats[J].Niger JPhysiol Sci,2015,30(1-2):73-78.

[26]Kanno E,Tanno H,Suzuki A,et al.Reconsideration of iodine in wound irrigation:the effects on Pseudomonas aeruginosa biofilm formation[J].JWound Care,2016,25(6):335-339.

[27]Chen JS,Longaker MT,Gurtner GC.Murine models of human wound healing[J].Methods Mol Biol,2013,1037:265-274.

[28]Chen L,Mirza R,Kwon Y,et al.The murine excisional wound model:Contraction revisited[J].Wound Repair Regen,2015,23(6):874-877.

[29]Wang X,Hsi TC,Guerrero-Juarez CF,et al.Principles and mechanisms of regeneration in the mouse model for woundinduced hair follicle neogenesis[J].Regeneration(Oxf),2015,2(4):169-181.

[30]Ghaisas MM,Kshirsagar SB,Sahane RS.Evaluation of wound healing activity of ferulic acid in diabetic rats[J].Int Wound J,2014,11(5):523-532.

[31]Park SA,Teixeira LB,Raghunathan VK,et al.Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment[J].Wound Repair Regen,2014,22(3):368-380.

[32]Wu X,Gao Z,Song N,et al.Creating thick linear scar by inserting a gelatin sponge into rat excisional wounds[J].Wound Repair Regen,2007,15(4):595-606.

[33]Wang X,Ge J,Tredget EE,et al.The mouse excisional wound splinting model,including applications for stem cell transplantation[J].Nat Protoc,2013,8(2):302-309.

[34]Reish RG,Zuhaili B,Bergmann J,et al.Modulation of scarring in a liquid environment in the Yorkshire pig[J].Wound Repair Regen,2009,17(6):806-816.

[35]Zhu KQ,Carrougher GJ,Gibran NS,et al.Review of the female Duroc/Yorkshire pig model of human fibroproliferative scarring[J].Wound Repair Regen,2007,15 Suppl 1:S32-S39.

[36]Byl NN,McKenzie AL,West JM,et al.Pulsed microamperage stimulation:a controlled study of healing of surgically induced wounds in Yucatan pigs[J].Phys Ther,1994,74(3):201-213.

[37]Larson DL,Flugstad NA,O'Connor E,et al.Does systemic isotretinoin inhibit healing in a porcine wound model[J]?Aesthet Surg J,2012,32(8):989-998.

[38]Debeer S,Le Luduec JB,Kaiserlian D,et al.Comparative histology and immunohistochemistry of porcine versus human skin[J].Eur JDermatol,2013,23(4):456-466.

[39]Sullivan TP,Eaglstein WH,Davis SC,et al.The pig as a model for human wound healing[J].Wound Repair Regen,2001,9(2):66-76.

[40]Seaton M,Hocking A,Gibran NS.Porcine models of cutaneous wound healing[J].Ilar J,2015,56(1):127-138.

[41]Qian LW,Fourcaudot AB,Yamane K,et al.Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J].Wound Repair Regen,2016,24(1):26-34.

[42]Wong VW,Rustad KC,Akaishi S,et al.Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J].Nat Med,2011,18(1):148-152.

[43]Morris DE,Wu L,Zhao LL,et al.Acute and chronic animal models for excessive dermal scarring:quantitative studies[J].Plast Reconstr Surg,1997,100(3):674-681.

[44]Kloeters O,Tandara A,Mustoe TA.Hypertrophic scar model in the rabbit ear:a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction[J].Wound Repair Regen,2007,15 Suppl 1:S40-S45.

[45]Kryger ZB,Sisco M,Roy NK,et al.Temporal expression of the transforming growth factor-Beta pathway in the rabbit ear model of wound healing and scarring[J].J Am Coll Surg,2007,205(1):78-88.

[46]Friedrich EE,Niknam-Bienia S,Xie P,et al.Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar[J].Wound Repair Regen,2017,25(2):327-337.

[47]Polo M,Kim YJ,Kucukcelebi A,et al.An in vivo model of human proliferative scar[J].JSurg Res,1998,74(2):187-195.

[48]Wang J,Ding J,Jiao H,et al.Human hypertrophic scar-like nude mouse model:characterization of the molecular and cellular biology of the scar process[J].Wound Repair Regen,2011,19(2):274-285.

[49]Momtazi M,Kwan P,Ding J,et al.A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar[J].Wound Repair Regen,2013,21(1):77-87.

[50]Momtazi M,Ding J,Kwan P,et al.Morphologic and histologic comparison of hypertrophic scar in nude mice,T-cell receptor,and recombination activating gene Knockout mice[J].Plast Reconstr Surg,2015,136(6):1192-1204.

[51]Zhu Z,Ding J,Ma Z,et al.Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation[J].Wound Repair Regen,2016,24(4):644-656.

[52]Zhu KQ,Engrav LH,Gibran NS,et al.The female,red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin[J].Burns,2003,29(7):649-664.

[53]Zhu KQ,Carrougher GJ,Couture OP,et al.Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring[J].J Burn Care Res,2008,29(5):815-827.

[54]Zhu KQ,Engrav LH,Tamura RN,et al.Further similarities between cutaneous scarring in the female,red Duroc pig and human hypertrophic scarring[J].Burns,2004,30(6):518-530.

[55]Zhu KQ,Engrav LH,Armendariz R,et al.Changes in VEGF and nitric oxide after deep dermal injury in the female,red Duroc pig-further similarities between female,Duroc scar and human hypertrophic scar[J].Burns,2005,31(1):5-10.

[56]Liang Z,Engrav LH,Muangman P,et al.Nerve quantification in femalered Duroc pig(FRDP)scar compared to human hypertrophic scar[J].Burns,2004,30(1):57-64.

[57]Xie Y,Zhu KQ,Deubner H,et al.The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female Yorkshire pig[J].JBurn Care Res,2007,28(3):500-506.

[58]Travis TE,Mino MJ,Moffatt LT,et al.Biphasic presence of fibrocytes in a porcine hypertrophic scar model[J].J Burn Care Res,2015,36(3):e125-e135.

[59]Sood RF,Muffley LA,Seaton ME,et al.Dermal fibroblasts from the red Duroc pig have an inherently fibrogenic phenotype:an in vitro model of fibroproliferative scarring[J].Plast Reconstr Surg,2015,136(5):990-1000.

[60]Travis TE,Ghassemi P,Ramella-Roman JC,et al.A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar[J].JBurn Care Res,2015,36(1):77-86.[61]Gurtner GC,Dauskardt RH,Wong VW,et al.Improving cutaneous scar formation by controlling the mechanical environment:large animal and phase Istudies[J].Ann Surg,2011,254(2):217-225.

[62]Wong VW,Paterno J,Sorkin M,et al.Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J].Faseb J,2011,25(12):4498-4510.

[63]Aliprantis AO,Wang J,Fathman JW,et al.Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13[J].Proc Natl Acad Sci U SA,2007,104(8):2827-2830.

[64]Kang YY,Kim DY,Lee SH,et al.Deficiency of developmental endothelial locus-1(Del-1)aggravates bleomycin-induced pulmonary fibrosis in mice[J].Biochem Biophys Res Commun,2014,445(2):369-374.

[65]Yamamoto T,Takagawa S,Katayama I,et al.Animal model of sclerotic skin.I:Local injections of bleomycin induce sclerotic skin mimicking scleroderma[J].J Invest Dermatol,1999,112(4):456-462.

[66]Cameron AM,Adams DH,Greenwood JE,et al.A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J].Plast Reconstr Surg,2014,133(1):69-78.

[67]Sacak B,Akalin BE.A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J].Plast Reconstr Surg,2014,134(1):163e-164e.

[68]Miura Y,Ngo Thai Bich V,Furuya M,et al.The small G protein Arf6 expressed in keratinocytes by HGF stimulation is a regulator for skin wound healing[J].Sci Rep,2017,7:46649.

[69]Yao Z,Li H,He W,et al.P311 accelerates skin wound reepithelialization by promoting epidermal stem cell migration through RhoA and Rac1 Activation[J].Stem Cells Dev,2017,26(6):451-460.

猜你喜歡
小鼠實(shí)驗(yàn)模型
愛搗蛋的風(fēng)
一半模型
記一次有趣的實(shí)驗(yàn)
重要模型『一線三等角』
小鼠大腦中的“冬眠開關(guān)”
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
做個(gè)怪怪長(zhǎng)實(shí)驗(yàn)
3D打印中的模型分割與打包
NO與NO2相互轉(zhuǎn)化實(shí)驗(yàn)的改進(jìn)
實(shí)踐十號(hào)上的19項(xiàng)實(shí)驗(yàn)
太空探索(2016年5期)2016-07-12 15:17:55
主站蜘蛛池模板: 久久亚洲中文字幕精品一区| 国产欧美日韩精品综合在线| 无码精油按摩潮喷在线播放 | 午夜一级做a爰片久久毛片| 亚洲国产精品不卡在线| 欧美三级视频网站| 国产三级毛片| 国产成在线观看免费视频| 亚洲国产中文综合专区在| 久久综合成人| 亚洲色图欧美一区| 欧美日韩激情| 中文字幕乱码中文乱码51精品| 国产在线视频二区| 精品五夜婷香蕉国产线看观看| 无码高潮喷水在线观看| 精品视频91| 国产99精品视频| 亚洲视屏在线观看| 久久精品国产999大香线焦| 亚洲香蕉伊综合在人在线| 毛片免费在线视频| 黄色网站不卡无码| 奇米影视狠狠精品7777| 91精品伊人久久大香线蕉| 伦精品一区二区三区视频| 国产欧美又粗又猛又爽老| 国产永久无码观看在线| 91精品视频网站| 无码一区中文字幕| 亚洲欧美国产高清va在线播放| 91蜜芽尤物福利在线观看| 国产欧美日韩另类| 国产喷水视频| 中文字幕有乳无码| 天天爽免费视频| 国产高清国内精品福利| 四虎永久在线精品影院| 久久人体视频| 91视频99| 114级毛片免费观看| 亚洲欧美国产五月天综合| 亚洲一区波多野结衣二区三区| 日本不卡在线视频| 欧美成人精品在线| 亚洲天堂高清| 九色综合伊人久久富二代| 怡春院欧美一区二区三区免费| 91无码视频在线观看| 国产视频入口| 中文字幕 欧美日韩| 三上悠亚精品二区在线观看| 日韩精品一区二区三区中文无码 | 国产97视频在线| 五月天福利视频| 精品久久蜜桃| 久久综合丝袜长腿丝袜| 日韩欧美91| 午夜无码一区二区三区在线app| 国产免费网址| 秋霞国产在线| 亚洲成A人V欧美综合天堂| 91精品人妻互换| 五月婷婷伊人网| 久久99蜜桃精品久久久久小说| 亚洲日韩欧美在线观看| 免费无码又爽又刺激高| 伦精品一区二区三区视频| 91po国产在线精品免费观看| 国产美女久久久久不卡| 在线看AV天堂| 国产成人欧美| 女同久久精品国产99国| 国产成人亚洲精品无码电影| 在线观看av永久| 国产97色在线| 国产在线观看99| 亚洲第一av网站| 国产精品三级av及在线观看| 99999久久久久久亚洲| 国产在线精品人成导航| 青青青亚洲精品国产|