王貴芳+彭福田+趙永飛+羅靜靜+于雯+肖元松+陳曉璐
摘要:植物SnRK1蛋白激酶與酵母SNF1 以及哺乳動物AMPK在結構和功能上同源性較高,以α催化亞基、β和γ調節亞基組成異源三聚體復合物的形式存在。SnRK1蛋白激酶廣泛存在于高等植物中,響應環境脅迫、營養匱乏、光暗周期等引起的能量缺失信號。SnRK1是調控植物代謝和能量平衡的重要樞紐,調節光合作用途徑相關基因的表達以及蔗糖合成、淀粉合成和降解相關酶編碼基因的表達,參與糖代謝途徑。此外,SnRK1在植物的生長、發育和脅迫響應中也是重要的調控樞紐。但SnRK1在代謝網絡途徑的調控非常復雜,很多調節機制還不清楚,亟需進一步的研究。本研究通過對SnRK1蛋白激酶的結構,酶活性的調節機制,及在植物碳氮代謝、生長發育及響應脅迫應答中的調控研究現狀進行綜述,旨在為進一步研究植物SnRK1的功能提供參考。
關鍵詞:SnRK1蛋白激酶;結構;酶活性;功能
中圖分類號:S188+.3文獻標識號:A文章編號:1001-4942(2018)01-0164-09
Abstract Plant SnRK1 has high homology in the structure and functions with mammalian AMPK and yeast SNF1, and is a heterotrimer complex composed of α catalytic subunit, β and γ regulatory subunit. SnRK1 protein kinase exists in higher plants widely, and responses the energy deficit signal caused by environmental stress, nutrition deficiency and light-dark cycle. SnRK1 is an important hub which can regulate metabolism and energy homeostasis in plants, and it regulates gene expression in photosynthetic pathway as well as the sucrose synthesis, starch synthesis and degradation related enzymes encoding gene expression, and it participates in sugar metabolic pathways. In addition, SnRK1 protein kinase regulates plant growth, development and stress response. But the regulatory mechanisms in plant metabolic network are very complex, it is less clear and urgent to be studied. In this paper, we reviewed the structure of SnRK1 protein kinase, the regulation of SnRK1 activities, and the research advances of SnRK1 regulating in carbon, growth and development process and response stress in plants, which was expected to provide references for further research in the functions of plant SnRK1 protein kinase.
Keywords SnRK1 protein kinase; Structure; Enzyme activity; Function
植物SnRK1蛋白激酶與酵母SNF1 以及哺乳動物AMPK在結構和功能上都具有較高的同源性[1]。1981年,Carlson等首次發現酵母Snf1突變體不能在缺少葡萄糖而僅含有蔗糖、甘油或乙醇等其它碳源的培養基上生長[2];隨后,Celenza和Carlson首次從酵母中分離得到SNF1基因,并證明它編碼一個蛋白激酶[3]。在動物中鑒定出與SNF1相似的蛋白激酶AMPK[4]。1991年,植物中第一個SnRK1基因(pcRKin1)從黑麥中分離得到,它編碼一個相對分子量為57.7 kD的多肽鏈,氨基酸序列與酵母和動物中的同源基因SNF1和AMPKα的同源性為48%[5]。1992年,Le Guen等又從擬南芥中分離得到一個SNF1的同源基因AKIN10,并推測其可能在碳水化合物代謝和基因表達調控的信號轉導中起重要作用[6]。植物SnRK1蛋白激酶以α、β和γ亞基結合形成復合體的形式存在,是植物體內生理活動的調控樞紐之一,參與植物代謝、發育及脅迫應答等多種生理活動過程[7]。
1 植物SnRK1蛋白激酶的結構
SNF1/AMPK/SnRK1蛋白激酶在所有的真核生物中具有高度的保守性,以α、β和γ亞基組成異源三聚復合體的形式存在[8-10]。α催化亞基由兩部分組成,激酶結構域和調節結構域;激酶結構域包括一個典型折疊結構和一個激活環(也稱T-loop);在酵母和動物中調節結構域包含一個自我抑制的結構域(AIS),可以抑制激酶的活性[11,12],而在植物中此結構域不能進行自我抑制[13],而是包含一個與泛素相關的結構域(UBA),可以調節與泛素化蛋白的互作[14];另外,α亞基包含一個激酶相關的結構域(KA1)可以跟調節亞基及上游的磷酸酶相互作用[15-18]。endprint
β亞基作為一個支架將α與γ亞基連接在一起,β亞基包含兩個明確的不同結構域。第一個結構域位于蛋白質的中部,最早被認為是激酶互作的序列域(KIS),但是現在一般是指碳綁定域(CBM,以前也稱GBD)[19,20]。在酵母SNF1和植物SnRK1中,GBD/KIS是β亞基與α催化亞基相互作用所必須的。第二個結構域位于C端,被稱為與SNF1相關的復合物(ASC),調節與酵母SNF1及植物SnRK1γ亞基的相互作用。植物SnRK1蛋白激酶特有的β3亞基缺少GBD/KIS結構域,只含有ASC結構域,能與α催化亞基及γ亞基互作,并且能互補酵母三突變體gal83Δsip1Δsip2Δ[19]。此外,β亞基N末端延伸域可以對激酶進行亞細胞定位[21],比如,酵母在高濃度的葡萄糖情況下,三個β亞基都位于細胞質;而在低濃度的葡萄糖條件下,Gal83轉移到細胞核內,Sip1定于液泡中,而Sip2仍位于細胞質[22]。
在酵母和哺乳動物中,γ調節亞基通過CBS(cystathionine-β-synthase)結構域與α亞基上的腺苷酸綁定調節催化亞基的活性[23],γ亞基由N延伸端和兩對CBS結構域串聯而成(也稱Bateman1和Bateman2)[9]。植物中還存在一個非典型的γ亞基(βγ亞基),在γ亞基的N端融合了一個CBM/GBD結構域,這個βγ亞基可以互補酵母突變體snf4Δ的表型,表明植物βγ亞基具有γ亞基的典型功能[24]。
2 植物SnRK1蛋白激酶的活性調節
2.1 磷酸化調節
α催化亞基的激酶結構域T-loop上保守的蘇氨酸磷酸化是SNF1/AMPK/SnRK1保持活性狀態所必須的[13,25-27,29]。在高濃度的葡萄糖介質中時,酵母Snf1大部分處于去磷酸化狀態,此時SNF1激酶復合體失去活性;把酵母細胞轉移至低濃度葡萄糖介質中時,Snf1被磷酸化, SNF1激酶復合體被激活[26]。與酵母SNF1相似,AMPK激酶復合體在代謝脅迫的情況下(ATP生成受阻或ATP的消耗加劇)被激活[29],即當T-loop環上蘇氨酸殘基(T172)被磷酸化時激酶復合體才具有活性[25]。對植物研究發現,在脅迫條件下與正常條件下總的細胞磷酸化水平沒有差異[30,31],這表明脅迫條件下植物中可能存在其他的磷酸化殘基或調節機制調控激酶的活性;依據不同分子大小進行分離,發現激酶復合體催化亞基T-loop上磷酸化水平較高[32];因此,植物在脅迫條件下可能只是提高了激酶α催化亞基的磷酸化水平,而細胞總的磷酸化水平不能反映這種變化。
2.2 上游激酶的調節
1987年Carling 等對動物的研究中最早發現關于上游激酶對SNF1/AMPK/SnRK1活性調節[33],哺乳動物中存在至少兩種上游激酶(腫瘤抑制性激酶LKB1和Ca2+/鈣調素依賴的蛋白激酶Camkkβ);而在酵母細胞中SNF1存在三種上游激酶Elm1、Tos3和Sak1,Sak1是SNF1主要的上游激酶,因為它對SNF1活性的影響大于Elm1和Tos3[34]。
最先在擬南芥中發現的植物SnRK1上游激酶是GRIK1和GRIK2(又稱SnAK1和SnAK2),體外試驗研究發現自動磷酸化是使其具有活性所必須的[35,28],并且其可以被SnRK1反饋抑制調節[28]。植物的頂端分生組織中表達SnAKs并且SnRK1被磷酸化,認為SnAKs/GRIKs僅存在于生長活躍的分生組織或被病菌感染的成熟葉片組織中;而正常的成熟葉片中也發現SnRK1被磷酸化,因此正常的成熟葉片中也可能存在SnAKs/GRIKs磷酸化SnRK1的現象[13],然而檢測到磷酸化的水平較低,這可能是蛋白酶降解的結果[36],也可能存在其他的上游激酶。對水稻的研究發現,CIPK15是SnRK1的一個上游激酶[37],然而還需要其他更多的證據證實SnRK1是被CIPK15直接磷酸化的。體外試驗研究發現菠菜葉片提取物中SnRK1可以被哺乳動物CaMKK磷酸化,這表明可能存在內源Ca2+依賴的激酶(如CIPKs)或鈣調素依賴的蛋白激酶充當SnAKs的角色。有意思的是番茄中存在一個由病原菌引發的抑制細胞死亡的蛋白(Adi3)可以和SnRK1互作,磷酸化Gal83β亞基,調節SnRK1蛋白激酶的活性[38],這種磷酸化機制是否只存在病原菌侵染的情況下,還是也存在于其他環境條件下、代謝途徑或激素調節途徑中,還有待進一步研究。
2.3 上游磷酸酶調節
去磷酸化作用對SNF1/AMPK/SnRK1的活性調節至關重要[17,18,39-44]。目前為止,確定的蛋白磷酸酶是酵母細胞的PPs,Snf1催化亞基的去磷酸化由PP1磷酸酶Reg1調節亞基上Glc7位點執行[9],缺失Reg1A基因的酵母在葡萄糖介質中表現為SNF1的磷酸化及活性狀態[26],然而酵母glc7Δ突變體是致死的[45],可能因為SNF1的活性太強的緣故。另外研究表明,Snf1可以被2C類型的磷酸酶(Ptc1)和2A類型的磷酸酶(Sit4)去磷酸化[46,47]。體外試驗研究表明AMPK可以被PP1、PP2A和金屬離子依賴性的PP2C磷酸酶去磷酸化,且PP1和PP2C去磷酸化的效率高于PP2A[48,49]。
植物中, PP2C磷酸酶、ABI1和PP2CA可以跟SnRK1α1互作使之去磷酸化[18],這與之前發現的人類PP2C能夠使菠菜SnRK1α去磷酸化并使之失活相似[50];另外PP2C也能夠通過與SnRK2互作負調節ABA途徑,其抑制作用可以被ABA受體綁定ABA解除[51];因此,PP2C調節SnRK1不僅抑制SnRK1響應糖信號途徑,而且抑制ABA響應途徑[18]。通過體外試驗及酵母雙雜交試驗研究發現其他一些磷酸酶如PP2C、PP2C74可以跟SnRK1α2互作,盡管其功能及作用機制還不清楚[52]。endprint
2.4 翻譯后修飾調節
雖然T-loop的磷酸化被認為SNF1/AMPK/SnRK1活性調節的主要機制,然而還存在其他一些翻譯后修飾調節,如乙酰化、泛素化、SUMO修飾、豆蔻酰化和氧化作用。
2.4.1 乙酰化 研究發現Sip2(酵母SNF1的一個β亞基)是核小體乙酰轉移酶H4復合體(NuA4)的非染色質底物[53]。Sip2乙酰化使之與Snf1催化亞基的互作更穩定從而抑制其活性,另外Sip2乙酰化可以使細胞延長壽命[54]。體外試驗研究表明AMPKα1催化亞基能被P300乙酰轉移酶乙酰化,但還需要進一步的體內試驗加以證明[55],另外對AMPK亞基進行光譜分析發現AMPKγ1在N末端的延伸域被乙酰化且不存在其他的翻譯后修飾[56]。目前在植物中雖然還沒發現乙酰化的現象,但酵母SNF1和哺乳動物AMPK激酶復合體的三個亞基都存在乙酰化的修飾。
2.4.2 泛素化 當酵母生長在碳源改變的情況下,泛素化負向調節Snf1的穩定性、磷酸化和催化活性,一個組蛋白調節器SAGA復合體的亞基Ubp8可以使Snf1去泛素化[57]。對哺乳動物深色的脂肪組織研究發現Cidea(cell death-inducing DFF45-like effector A)通過泛素化與AMPKβ互作在活體內形成復合體,而缺少Cidea的老鼠體內AMPKαT172磷酸化水平及催化活性提高;相反表達Cidea增加了AMPK復合體蛋白酶體的降解[58]。植物中激酶的活性及磷酸化與蛋白質的穩定性有很大的關系[27];低營養條件下SnRK1α1以5-磷酸酶(5P Tase13)依賴性肌醇磷酸鹽的方式被蛋白酶降解[59]。PRL1作為SnRK1α1蛋白激酶復合體的底物受體被DDB1-CUL4-ROC-PRL1 E3泛素連接酶調節降解[60],SnRK1α1可以與PRL1相互作用[61,14],與對照野生型WT相比,prl1和cul4cs突變體中SnRK1α1蛋白通過26S蛋白酶體降解的途徑受阻,積累較高水平的SnRK1α1蛋白質和較高的酶活性[60],此外突變體prl1中被SnRK1抑制的3羥基-3-甲基乙酰輔酶A羧化酶(3-hydroxy-3-methyl-glutaryl-CoA reductase)的活性降低[62]
2.5 腺苷酸調節
酵母中AMP不能通過變構來激活[63],但是ADP能保護SNF1防止去磷酸化[42,43]。盡管這種機制起初被認為是通過ADP結合Snf4的方式來調節的,但是越來越多的研究表明,調控亞基不需要這種保護[64]。目前的假說是,磷酸化一個底物以后,ADP仍停留在活性位點,防止激酶去磷酸化從而起保護作用。
AMPK在幾個水平上受腺苷酸調控[48]。第一,AMP通過結合γ-亞基,從而變構激活AMPK[33]。第二,AMP結合γ-亞基,增加其作為底物與上游激酶結合的能力[65,66],這已經在LKB1得到了論證[67]。蛋白AXIN與LKB1相互作用,能提高其與AMP綁定AMPK的互作,這解釋了為什么依賴LKB1的AMPK磷酸化,會受AMP的刺激[68]。第三,低能量的ADP和AMP與γ亞基的結合,使AMPK復合物避免去磷酸化或失活[39,44,49]。ADP結合γ亞基是AMPK避免去磷酸化的主要因素[17],但最近更多的研究認為,與ADP相比,AMP在生理濃度范圍內更能使AMPK避免去磷酸化[67]。
植物中,在純化的菠菜葉片SnRK1復合物中檢測到其對腺苷酸敏感,當純化的SnRK1復合物與重組的動物PP2C一起孵育時,AMP保護復合物防止其去磷酸化[50]。雖然目前對這種作用機制還知之甚少,但異源三聚復合體的所有亞基在真核生物中是相當保守的,植物的亞基能相應地互補酵母突變體[8],因而有理由認為,它們的作用機制是相似的;另一方面,激酶結構域更加保守,因此ADP可能對激酶的活性位點起直接的保護作用。
2.6 激素調節
SNF1/AMPK/SnRK1廣泛存在于真核生物中,從簡單的單細胞生物到復雜的多細胞生物[29],因此這就需要其能夠響應激素和系統信號的調節能力,較好地在整個生物體水平上達到能量平衡。
哺乳動物AMPK的活性在整個生物體水平上受激素信號調節,包括肥胖荷爾蒙、脂聯素、饑餓荷爾蒙、胰島素、胰島高血糖肽、糖皮質激素及甲狀腺激素等[69,70]。值得注意的是一些激素對AMPK活性的調節是有組織特異性的,如肥胖荷爾蒙在肝臟激活AMPK而在心臟和下丘腦抑制其活性[70]。雖然多數激素調節AMPK的機制還不清楚[70],但已發現在心肌組織中胰島素通過激活Akt/PKB激酶(其可磷酸化AMPRS485而減少AMPKT172的磷酸化)抑制AMPK的活性[71];凝血酶通過誘導Ca2+信號和激活CaMKKβ而激活AMPK;治療慢性病TNFα時,在肌肉細胞通過誘導AMPK的抑制因子PP2C抑制其活性[72]。
越來越多的研究表明植物中SnRK1與ABA相互聯系。在ABA的調控下,在種子的成熟和萌發過程中 SnRK1發揮核心作用[73-75]。超表達SnRK1α1的擬南芥在種子萌發和幼苗生長發育的過程中對ABA信號敏感[75,76];在成熟的光合組織中,ABA通過抑制SnRK1的負調節因子2C-型磷酸酶ABI1和PP2CA激活SnRK1[18]。在種子萌發和早期幼苗的生長階段ABA通過與SnRK1A互作的負調節因子作用抑制SnRK1信號途徑[77],這表明ABA在不同的組織(自養和異養)中對SnRK1的調節不同,這與動物不同組織中激素對AMPK表現為相反方向的調節類似[70]。
3 植物SnRK1蛋白激酶的生理調節功能
SnRK1蛋白激酶是植物代謝、生長發育及脅迫響應中重要的調控樞紐(圖1)。體外試驗研究發現,SnRK1蛋白激酶抑制植物代謝中四種重要的代謝酶活性,他們分別是3-羥基-3-甲基戊二酰-輔酶A還原酶(HMG-CoA還原酶)、蔗糖磷酸合成酶(SPS)、海藻糖磷酸合酶5(TPS5)和硝酸還原酶(NR)[8]。其中SPS是植物葉片中催化蔗糖合成的一個關鍵酶;NR是氮素同化過程中催化硝酸鹽還原成亞硝酸鹽最重要的酶之一;HMG-CoA還原酶催化HMG-CoA還原成甲羥戊酸(MVA) [50,78],這一步是所有類異戊二烯的前體異戊烯焦磷酸合成的關鍵限速步驟,而類異戊二烯是植物化學家非常感興趣的物質,它包括多種重要的次生代謝物如可溶性維生素、植物固醇和色素等,這些物質的水平影響果實和植物油料的營養品質、風味和色澤等;TPS5是海藻糖6磷酸(T6P)合成的關鍵酶,而T6P是植物中重要的糖信號,調節植物的代謝和生長發育[79]。endprint
3.1 植物SnRK1蛋白激酶調節碳氮代謝
SnRK1能夠被黑暗和能量缺失所誘導。SnRK1 響應高蔗糖/低葡萄糖信號,誘導相關基因的表達,參與糖代謝途徑。煙草 SnRK1 基因(NPK5)轉入snf1 酵母突變體后其可以在含有蔗糖的培養基上生長[80],由此可以推斷植物SnRK1 可以代替酵母SNF1行使信號傳導的功能,也存在類似酵母的糖代謝途徑。
SnRK1調節蔗糖合成、淀粉合成和降解有關酶編碼基因的表達,間接調控碳水化合物的代謝,SnRK1在轉錄水平上對蔗糖合酶和α-淀粉酶進行調節[81,82]。研究發現SnRK1響應高濃度的蔗糖,激活AGPase,參與淀粉的生物合成[83],馬鈴薯中SnRK1同源基因PKIN1反義表達使得葉片和塊莖中蔗糖合成酶編碼基因表達量急劇降低[81],擬南芥KIN10和KIN11參與糖代謝的調控網絡, 葉肉細胞中KIN10瞬時表達在轉錄水平上影響到1 000多個基因的表達,KIN10和KIN11是植物對黑暗和多種抗逆信號傳導過程中很多重要的轉錄組件的調節基因[27,30]。反義表達SnRK1的大麥,出現花粉敗育的性狀,敗育的花粉粒較小,呈梨形,不含淀粉或淀粉含量很少[84];Zhang等認為,花粉的敗育通常與淀粉的積累及蔗糖的代謝有關,而在反義表達 SnRK1 的花粉粒中,不能通過表達相應的轉化酶而利用外源蔗糖而使花粉敗育[84]。反義表達SnRK1的豌豆種子中碳氮比值高于野生型,通過對反義表達SnRK1豌豆的表型觀察推測SnRK1可能與細胞的分裂與伸長有關,另外SnRK1可能與種子成熟時ABA調節途徑有關[85]。本課題組研究發現,平邑甜茶MhSnRK1在番茄中超表達提高了植株葉片的光合速率及淀粉合成關鍵酶AGPase的活性,數字基因表達譜分析顯示,超表達MhSnRK1的植株葉片光合途徑中差異表達的10個基因中7個基因的轉錄水平上調,葉片和果實的可溶性糖和淀粉含量提高,夜晚淀粉的利用率提高,糖代謝加強,硝酸的吸收利用率提高,可溶性蛋白含量、AsA和可滴定酸含量明顯降低;SnRK1響應外源海藻糖信號,其活性被抑制,海藻糖處理的番茄葉片的可溶性糖含量明顯高于未經處理的對照[86-88]。
3.2 植物SnRK1蛋白激酶調節植物的生長發育
SnRK1蛋白激酶在植物代謝途徑中起著重要的作用,SnRK1通過對碳水化合物代謝的調控影響植物的生長發育進程[27,89]。在SnRK1反義表達的大麥植株中, 對糖反應的調控途徑產生了可遺傳的影響, 如花粉粒變小, 含有少量或不含淀粉, 最終致使花粉敗育, 同時胚珠的發育也在一定程度上受其影響[84];擬南芥SnRK1突變體KINβγ植株的花粉在柱頭上不能吸水萌發,花粉中線粒體及過氧化物酶體的結構受損且數量明顯少于野生型擬南芥,并且花粉中活性氧的水平明顯降低[90]。SnRK1反義表達的豌豆種子出現了許多成熟缺陷, 表現為減少了糖轉變成儲存物的數量,球蛋白含量較低,多數種子的子葉外觀、形狀、勻稱性改變及早熟現象[85]。苔蘚中SnRK1阻斷新陳代謝,絲狀體和配子體有異常生長和過早衰老的現象[91]。擬南芥SnRK1通過磷酸化抑制與糖代謝相關的轉錄因子IDD8,延遲擬南芥的開花時期[92]。本課題組對果樹SnRK1蛋白激酶的研究發現,平邑甜茶MhSnRK1在番茄中超表達提高了植株的光合速率、淀粉含量及其利用率,果實成熟期比野生型提前10天,SnRK1響應海藻糖信號,超表達MhSnRK1番茄和野生型番茄在100 mmol·L-1海藻糖處理條件下,植株對碳水化合物的利用受阻,主梢生長受到明顯的抑制[86,87]。
3.3 植物SnRK1蛋白激酶對脅迫的響應
首次發現植物SnRK1參與脅迫響應是反義表達StubGAL83的馬鈴薯的抗鹽性,將StubGAL83基因在馬鈴薯植株中反義表達, 轉基因植株對高鹽脅迫非常敏感, 并且與野生型植株相比, 轉基因植株的主根生長受到了抑制,根細胞變小、形狀不規則, 說明StubGAL83基因的反義表達影響了馬鈴薯根和塊莖的發育,SnRK1可能激活某種保護機制抵抗鹽脅迫[93]。擬南芥中的一個SnRK1基因在煙草中反義表達導致煙草易受病毒的傷害, 而過表達明顯提高了煙草對病毒的抗性[94],因此SnRK1可能是抗病毒防御機制的一部分。植物特有的AKINβγ亞基通過GBD結構域與兩種蛋白互作提高植物抗線蟲的能力[24],另有研究發現SnRK1可使更多的碳回流到根中以抵御食草性動物的攻擊[95]。
4 展望
SnRK1蛋白激酶廣泛存在于高等植物中,是調控植物代謝和能量平衡的重要樞紐;隨著對植物SnRK1蛋白激酶研究的不斷深入,其序列、結構特征、自身活性調節以及在代謝過程中的調節機制也愈來愈明確。SnRK1蛋白激酶的活性不僅與α催化亞基上T-loop的磷酸化有關,還與調節亞基β及γ的磷酸化狀態有關;一些翻譯后修飾調節,如乙酰化、泛素化、SUMO修飾、豆蔻酰化和氧化作用也影響SnRK1蛋白激酶的活性。目前的研究表明SnRK1蛋白激酶在植物的代謝途徑、生長、發育及抗逆境生理方面均表現出一定的調節作用。SnRK1信號途徑主要在代謝調控網絡中發揮重要作用, 與能量的狀態密切相關,但信號途徑是如何開始?如何傳遞?又是如何結束的?這些調控機制仍不清楚,亟需進一步的研究。
參 考 文 獻:
[1] Halford N G, Hardie D G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? [J]. Plant Mol. Biol., 1998, 37(5):735-748.
[2] Carlson M, Osmond B C, Botstein D. Mutants of yeast defective in sucrose utilization[J]. Genetics, 1981, 98(1):25-40.endprint
[3] Celenza J L, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase[J]. Science, 1986, 233(4769):1175-1180.
[4] Crute B E, Seefeld K, Gamble J, et al. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase[J]. J. Biol. Chem., 1998, 273:35347-35354.
[5] Alderson A, Sabelli P A, Dickinson J R, et al. Comple-mentation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA[J]. Proc. Nati. Acad. Sci. USA, 1991, 88(19): 8602-8605.
[6] Le Guen L, Thomas M, Bianchi M, et al. Structure and expression of a gene from Arabidopsis thaliana encoding a protein related to SNF1 protein kinase[J]. Gene, 1992, 120(2):249-254.
[7] Smeekens S, Ma J, Hanson J, et al. Sugar signals and molecular networks controlling plant growth[J]. Curr. Opin. Plant Biology, 2010, 13:274-279.
[8] Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? [J]. Trends Plant Sci., 2007, 12(1):20-28.
[9] Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast[J]. Front. Biosci., 2008, 13:2408-2420.
[10]Carling D, Thornton C, Woods A, et al. AMPK-activated protein kinase: new regulation, new roles? [J]. Biochem. J., 2012, 445(1):11-27.
[11]Pang T, Xiong B, Li J Y, et al. Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits[J]. J. Biol. Chem., 2007(282):495-506.
[12]Chen L, Jiao Z H, Zheng LS, et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase[J]. Nature, 2009, 459(7250):1146-1149.
[13]Shen W, Reyes M I, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activationm loop[J]. Plant Physiol., 2009, 150:996-1005.
[14]Farras R, Ferrando A, Jasik J, et al. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase[J]. EMBO J., 2001, 20(11):2742-2756.
[15]Kleinow T, Bhalerao R, Breuer F, et al. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast[J]. Plant J., 2000, 23(1): 115-122.
[16]Amodeo G A, Rudolph M J, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1[J]. Nature, 2007, 449(7161): 492-495.
[17]Xiao B, Sanders M J, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011,472(7342):230-233.endprint
[18]Rodrigues A, Adamo M, Crozet P, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis[J]. Plant Cell, 2013, 25(10):3871-3884.
[19]Crozet P, Margalha L, Confraria A, et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinase[J]. Front. Plant Science, 2014, 5(190):1-17.
[20]Ghillebert R, Swinnen E, Wen J, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation[J]. FEBS J.,2011, 278(21):3978-3990.
[21]Hedbacker K, Carlson M. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase[J]. Eukaryot. Cell, 2006, 5(12):1950-1956.
[22]Vincent O, Townley R, Kuchin S, et al. Subcellular localization of the snf1 kinase is regulated by specific beta subunits and novel glucose signaling mechanism[J]. Genes Dev., 2001, 15(9):1104-1114.
[23]Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein[J]. Trends Biochem. Sci., 1997, 22(1):12-13.
[24]Gissot L, Polge C, Jossier M, et al. AKIN betagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS GBD sequence[J]. Plant Physiol., 2006, 142:931-944.
[25]Stein S C, Woods A, Jones N A, et al. The regulation of AMP-activated protein kinase by phosphorylation[J]. Biochem. J., 2000, 345(Pt3):437-443.
[26]McCartney R R, Schmidt M C. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit[J]. J. Biol. Chem., 2001, 276:36460-36466.
[27]Baena-Gonzalez E, Rolland F, Thevelein J M,et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156):938-942.
[28]Crozet P, Jammes F, Valot B, et al. Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities[J]. J. Biol. Chem., 2010, 285:12071-12077.
[29]Hardie D G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function[J]. Genes Dev., 2011, 25:1895-1908.
[30]Fragoso S, Espindola L, Paez-Valencia J, et al. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation[J]. Plant Physiol., 2009, 149: 1906-1916.endprint
[31]Coello P, Hirano E, Hey S J, et al. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK 1) in wheat and activation of a putative calcium-dependent SnRK2[J]. J. Exp. Bot., 2012, 63:913-924.
[32]Nunes C, Primavesi L F, Patel M K, et al. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate[J]. Plant Physiol. Biochem., 2013, 63:89-98.
[33]Carling D, Zammit V A, Hardie D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J]. FEBS Lett., 1987, 223:217-222.
[34]Hedbacker K, Townley R, Carlson M. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase[J]. Mol. Cell Biol., 2004, 24:1836-1843.
[35]Kong L J, Hanley-Bowdoin L. A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection[J]. Plant Cell, 2002, 14:1817-1832.
[36]Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases[J]. Plant Physiol., 2006, 142(4):1642-1655.
[37]Lee K W, Chen P W, Lu C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J]. Sci. Signal, 2009, 2(91): ra61.
[38]Avila J, Gregory O G, Su D, et al. The beta-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3[J]. Plant Physiol., 2012, 159:1277-1290.
[39]Suter M, Riek U, Tuerk R, et al. Dissecting the role of 5-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase[J]. J. Biol. Chem., 2006, 281:32207-32216.
[40]Sanders M J, Grondin P O, Hegarty B D, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade[J]. Biochemistry J., 2007, 403:139-148.
[41]Rubenstein E M, Mccartney R R, Zhang C, et al. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase[J]. J. Biol. Chem., 2008, 283:222-230.
[42]Chandrashekarappa D G, Mccartney R R, Schmidt M C. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation[J]. J. Biol. Chem., 2011, 286: 44532-44541.endprint
[43]Mayer F V, Heath R, Underwood E, et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase[J]. Cell Metab., 2011, 14:707-714.
[44]Oakhill J S, Steel R, Chen Z P, et al. AMPK is a direct adenylate charge-regulated protein kinase[J]. Science, 2011, 332:1433-1435.
[45]Cannon J F, Pringle J R, Fiechter A, et al. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae[J]. Genetics, 1994, 136: 485-503.
[46]Ruiz A, Xu X, Carlson M. Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase[J]. Pro. Natl. Acad. Sci. USA, 2011, 108:6349-6354.
[47]Ruiz A, Xu X, Carlson M. Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae[J]. J. Biol. Chem., 2013, 288:31052-31058.
[48]Carling D, Clarke P R, Zammit V A, et al. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities[J]. Eur. J. Biochem., 1989, 186:129-136.
[49]Davies S P, Helps N R, Cohen P T, et al. 5-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC[J]. FEBS Lett., 1995, 377:421-425.
[50]Sugden C, Crawford R M, Halford N G, et al. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5 -AMP[J]. Plant J., 1999a, 19:433-439.
[51]Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annu. Rev. Plant Biol., 2010, 61:651-679.
[52]Tsugama D, Liu S, Takano T. A putative myristoylated 2C-type protein phosphatase, PP2C74, interacts with SnRK1 in Arabidopsis[J]. FEBS Lett., 2012, 586: 693-698.
[53]Lin Y Y, Lu J Y, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis[J]. Cell, 2009, 136:1073-1084.
[54]Lu J Y, Lin Y Y, Sheu J C, et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction[J]. Cell, 2011, 146:969-979.
[55]Lin Y Y, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482:251-255.endprint
[56]Mitchelhill K I, Michell B J, House C M, et al. Posttranslational modifications of the 5-AMP-activated protein kinase beta1 subunit[J]. J. Biol. Chem., 1997, 272:24475-24479.
[57]Wilson M A, Koutelou E, Hirsch C, et al. Ubp8 and SAGA regulate Snf1 AMP kinase activity[J]. Mol. Cell Biol., 2011, 31: 3126-3135.
[58]Qi J, Gong J, Zhao T, et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue[J]. EMBO J., 2008, 27:1537-1548.
[59]Ananieva E A, Gillaspy G E, Ely A, et al. Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling[J]. Plant Physiol., 2008, 148:1868-1882.
[60]Lee J H, Terzaghi W, Gusmaroli G, et al. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases[J]. Plant Cell, 2008, 20: 152-167.
[61]Bhalerao R P, Salchert K, Bako L, et al. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases[J]. Proc. Natl. Acad. Sci. USA, 1999, 96:5322-5327.
[62]Sugden C, Donaghy P G, Halford N G, et al. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro[J]. Plant Physiol., 1999b, 120:257-274.
[63]Wilson W A, Hawley S A, Hardie D G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP∶ATP ratio[J]. Curr. Biol., 1996, 6:1426-1434.
[64]Chandrashekarappa D G, Mccartney R R, Schmidt M C. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation[J]. J. Biol. Chem., 2013, 288:89-98.
[65]Hawley S A, Selbert M A, Goldstein E G, et al. 5-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms[J]. J. Biol. Chem., 1995, 270:27186-27191.
[66]Oakhill J S, Chen Z P, Scott J W, et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK) [J]. Proc. Natl. Acad. Sci. USA, 2010, 107: 19237-19241.
[67]Gowans G J, Hawley S A, Ross F A, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metab., 2013, 18:556-566.endprint
[68]Zhang Y L, Guo H, Zhang C S, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation[J]. Cell Metab., 2013, 18:546-555.
[69]Hardie D G. Hot stuff: thyroid hormones and AMPK[J]. Cell Res., 2010, 20:1282-1284.
[70]Lim C T, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling[J]. J. Mol. Endocrinol., 2010, 44:87-97.
[71]Horman S, Vertommen D, Heath R, et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491[J]. J. Biol. Chem., 2006, 281:5335-5340.
[72]Steinberg G R, Michell B J, Van Denderen B J, et al. Tumor necrosis fator alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling[J]. Cell Metab. Dec., 2006, 4(6):465-474.
[73]Lu C A, Lin C C, Lee K W, et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice[J]. Plant Cell, 2007, 19:2484-2499.
[74]Radchuk R, Emery R J, Weier D, et al. Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation[J]. Plant J., 2010, 61:324-338.
[75]Tsai A Y, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis[J]. Plant J., 2012, 69: 809-821.
[76]Jossier M, Bouly J P, Meimoun P, et al. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana[J]. Plant J., 2009, 59:316-328.
[77]Lin C R, Lee K W, Chen C Y, et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress[J]. Plant Cell, 2014, 26:808-827.
[78]Dale S, Wilson W A, Edelman A M, et al. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I[J]. FEBS Lett., 1995, 361:191-195.
[79]Harthill J E, Meek S E, Morrice N, et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2- deoxyglucose[J]. Plant J., 2006, 47: 211-223.
[80]Muranaka T, Banno H, Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively avtivates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae[J]. Mol. Cell Biol., 1994, 14(5):2958-2965.endprint
[81]Purcell P C, Smith A M, Halford N G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves[J]. Plant J., 1998, 14:195-202.
[82]Laurie S, McKibbin R S, Halford N G. Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an a-amylase (a-Amy2) gene promoter in cultured wheat embryos[J]. Journal of Exp. Bot., 2003, 54(383): 739-747.
[83]Geigenberger P, Stitt M, Fernie A R. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers[J]. Plant Cell Environ., 2004, 27:655-673.
[84]Zhang Y, Shewry P R, Jones H, et al.. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley[J]. Plant J., 2001, 28(4):431-441.
[85]Radchuk R, Radchk V, Weschke W, et al. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype[J]. Plant Physiol., 2006, 140(1):263-278.
[86]Wang X L, Peng F T, Li M J, et al. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development[J]. Journal of Plant Physiol., 2012 (4):1-10.
[87]Li G J, Peng F T, Zhang L, et al. Cloning and characterization of a SnRK1-encoding gene from Malus hupehensis Rehd. and heterologous expression in tomato[J]. Mol. Biol. Rep., 2010, 37:947-954.
[88]王貴芳, 彭福田, 張亞飛, 等. 平邑甜茶MhSnRK1在番茄中超表達對植株碳代謝的影響[J]. 園藝學報, 2014, 41(11):2188-2195.
[89]Wingler A, Fritzius T, Wiemken A, et al. Trehalose induces the ADP-glucose gyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis[J]. Plant Physiology, 2000, 124:105-114.
[90]Gao X Q, Liu C Z, Li D D, et al. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reaction oxygen species in pollen[J]. PLoS Genet., 2016, 12(7): e1006228.
[91]Thelander M, Olsson T, Ronne H. Effect of the energy supply on filamentous growth and development in Physcomitrella patents[J]. J. Exp. Bot., 2005, 56(412):653-662.
[92]Jeong E Y, Seo P J, Woo J C, et al. AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis[J]. BMC Plant Biol., 2015, 15:110.
[93]Lovas A, Bimb A, Szab L, et al. Antisense repression of StubGAL83 affects root and tuber development in potato[J]. Plant J., 2003, 33(1):139-147.
[94]Hao L, Wang H, Sunter G, et al. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase[J]. Plant Cell, 2003, 15(4):1034-1048.
[95]Schwachitje J, Peter E H M, Sigfried J, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(34):12935-12940.endprint