傅君 劉子龍


摘 要:為使四旋翼飛行器具有更好的室內(nèi)定點懸停效果及定位精度,提出一種基于視覺輔助與四旋翼飛行器慣性傳感器數(shù)據(jù)融合的控制算法。利用機體下視攝像機獲得光流航速信息,與慣性傳感器姿態(tài)信息數(shù)據(jù)融合實現(xiàn)良好的室內(nèi)懸停效果。機體前視攝像機通過ORB算法將當前幀與關(guān)鍵幀進行特征點匹配,以提高四旋翼飛行器的室內(nèi)定位精度。將PARROT公司的ARDrone 2.0四旋翼飛行器作為實驗平臺, 采用OpenCV軟件對圖像進行處理,對控制算法進行驗證,結(jié)果表明:基于光流和慣性傳感器姿態(tài)數(shù)據(jù)的融合確保了四旋翼飛行器控制的安全性,提高了飛行器懸停效果和定位精度。
關(guān)鍵詞:視覺;四旋翼飛行器;室內(nèi)懸停與定位;光流;ORB特征提取;OpenCV
DOIDOI:10.11907/rjdk.181731
中圖分類號:TP319
文獻標識碼:A 文章編號:1672-7800(2018)010-0144-04
英文摘要Abstract:In order to achieve a better indoor fixed-point hover effect and positioning accuracy for quadrotorcrafts,a control algorithm based on visual aided data fusion with quadrotorcraft inertial sensors was proposed.We utilize the body down camera to obtain the optical flow speed information,and the inertial sensor pose information data fusion achieves a good indoor hover effect.The ORB algorithm is employed so that the body front looking camera can match the current frame with the key frame to achieve the feature point matching of the four-rotor aircraft and indoor positioning accuracy.In this paper,the ARDrone 2.0 quadrotor from PARROT was used as the experimental platform.The above control algorithm was verified by using OpenCV to process the acquired images.The results show that the data fusion based on optical flow and inertial sensor attitude data ensures the control safety of of the quadrotor and improves the aircraft′s hover effect and positioning accuracy.
英文關(guān)鍵詞Key Words:vision;quadrotor crafts;indoor hover and position;optical flow;ORB;OpenCV
0 引言
四旋翼無人機飛行器具有可垂直起降、機動性能好的優(yōu)點,定位是其發(fā)展的關(guān)鍵因素。無人機定位指利用自身傳感器確定無人機在飛行環(huán)境中相對于慣性坐標系的位置和姿態(tài)信息準確的位姿估計,是實現(xiàn)無人機避障、軌跡規(guī)劃及目標跟蹤等復(fù)雜飛行任務(wù)的前提和基礎(chǔ)[1]。傳統(tǒng)的四旋翼飛行器定位主要借助機身自帶的慣性傳感器單元(IMU)和全球定位系統(tǒng)(GPS)的數(shù)據(jù)融合,但在一些特殊環(huán)境如室內(nèi)、樓群之間,由于GPS信號弱,很難實現(xiàn)傳統(tǒng)的飛行器定位[2]。而基于視覺的定位方法僅使用機載攝像頭作為外部傳感器,具有體積小、重量輕、價格低、精度高等優(yōu)勢,視覺導(dǎo)航逐漸成為四旋翼無人機自主控制研究的主要方向[3-5]。……