劉長春
函數(shù)方程思想就是用函數(shù)、方程的觀點和方法處理變量或未知數(shù)之間的關(guān)系,即把某變化過程中的一些相互制約的變量用函數(shù)關(guān)系表達(dá)出來,并研究這些量間的相互制約關(guān)系,最后解決問題,這就是函數(shù)思想。應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個步驟:(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應(yīng)的函數(shù)問題;(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;(3)方程思想:在某變化過程中,往往需要根據(jù)一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們。函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。
運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式,或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。有時,還實現(xiàn)函數(shù)與方程的互相轉(zhuǎn)化、接軌,達(dá)到解決問題的目的。
一般地,函數(shù)思想是構(gòu)造函數(shù)從而利用函數(shù)的性質(zhì)解題,經(jīng)常利用的性質(zhì)是:f(x)、f(x)的單調(diào)性、奇偶性、周期性、最大值和最小值、圖象變換等,要求我們熟練掌握的是一次函數(shù)、二次函數(shù)、冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的具體特性。在解題中,善于挖掘題目中的隱含條件,構(gòu)造出函數(shù)解析式和妙用函數(shù)的性質(zhì),是應(yīng)用函數(shù)思想的關(guān)鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產(chǎn)生由此及彼的聯(lián)系,構(gòu)造出函數(shù)原型。另外,方程問題、不等式問題和某些代數(shù)問題也可以轉(zhuǎn)化為與其相關(guān)的函數(shù)問題,即用函數(shù)思想解答非函數(shù)問題。
函數(shù)知識涉及的知識點多、面廣,在概念性、應(yīng)用性、理解性都有一定的要求,所以是高考中考查的重點。我們應(yīng)用函數(shù)思想的幾種常見題型是:遇到變量,構(gòu)造函數(shù)關(guān)系解題;有關(guān)的不等式、方程、最小值和最大值之類的問題,利用函數(shù)觀點加以分析;含有多個變量的數(shù)學(xué)問題中,選定合適的主變量,從而揭示其中的函數(shù)關(guān)系;實際應(yīng)用問題,翻譯成數(shù)學(xué)語言,建立數(shù)學(xué)模型和函數(shù)關(guān)系式,應(yīng)用函數(shù)性質(zhì)或不等式等知識解答;等差、等比數(shù)列中,通項公式、前n項和的公式,都可以看成n的函數(shù),數(shù)列問題也可以用函數(shù)方法解決。
[數(shù)形結(jié)合思想]
數(shù)形結(jié)合注意三點:一要徹底明白一些概念和運算的幾何意義以及曲線的代數(shù)特征,對數(shù)學(xué)題目中的條件和結(jié)論既分析其幾何意義,又分析其代數(shù)意義;二是恰當(dāng)設(shè)參、合理用參,建立關(guān)系,由數(shù)思形,以形想數(shù),做好數(shù)形轉(zhuǎn)化;三是正確確定參數(shù)的取值范圍。數(shù)形結(jié)合的本質(zhì)是:幾何圖形的性質(zhì)反映了數(shù)量關(guān)系,數(shù)量關(guān)系決定了幾何圖形的性質(zhì)。把數(shù)作為手段的數(shù)形結(jié)合主要體現(xiàn)在解析幾何中,歷年高考的解答題都有關(guān)于這個方面的考查(即用代數(shù)方法研究幾何問題)。而以形為手段的數(shù)形結(jié)合在高考客觀題中體現(xiàn)。我們要抓住以下幾點數(shù)形結(jié)合的解題要領(lǐng): (1)對于研究距離、角或面積的問題,可直接從幾何圖形入手進(jìn)行求解即可; (2)對于研究函數(shù)、方程或不等式(最值)的問題,可通過函數(shù)的圖象求解(函數(shù)的零點,頂點是關(guān)鍵點),做好知識的遷移與綜合運用; (3)可分別通過構(gòu)造距離函數(shù)、斜率函數(shù)、截距函數(shù)、單位圓x2+y2=1上的點及余弦定理進(jìn)行轉(zhuǎn)化達(dá)到解題目的。
[分類討論思想]
當(dāng)問題的對象不能進(jìn)行統(tǒng)一研究時,就需要對研究的對象進(jìn)行分類,然后對每一類分別研究,給出每一類的結(jié)果,最后綜合各類結(jié)果得到整個問題的解答,即化整為零、積零為整的思想與歸類整理的方法。
有關(guān)分類討論的數(shù)學(xué)問題需要運用分類討論思想來解決,引起分類討論的原因大致可歸納為如下幾種:(1)涉及的數(shù)學(xué)概念是分類討論的;(2)運用的數(shù)學(xué)定理、公式或運算性質(zhì)、法則是分類給出的;(3)求解的數(shù)學(xué)問題的結(jié)論有多種情況或多種可能性;(4)數(shù)學(xué)問題中含有參變量,這些參變量的不同取值導(dǎo)致不同的結(jié)果的;(5)較復(fù)雜或非常規(guī)的數(shù)學(xué)問題,需要采取分類討論的解題策略來解決的。
分類討論是一種邏輯方法,在中學(xué)數(shù)學(xué)中有極廣泛的應(yīng)用。根據(jù)不同標(biāo)準(zhǔn)可以有不同的分類方法,但分類必須從同一標(biāo)準(zhǔn)出發(fā),做到不重復(fù),不遺漏,包含各種情況,同時要有利于問題研究。
分類討論的思想方法的步驟:(1)確定標(biāo)準(zhǔn);(2)合理分類;(3)逐類討論;(4)歸納總結(jié)。
簡化分類討論的策略:(1)消去參數(shù);(2)整體換元;(3)變更主元;(4)考慮反面;(5)整體變形;(6)數(shù)形結(jié)合;(7)縮小范圍等。
解題時把好“四關(guān)”:(1)深刻理解基本知識與基本原理,把好“基礎(chǔ)關(guān)”;(2)找準(zhǔn)劃分標(biāo)準(zhǔn),把好“分類關(guān)”;(3)保證條理分明,層次清晰,把好“邏輯關(guān)”;(4)注意對照題中的限制條件或隱含信息,合理取舍,把好“檢驗關(guān)”。
[化歸與轉(zhuǎn)化思想]
所謂化歸思想方法,就是在研究和解決有關(guān)數(shù)學(xué)問題時采用某種手段將問題通過變換使之轉(zhuǎn)化,進(jìn)而達(dá)到解決的一種方法。一般總是將復(fù)雜的問題通過變化轉(zhuǎn)化為簡單的問題,將難解問題通過變換轉(zhuǎn)化為容易求解的問題,將未解決的問題轉(zhuǎn)化為已解決的問題。
立體幾何中常用的轉(zhuǎn)化手段有:1.通過輔助平面轉(zhuǎn)化為平面問題,把已知元素和未知元素聚集在一個平面內(nèi),實現(xiàn)點線、線線、線面、面面位置關(guān)系的轉(zhuǎn)化; 2.過平移或射影達(dá)到將立體幾何問題轉(zhuǎn)化為平面問題,化未知為已知的目的; 3.等積與割補; 4.類比和聯(lián)想;5.曲與直的轉(zhuǎn)化;6.體積比,面積比,長度比的轉(zhuǎn)化。解析幾何本身的創(chuàng)建過程就是“數(shù)”與“形”之間互相轉(zhuǎn)化的過程。解析幾何把數(shù)學(xué)的主要研究對象數(shù)量關(guān)系與幾何圖形聯(lián)系起來,把代數(shù)與幾何融合為一體。
化歸與轉(zhuǎn)化思想是把未知解的問題轉(zhuǎn)化到在已有知識范圍內(nèi)可解的問題的一種重要的思想方法。通過不斷的轉(zhuǎn)化,把不熟悉、不規(guī)范、復(fù)雜的問題轉(zhuǎn)化為熟悉、規(guī)范甚至模式法、簡單的問題。歷年高考,等價轉(zhuǎn)化思想無處不見,我們要不斷培養(yǎng)和訓(xùn)練自覺的轉(zhuǎn)化意識,將有利于強化解決數(shù)學(xué)問題中的應(yīng)變能力,提高思維能力和技能、技巧。轉(zhuǎn)化有等價轉(zhuǎn)化與非等價轉(zhuǎn)化。等價轉(zhuǎn)化要求轉(zhuǎn)化過程中前因后果是充分必要的,才保證轉(zhuǎn)化后的結(jié)果仍為原問題的結(jié)果。非等價轉(zhuǎn)化其過程是充分或必要的,要對結(jié)論進(jìn)行必要的修正(如無理方程化有理方程要求驗根),它能給人帶來思維的閃光點,找到解決問題的突破口。我們在應(yīng)用時一定要注意轉(zhuǎn)化的等價性與非等價性的不同要求,實施等價轉(zhuǎn)化時確保其等價性,保證邏輯上的正確。
著名的數(shù)學(xué)家雅潔卡婭曾提出:“解題就是把要解題轉(zhuǎn)化為已經(jīng)解過的題。”數(shù)學(xué)的解題過程,就是從未知向已知、從復(fù)雜到簡單的化歸轉(zhuǎn)換過程。等價轉(zhuǎn)化思想方法的特點是具有靈活性和多樣性。在應(yīng)用等價轉(zhuǎn)化的思想方法去解決數(shù)學(xué)問題時,沒有一個統(tǒng)一的模式去進(jìn)行。它可以在數(shù)與數(shù)、形與形、數(shù)與形之間進(jìn)行轉(zhuǎn)換;它可以在宏觀上進(jìn)行等價轉(zhuǎn)化,如在分析和解決實際問題的過程中,普通語言向數(shù)學(xué)語言的翻譯;它可以在符號系統(tǒng)內(nèi)部實施轉(zhuǎn)換,即所說的恒等變形。消去法、換元法、數(shù)形結(jié)合法、求值求范圍問題等,都體現(xiàn)了等價轉(zhuǎn)化思想,我們更是經(jīng)常在函數(shù)、方程、不等式之間進(jìn)行等價轉(zhuǎn)化。可以說,等價轉(zhuǎn)化是將恒等變形在代數(shù)式方面的形變上升到保持命題的真假不變。由于其多樣性和靈活性,我們要合理地設(shè)計好轉(zhuǎn)化的途徑和方法,避免死搬硬套題型。在數(shù)學(xué)操作中實施等價轉(zhuǎn)化時,我們要遵循熟悉化、簡單化、直觀化、標(biāo)準(zhǔn)化的原則,即把我們遇到的問題,通過轉(zhuǎn)化變成我們比較熟悉的問題來處理;或者將較為煩瑣、復(fù)雜的問題,變成比較簡單的問題,比如從超越式到代數(shù)式、從無理式到有理式、從分式到整式等;或者將比較難以解決、比較抽象的問題,轉(zhuǎn)化為比較直觀的問題,以便準(zhǔn)確把握問題的求解過程,比如數(shù)形結(jié)合法;或者從非標(biāo)準(zhǔn)型向標(biāo)準(zhǔn)型進(jìn)行轉(zhuǎn)化。按照這些原則進(jìn)行數(shù)學(xué)操作,轉(zhuǎn)化過程省時省力,有如順?biāo)浦郏?jīng)常滲透等價轉(zhuǎn)化思想,可以提高解題的水平和能力。