999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A NOTE ON HILBERT TRANSFORM OF A CHARACTERISTIC FUNCTION

2018-01-15 06:35:11QUMengJIANGManru
數學雜志 2018年1期

QU Meng,JIANG Man-ru

(School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

1 Introduction

The Hilbert transform is the operatorHdefined by

initially forf∈S(R).A very straight calculus via Fourier transform and Plancherel’s equality show thatHcan be extended to an isomorphic onL2;i.e.,

There were also several other ways to prove(1.1),see[2,7]and references therein.Halso satisfies so called Kolmogorov’s inequality;i.e.,for anyλ>0,there exists a positive constantCsuch that

The best possible constantCin(1.2)was obtained by Davis in[4].Moreover by interpolation technique and duality argument,Hcan be extended to a bounded operator onLp(R)for allp>1.We can refer to the nice textbooks[3,5]and[9]for more properties of Hilbert transform.

LetEbe a Lebesgue measurable set with|E|<∞and denoteH(χE)be the Hilbert transform of the characteristic function of the setE.In 1959,Stein and Weiss[8]proved that the distribution function ofH(χE)does not depend on the structure of the setEbut only on its measure|E|.More precisely,for anyλ>0,

In[1],Colzani,Laeng and Monz′on gave an exact formula for theLpintegral ofH(χE).For 1<p<∞,

Theorem 1.1 LetEbe a Lebesgue measurable subset of R with|E|<∞and letHbe the Hilbert transform.For all 1<p<∞,

Theorem 1.2 LetEbe a Lebesgue measurable subset of R with|E|<∞and letHbe the Hilbert transform.For anyλ>0,

We note that in the proof of Theorem 1.2,Laeng used an argument taking Theorem 1.1 for granted.This argument(Lemma 1.4 in[1])reads

If‖f‖p=‖g‖pforp1<p<p2then the distrubtion functions offandgequals;i.e.,|{x∈E:|f(x)|>λ}|=|{x∈E:|f(x)|>λ}|for allλ>0.

Also as pointed in[1],this argument is based on a Mellin transform.However as in the usual way,theLp(X)norm has layer cake representation

Once we proved the distribution function result(Theorem 1.2)in a direct way,Theorem 1.1 is proved with the help of“layer cake representation”.

This short note is just based on the upon argument.In Section 2,we prove Theorem 1.2 which relies on a refinement of the key lemma in[8]by Stein and Weiss.The proof of Theorem 1.2 also relies on a limiting argument.In Section 3,by using Theorem 1.2,we give the proof of Theorem 1.1 on the straight-forward way.

2 Proof of Theorem 1.2

We first recall the following result in[8].

Lemma 2.1 LetEbe a compact set in R withwherea1<b1<a2<b2<···<an<bn.Denotebe a rational function.Then for anyξ>1,

Remark 2.2 LetEas in Lemma 2.1,an observation is for anyξ>0,

which implies that the set{x∈E:f(x)>ξ}is at most the collection of finite elementsb1,···,bnand then is a set of measure zero.

With(2.1)and(2.3),we immediately have

Similar way as discussed above,we also have

and

By(2.2)and(2.5),we have

Similar to Lemma 2.1 and Remark 2.2,we immediate have

Lemma 2.3 LetEas in the Lemma 2.1.Denotewe have

The following lemma asserts that Theorem 1.2 is right for a compact setE?R.

Lemma 2.4 LetEbe a compact set,equations(1.7)and(1.8)preserve.

Proof For any compact setE,we can writewitha1<b1<a2<b2<···<an<bn.De fi neandg(x)=as introduced in Lemma 2.1.By the property of Hilbert transformHχ[a,b](x)(see Example 5.1.3 in[5]),we have

So for anyλ>0,the set{x∈R:|H(χE)(x)|>λ}can be rewrite as

We note thatWiintersect empty each other.Therefore

The same way,by(2.3),(2.5),(2.7)and(2.8)withξ=eπλ,

The lemma is proved.

Now we turn to the proof of Theorem 1.2.SinceEis finite measurable set,there exists a sequence of compact sets{Fn},suqch that for anyn,Fn?EandWith which we immediately getand then(1.1).Now for any fixedλ>0,we write

Then for anyu∈(0,1),by Chebyshev’s inequality and Lemma 2.4,we have

Letn→∞,and then letu→1,we have

On the other hand,for anynand anyu∈(0,1),Chebyshev’s inequality and Lemma 2.4 gives

Letn→∞and then letu→1,we haveBoth(2.10)and(2.11)give|{x∈E:|H(χE)(x)|>λ}|This is just the equation(1.7).We end the proof of Theorem 1.2 since the proof of(1.8)is the similar one.

3 Proof of Theorem 1.1

Proof We only prove(1.5)since we can prove(1.6)in the similar way.Forp>1,

Then by Theorem 1.2,we have

and

In the last equality in(3.3),we useCombining(3.1)–(3.3),(1.5)follows.

[1]Colzani L,Laeng E,Monz′on L.Variations on a theme of Boole and Stein-Weiss[J].J.Math.Anal.Appl.,2010,363:225–229

[2]Duoandikoetxea J.The Hilbert transform and Hermite functions:a real variabel proof of theL2-isometry[J].J.Math.Anal.Appl.,2008,347:592–596.

[3]Duoandikoetxea J.Fourier analysis[M].Providence,RI:American Math.Soc.,2001.

[4]Davis B.On the weak type(1,1)inequality for conjugate functions[J].P.Amer.Math.Soci.,1974,44:307–311.

[5]Grafakos L.Classical Fourier analysis(3nd ed.)[M].GTM 249,New York:Springer,2014.

[6]Laeng E.On theLpnorm of the Hilbert transform of a characteristic function[J].J.Func.Anal.,2012,262:4534–4539.

[7]Laeng E.A simple real-variable proof that the Hilbert transform is anL2-isometry[J].C.R.Math.Acad.Sci.Paris.,2010,348(17-18):977–980.

[8]Stein E,Weiss G.An extension of a theorem of Marcinkiewicz and some of its application[J].J.Math.Mech.,1959,8:263–284.

[9]Wei D.Boundedness of the Hilbert transform on Banach valued Hardy spaces[J].J.Math.,1999,19(1):117–120.

主站蜘蛛池模板: 操国产美女| 日韩av高清无码一区二区三区| 亚洲成人一区二区三区| 亚洲日韩第九十九页| a级免费视频| 久夜色精品国产噜噜| 91精品国产自产在线观看| 日韩欧美91| 国产幂在线无码精品| 国产一级妓女av网站| 97亚洲色综久久精品| 成年av福利永久免费观看| 一级香蕉视频在线观看| 熟妇丰满人妻| 久久96热在精品国产高清| 国产综合另类小说色区色噜噜| 99激情网| 成人无码一区二区三区视频在线观看 | 在线观看亚洲成人| 国产美女叼嘿视频免费看| 无码国产伊人| 91伊人国产| 国产亚洲美日韩AV中文字幕无码成人| 操美女免费网站| 日韩午夜伦| 激情在线网| 欧洲成人在线观看| 国产va在线观看免费| 成年人久久黄色网站| 成年人福利视频| 免费看a毛片| 亚洲成人网在线播放| 白浆免费视频国产精品视频| 欧美中文一区| 四虎成人在线视频| 免费人成视频在线观看网站| 午夜福利在线观看入口| 亚洲综合精品第一页| 秘书高跟黑色丝袜国产91在线 | 2021国产精品自产拍在线观看| 伊伊人成亚洲综合人网7777| 国产91小视频| 国产欧美视频一区二区三区| 亚洲国模精品一区| 国产精品一区在线麻豆| 亚洲无码在线午夜电影| 成人午夜亚洲影视在线观看| 国产乱子精品一区二区在线观看| 青草视频久久| 超碰aⅴ人人做人人爽欧美 | 99999久久久久久亚洲| 亚洲美女一级毛片| 国产成人你懂的在线观看| 久草视频一区| 久久精品波多野结衣| 欧美成人综合视频| 亚洲第一视频免费在线| 国产jizzjizz视频| 又爽又大又黄a级毛片在线视频| 亚洲视频四区| 91免费片| 无套av在线| 六月婷婷精品视频在线观看| 亚洲一区二区日韩欧美gif| 2021国产精品自拍| 一级黄色网站在线免费看| 在线观看亚洲精品福利片| 午夜性刺激在线观看免费| 国产精品午夜福利麻豆| 国产女人在线观看| 日韩在线2020专区| 在线看片中文字幕| 亚洲大学生视频在线播放| 四虎永久在线精品国产免费| 久久久久久久蜜桃| 亚洲第一成年免费网站| 成人亚洲国产| 国产黑丝视频在线观看| 日韩a级片视频| 亚洲无码高清视频在线观看 | 四虎精品国产AV二区| 日韩欧美国产成人|