唐浩文,蒙 軒,呂文平,董家鴻
解放軍總醫(yī)院/解放軍醫(yī)學(xué)院 肝膽外科,北京 100853
膽管癌是指源于膽道系統(tǒng),由多種具有膽管細(xì)胞分化特征的上皮細(xì)胞構(gòu)成的惡性腫瘤。根據(jù)其發(fā)生部位可分為肝內(nèi)膽管癌、肝門部膽管癌和遠(yuǎn)端膽管癌[1-6]。在肝膽惡性腫瘤中,膽管癌的發(fā)病率僅次于肝細(xì)胞癌,且在過去40年中膽管癌的總發(fā)病率在世界范圍內(nèi)呈上升趨勢[1,2,7-10]。據(jù)報道,膽管癌在英國年發(fā)病率為0.01% ~ 0.02%[1,11],而在我國年發(fā)病率為0.01% ~ 0.2%[1,3,12-13]。膽管癌惡性程度高,且早期診斷困難,導(dǎo)致多數(shù)患者在確診時已進(jìn)入晚期。僅約35%的患者可早期確診并可通過手術(shù)切除,但文獻(xiàn)報道術(shù)后5年生存率不超過25%[1,13-15]。隨著腫瘤生物學(xué)的發(fā)展,已有諸多腫瘤可通過分子標(biāo)記物的檢測達(dá)到早期診斷、預(yù)后評估和指導(dǎo)治療的目的。本文總結(jié)既往膽管癌相關(guān)分子標(biāo)記物的研究現(xiàn)狀和最新進(jìn)展,為臨床應(yīng)用及研究提供參考。
腫瘤抑制基因是一類存在于正常細(xì)胞中,與原癌基因共同調(diào)控細(xì)胞生長和分化的基因,如Rb基因、p53基因。p53基因位于常染色體17p13.1,調(diào)控細(xì)胞周期G1/S和G2/M。當(dāng)細(xì)胞DNA遭到嚴(yán)重破壞時,p53基因被激活并誘導(dǎo)細(xì)胞凋亡。p53發(fā)生基因突變可導(dǎo)致缺陷DNA大量復(fù)制,甚至發(fā)展為癌癥[16-18]。研究發(fā)現(xiàn),約52.8%的膽管癌患者p53蛋白表達(dá)陽性[19-21]。在遠(yuǎn)端膽管癌中,p53過表達(dá)與患者生存率呈負(fù)相關(guān)[22]。肝門部膽管癌和遠(yuǎn)端膽管癌手術(shù)切除后患者中,p53結(jié)合蛋白1表達(dá)與腫瘤局部復(fù)發(fā)呈正相關(guān)[23]。
DPC4是另一類腫瘤抑制基因,其蛋白產(chǎn)物Smad4參與轉(zhuǎn)化生長因子β的信號傳導(dǎo),抑制細(xì)胞增殖。DPC4基因缺陷已被證實可導(dǎo)致細(xì)胞周期G1至S期進(jìn)程加快,進(jìn)而加速細(xì)胞增殖[24-25]。較正常肝內(nèi)膽管,肝內(nèi)膽管癌組織中DPC4/Smad4 mRNA表達(dá)顯著下降[26]。Rb基因、p73基因等其他腫瘤抑制基因與膽管癌早期診斷和預(yù)后的關(guān)系仍需進(jìn)一步研究探索。
Ras致癌基因家族包括H-ras、K-ras和N-ras,其功能是編碼生長分化因子受體下游的信號轉(zhuǎn)導(dǎo)蛋白-P21蛋白[27]。P21蛋白是位于細(xì)胞膜內(nèi)側(cè)的GTP/GDP結(jié)合蛋白,當(dāng)生長分化因子將信號傳遞至P21蛋白時,P21和GTP結(jié)合并激活下游信號通路,將生長分化信號傳入細(xì)胞內(nèi);同時P21有GTP酶活性,使GTP水解為GDP,信號通路關(guān)閉。當(dāng)Ras基因突變時,P21蛋白的GTP酶活性減弱,可導(dǎo)致細(xì)胞不可控的增殖、惡變[28]。膽管癌相關(guān)的Ras基因主要是K-ras基因。Chen等[29]對86例肝內(nèi)膽管癌手術(shù)患者資料進(jìn)行回顧性分析發(fā)現(xiàn),K-ras基因突變(基因水平點(diǎn)突變,主要位于第12、13和61號密碼子)是肝內(nèi)膽管癌患者預(yù)后的重要指標(biāo),伴有K-ras基因突變的患者手術(shù)術(shù)后中位生存時間為5.9個月,而不伴K-ras基因突變患者生存時間為19.0個月。Ahrendt等對12例膽管癌患者進(jìn)行隨訪,發(fā)現(xiàn)伴有K-ras基因突變可導(dǎo)致膽管癌術(shù)后平均生存時間下降[9]。一項多中心化療藥物二期臨床試驗研究發(fā)現(xiàn),K-ras基因突變是埃羅替尼(Erlotinib)對終末期膽管癌療效的影響因素之一[30]。
細(xì)胞凋亡即細(xì)胞的程序性死亡,是多基因精細(xì)調(diào)控的過程,已知參與細(xì)胞凋亡的基因有Bcl-2家族、Caspase家族等。以Bcl-2蛋白家族為例,該蛋白定位于不同類型細(xì)胞的線粒體、內(nèi)質(zhì)網(wǎng)或核膜上,既有抗凋亡作用的亞群,如Bcl-2、Bcl-w和Bcl-x,又有促凋亡作用的亞群,如Bax、Bak和BAD[31]。逃避凋亡是腫瘤細(xì)胞的重要特征之一,與膽管癌發(fā)生密切相關(guān)的Bcl-2蛋白家族成員包括Bcl-2和Bax。Romani等[32]對22例肝內(nèi)膽管癌標(biāo)本Bax蛋白和乳腺絲抑蛋白(Maspin)進(jìn)行免疫組織化學(xué)染色,并對Maspin進(jìn)行半定量測量,發(fā)現(xiàn)兩者變化水平具有高度相關(guān)性,從而進(jìn)一步證實Maspin通過調(diào)節(jié)Bax蛋白水平調(diào)控凋亡,同時,Maspin表達(dá)水平與腫瘤大小、腫瘤浸潤深度及血管浸潤情況呈負(fù)相關(guān)。Zhao等[33]對35例肝門部膽管癌手術(shù)切除標(biāo)本及20例正常對照組標(biāo)本進(jìn)行免疫組織化學(xué)染色后發(fā)現(xiàn),Bax在癌組織中蛋白表達(dá)水平顯著高于正常組織,且差異有統(tǒng)計學(xué)意義。Boueroy等[34]發(fā)現(xiàn),在膽管癌細(xì)胞系(KKU-214)中,阿司匹林通過誘導(dǎo)腫瘤抑制蛋白P53的表達(dá)并抑制抗凋亡蛋白Bcl-2的表達(dá)實現(xiàn)對膽管癌細(xì)胞的抑制作用。其他藥物,如蟲草素[35]、表焙兒茶素[36]等亦可通過調(diào)節(jié)Bcl-2家族蛋白水平起到抑制膽管癌細(xì)胞的作用。Sydor等[37]報道,Polo樣激酶抑制劑BI6727與順鉑聯(lián)用時,可增強(qiáng)后者對膽管癌細(xì)胞的毒性,其作用原理是通過降低Bcl-2蛋白水平來促進(jìn)細(xì)胞凋亡。在吉西他濱耐藥的膽管癌細(xì)胞系中,運(yùn)用膜聯(lián)蛋白/碘化丙啶染色可觀測到Bcl-2的上調(diào)及Bax下調(diào)[38]。
周期蛋白依賴激酶(cyclin-dependent kinase,CDK)是一套與細(xì)胞周期相對應(yīng)的Ser/Thr激酶系統(tǒng)。各種CDK根據(jù)細(xì)胞周期交替變化并使底物磷酸化,從而調(diào)控細(xì)胞周期[39]。周期蛋白依賴激酶抑制因子(cyclin-dependent kinase inhibitor,CKI)包 括INK家 族(如P16INK4a、P18INK4c)和Cip/Kip家 族,CKI通過抑制CDK作用于相應(yīng)的蛋白底物實現(xiàn)對細(xì)胞周期的調(diào)控。以P16INK4a/Rb為例,P16INK4a通過抑制CDK4-6激酶,從而使視網(wǎng)膜母細(xì)胞瘤抑制蛋白(Bb)處于非磷酸化或低磷酸化形式,抑制細(xì)胞從G1期到S期的過程,造成生長停滯[40]。P16的缺失可能是腫瘤的發(fā)生誘因。研究表明,P16INK4a的失活及細(xì)胞核中β-catenin表達(dá)與肝門部膽管癌的發(fā)生具有相關(guān)性[41]。Sasaki和Nakanuma[42]報道,P16INK4a在膽管腺瘤中高表達(dá),而膽管癌中幾乎不表達(dá),說明P16INK4a的檢測對于早期鑒別良惡性膽管占位具有臨床價值。Nakagawa等[43]研究發(fā)現(xiàn)P16INK4a是化療藥物DZNep作用靶點(diǎn),DZNep與吉西他濱聯(lián)合用藥,通過增強(qiáng)P16INK4a的表達(dá),繼而抑制膽管癌。
增殖指標(biāo)Ki-67免疫組織化學(xué)染色有助于區(qū)分肝內(nèi)膽管良性和惡性病變[44]。Ki-67免疫組化染色在肝內(nèi)膽管癌標(biāo)本中表達(dá)率平均值為23%,而在膽道錯構(gòu)瘤、膽管腺瘤等良性腫瘤的表達(dá)率僅為1.4%,但Ki-67無法區(qū)分高分化或低分化的膽管癌[44]。環(huán)氧酶(cyclo-oxygen-ase,COX)在腫瘤發(fā)生中的作用日益被關(guān)注。其中COX-2可被TNF-α和IL-6等炎性因子上調(diào)表達(dá),進(jìn)而在腫瘤形成的早期階段發(fā)揮作用,而COX-2高表達(dá)在膽管癌中提示預(yù)后不良[45]。鈣黏蛋白是一種鈣依賴的細(xì)胞黏著糖蛋白,其中E-鈣黏蛋白的下調(diào)可導(dǎo)致腫瘤的侵襲性增加。與正常上皮細(xì)胞相比,癌組織中E-鈣黏蛋白表達(dá)明顯下調(diào)[46],而E-鈣黏蛋白表達(dá)量上調(diào)提示預(yù)期生存時間延長[45]。
1 Razumilava N, Gores GJ. Cholangiocarcinoma[J]. Lancet, 2014,383(9935): 2168-2179.
2 Tang H, Lu W, Li B, et al. Prognostic significance of neutrophilto-lymphocyte ratio in biliary tract cancers: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(22): 36857-36868.
3 Li B, Tang H, Zhang A, et al. Prognostic Role of Mucin Antigen MUC4 for Cholangiocarcinoma : A Meta-Analysis[J]. PLoS ONE,2016, 11(6): e0157878.
4 Cai Y, Cheng N, Ye H, et al. The current management of cholangiocarcinoma : A comparison of current guidelines[J].Biosci Trends, 2016, 10(2): 92-102.
5 Wang H, Liu W, Tian M, et al. Coagulopathy associated with poor prognosis in intrahepatic cholangiocarcinoma patients after curative resection[J]. Biosci Trends, 2017, 11(4): 469-474.
6 李會星. 肝門部膽管癌的診治進(jìn)展[J]. 解放軍醫(yī)學(xué)院學(xué)報,2014, 35(1): 98-101.
7 Saha SK, Zhu AX, Fuchs CS, et al. Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise[J]. Oncologist, 2016, 21(5): 594-599.
8 Tang HW, Lu WP, Yang ZY, et al. Significance of incorporation of DNMT1 and HLA-DRα with TNM staging in patients with hepatocellular carcinoma after curative resection[J]. Int J Clin Exp Pathol, 2017, 10(9): 9372-9381.
9 Tang H, Lu W, Yang Z, et al. Risk factors and long-term outcome for postoperative intra-abdominal infection after hepatectomy for hepatocellular carcinoma[J]. Medicine (Baltimore), 2017, 96(17):e6795.
10 邱寶安, 趙文超, 夏念信, 等. 手術(shù)部分肝切除與射頻消融治療多發(fā)肝細(xì)胞癌預(yù)后比較[J]. 解放軍醫(yī)學(xué)院學(xué)報, 2015, 36(3):226-229.
11 West J, Wood H, Logan RF, et al. Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971-2001[J].Br J Cancer, 2006, 94(11): 1751-1758.
12 中華醫(yī)學(xué)會外科學(xué)分會膽道外科學(xué)組, 解放軍全軍肝膽外科專業(yè)委員會. 肝門部膽管癌診斷和治療指南(2013版)[J]. 中華外科雜志, 2013, 51(10): 865-871.
13 Tang H, Lu W, Li B, et al. Influence of surgical margins on overall survival after resection of intrahepatic cholangiocarcinoma[J].Medicine, 2016, 95(35): e4621.
14 Jarnagin WR, Fong Y, DeMatteo RP, et al. Staging, resectability,and outcome in 225 patients with hilar cholangiocarcinoma[J]. Ann Surg, 2001, 234(4): 507-517.
15 呂少誠, 史憲杰, 梁雨榮, 等. 肝門部膽管癌術(shù)后傷口感染的相關(guān)危險因素分析[J]. 解放軍醫(yī)學(xué)院學(xué)報, 2015(10): 1014-1016.
16 Feng Z, Hu W, Rajagopal G, et al. The tumor suppressor p53 :cancer and aging[J]. Cell Cycle, 2008, 7(7): 842-847.
17 Meng X, Tackmann NR, Liu S, et al. RPL23 Links Oncogenic RAS Signaling to p53-Mediated Tumor Suppression[J]. Cancer Res,2016, 76(17): 5030-5039.
18 Meng X, Franklin DA, Dong J, et al. MDM2-p53 pathway in hepatocellular carcinoma[J]. Cancer Res, 2014, 74(24):7161-7167.
19 Liu XF, Zhang H, Zhu SG, et al. Correlation of p53 gene mutation and expression of P53 protein in cholangiocarcinoma[J]. World J Gastroenterol, 2006, 12(29): 4706-4709.
20 O'Dell MR, Huang JL, Whitney-Miller CL, et al. Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma[J].Cancer Res, 2012, 72(6): 1557-1567.
21 Li H, Zhou ZQ, Yang ZR, et al. MicroRNA-191 acts as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic cholangiocarcinoma[J]. Hepatology, 2017, 66(1): 136-151.
22 Cheng Q, Luo X, Zhang B, et al. Distal bile duct carcinoma:prognostic factors after curative surgery. A series of 112 cases[J].Ann Surg Oncol, 2007, 14(3): 1212-1219.
23 Wakai T, Shirai Y, Sakata J, et al. Alteration of p53-binding protein 1 expression as a risk factor for local recurrence in patients undergoing resection for extrahepatic cholangiocarcinoma[J]. Int J Oncol,2011, 38(5): 1227-1236.
24 Song P, Cai Y, Tang H, et al. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines from 2001 to 2017[J]. BioScience Trends, 2017, 11(4): 389-398.
25 Roland CL, Starker LF, Kang Y, et al. Loss of DPC4/SMAD4 expression in primary gastrointestinal neuroendocrine tumors is associated with cancer-related death after resection[J]. Surgery,2017, 161(3): 753-759.
26 Lee KT, Chang WT, Wang SN, et al. Expression of DPC4/Smad4 gene in stone-containing intrahepatic bile duct[J]. J Surg Oncol,2006, 94(4): 338-343.
27 彭創(chuàng), 湯恢煥. 膽管癌的分子生物學(xué)進(jìn)展[J]. 國際病理科學(xué)與臨床雜志, 2007, 27(2): 119-124.
28 Rodriguez-Viciana P, Tetsu O, Oda K, et al. Cancer targets in the Ras pathway[J]. Cold Spring Harb Symp Quant Biol, 2005, 70 :461-467.
29 Chen TC, Jan YY, Yeh TS. K-ras mutation is strongly associated with perineural invasion and represents an independent prognostic factor of intrahepatic cholangiocarcinoma after hepatectomy[J].Ann Surg Oncol, 2012, 19(Suppl 3): S675-681.
30 Lubner SJ, Mahoney MR, Kolesar JL, et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study[J]. J Clin Oncol, 2010, 28(21): 3491-3497.
31 Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins :changing partners in the dance towards death[J]. Cell Death Differ,2018, 25(1): 65-80.
32 Romani AA, Soliani P, Desenzani S, et al. The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma[J]. BMC Cancer, 2006, 6 : 255.
33 Zhao W, Zhang B, Guo X, et al. Expression of Ki-67, Bax and p73 in patients with hilar cholangiocarcinoma[J]. Cancer Biomark,2014, 14(4): 197-202.
34 Boueroy P, Aukkanimart R, Boonmars T, et al. Inhibitory Effect of Aspirin on Cholangiocarcinoma Cell[J]. Asian Pac J Cancer Prev,2017, 18(11): 3091-3096.
35 Wang C, Mao Z , Wang L, et al. Cordycepin inhibits cell growth and induces apoptosis in human cholangiocarcinoma[J]. Neoplasma,2017, 64(6): 834-839.
36 Kwak TW, Park SB, Kim HJ, et al. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells[J].Onco Targets Ther, 2017, 10 : 137-144.
37 Sydor S, Jafoui S, Wingerter L, et al. Bcl-2 degradation is an additional pro-apoptotic effect of polo-like kinase inhibition in cholangiocarcinoma cells[J]. World J Gastroenterol, 2017, 23(22):4007-4015.
38 Wattanawongdon W, Hahnvajanawong C, Namwat N, et al.Establishment and characterization of gemcitabine-resistant human cholangiocarcinoma cell lines with multidrug resistance and enhanced invasiveness[J]. Int J Oncol, 2015, 47(1): 398-410.
39 鄭文婕, 童坦君, 張宗玉. 細(xì)胞衰老的重要通路:p16^INK4a/Rb和p19^ARF/p53/p21^Cip1信號途徑[J]. 生命的化學(xué), 2002, 22(4): 314-316.
40 He S, Sharpless NE. Senescence in Health and Disease[J]. Cell,2017, 169(6): 1000-1011.
41 Nakanuma Y, Zen Y, Harada K, et al. Tumorigenesis and phenotypic characteristics of mucin-producing bile duct tumors: an immunohistochemical approach[J]. J Hepatobiliary Pancreat Sci,2010, 17(3): 211-222.
42 Sasaki M, Nakanuma Y. Cellular senescence in biliary pathology.Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions[J]. Histol Histopathol, 2015, 30(3): 267-275.
43 Nakagawa S, Sakamoto Y, Okabe H, et al. Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells[J]. Oncol Rep,2014, 31(2): 983-988.
44 Tsokos CG, Krings G, Yilmaz F, et al. Proliferative index facilitates distinction between benign biliary lesions and intrahepatic cholangiocarcinoma[J]. Hum Pathol, 2016, 57 : 61-67.
45 Jones RP, Bird NT, Smith RA, et al. Prognostic molecular markers in resected extrahepatic biliary tract cancers; a systematic review and meta-analysis of immunohistochemically detected biomarkers[J].Biomark Med, 2015, 9(8): 763-775.
46 Mikami T, Saegusa M, Mitomi H, et al. Significant correlations of E-cadherin, catenin, and CD44 variant form expression with carcinoma cell differentiation and prognosis of extrahepatic bile duct carcinomas[J]. Am J Clin Pathol, 2001, 116(3): 369-376.