999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微重力下低溫貯箱內推進劑相變仿真模型研究

2018-03-21 08:11:12夕,王玨,容易,黃
導彈與航天運載技術 2018年1期
關鍵詞:界面模型

王 夕,王 玨,容 易,黃 輝

?

微重力下低溫貯箱內推進劑相變仿真模型研究

王 夕1,王 玨2,容 易1,黃 輝1

(1. 北京宇航系統工程研究所,北京,100076;2.中國運載火箭技術研究院,北京,100076)

低溫推進劑具有沸點低、易汽化的特點,相變是低溫推進劑長時間在軌蒸發量控制問題中需要考慮的首要影響因素。相變模型對低溫推進劑蒸發仿真起到重要作用,構建合理的相變模型成為低溫流體蒸發量仿真重要的研究方向。基于4種相變理論,采用FLUENT軟件二次開發的方法,建立基于相平衡和非平衡理論的4種相變模型,開展微重力下液氫推進劑蒸發的數值模擬,并與國外探空火箭試驗進行比較和驗證。研究結果表明:比較4種相變模型對貯箱內壓力升高速率預示的準確性,得出了適用于微重力下低溫推進劑仿真的相變模型。

低溫推進劑;相變;微重力

0 引 言

在液體運載火箭的推進劑中,低溫推進劑具有比沖高、沸點低、難于貯存的特點,因此限制了其長時間的在軌使用。對低溫推進劑長時間在軌蒸發量控制問題的研究,可以采用試驗和仿真的方法。鑒于低溫和微重力試驗的難度,基于已有商業軟件的數值仿真是對貯箱內低溫推進劑開展研究的有效途徑。

目前,低溫推進劑蒸發的數值研究受到廣泛的關注。在低溫推進劑蒸發量的所有影響因素中,相變是重要的考慮因素,相變過程的建模是蒸發量控制研究的焦點問題,而發展相變數值模型的基礎是描述相變物理過程的理論模型。相變的理論模型包括相平衡模型和非平衡模型。相平衡模型中,假設液相和汽相之間達到平衡時,界面各相之間的溫度相等,處于平衡狀態[1];而在非平衡模型中,Schrage[2]使用基于Maxwell速度分布來分析液/汽界面的傳質過程,將界面的相變考慮為兩相界面對液/汽分子的捕獲和逃逸的非平衡過程;李震東[3]、Tanasawa[4]等總結了發生在液/汽相界面處的相變傳質理論,歸納為相平衡模型和非平衡模型;劉秋生[5]等使用簡化的Hertz-Knudsen方程對熱毛細作用主導的流動進行了研究,對微重力下的相變問題具備參考價值。

基于以上兩類相變理論,建立了相應的仿真模型,并用于低溫貯箱推進劑蒸發的仿真中。其中,相平衡模型在低溫貯箱CFD仿真中應用廣泛。程向華[6]等根據相平衡建立了液氧貯箱的二維模型,分析了液氧熱分層的形成過程及原因;Zilliac[7]等對貯箱進行建模,根據熱力學平衡原理建立相變模型。相比于相平衡模型在低溫推進劑相變仿真的廣泛使用,非平衡模型的使用很少。Olga[8]等應用非平衡模型開展了液氫貯箱內徑向噴霧的仿真,但并沒有將非平衡模型與相平衡模型進行對比研究。

實際的相變物理過程在界面處存在溫度跳變和非平衡的瞬態作用,與相平衡模型存在一定的差異,這些差異對低溫推進劑蒸發數值模擬仿真準確性的影響仍未被討論,比較不同相變仿真模型的準確性和適用性對低溫流體仿真具有重要作用。

本文基于已有的相變理論展開了CFD建模工作,通過FLUENT用戶自定義函數,建立基于不同相變理論的蒸發模型,并通過適當的假設修正蒸發模型,開展了貯箱內液氫蒸發仿真,與國外Areobee探空火箭試驗[9]進行了對比,并分析了不同的相變模型在低溫流體仿真中的應用。

1 數值模型

本文參照Aerobee探空火箭液氫蒸發試驗[9]開展了數值模擬的對比研究,基于相平衡理論和3種非平衡理論,通過界面假設和蒸發假設,建立了仿真軟件FLUENT下的相變模型,模擬試驗貯箱內壓力上升,驗證并比較不同模型的結果,得到適用于微重力下低溫推進劑蒸發量預示的數值仿真模型。

1.1 控制方程

采用二維軸對稱模型,對液氫貯箱推進劑受熱蒸發的過程進行分析。控制方程為連續方程、N-S方程和能量方程,對于每一相,有:

式中為密度;為速度;為動力粘度;為時間;為壓力;為能量;為系統加速度;為溫度;為體積力;為能量源項。

液相密度采用Boussinesq近似,其余物性作為溫度的函數分段插值,氣相則采用理想氣體模型。

(4)

考慮到蒸發過程流速小,因此流動采用層流模型。

微重力下需要考慮表面張力作用,采用連續表面張力模型如下:

1.2 相變模型

相變模型是本文主要研究對象,基于兩種假設,開展對4種相變模型的研究。

a)界面假設:相變僅發生在相界面處;

b)蒸發假設:只有在液相溫度高于飽和溫度時,才發生相變,不考慮冷凝的發生。

1.2.1 模型1

考慮使用相平衡模型[6],液相的超過飽和溫度的能量將全部轉化為相變,模型1方程為

1.2.2 模型2

Schrage[2]推薦的非平衡模型,即Hertz-Knudsen方程為

凈質量流率為正值,表明氣液界面上有凈的質量從氣相變為液相,即相界面上發生凝結;反之,如果凈質量流率為負值,則相界面上將發生蒸發。

1.2.3 模型3

劉秋生[5]等提出采用非平衡熱力學方法計算表面張力主導流動下的界面蒸發流量。蒸發界面假設為不變形,采用線性近似后的Hertz-Knudsen方程來描述蒸發界面的蒸發流量,即模型3:

1.2.4 模型4

采用相變模型[4,10],即模型4為

根據Tanasawa[4]的推薦值及實際計算的結果比較,取系數為0.2。

1.3 網格無關性驗證

對采用的二維軸對稱網格(見圖1)開展網格無關性驗證(見圖2),使用相變模型1,比較3種不同網格數量,網格數分別為5000,10 000和20 000。

圖1 采用的網格

圖2 網格無關性驗證曲線

3種網格壓力上升的偏差較小,其中與較高網格數量相比,中等網格數量的最終壓力差值占總壓力升高的4.17%,該偏差可以被忽略,結果較為一致。考慮到網格數的增加對計算效率的影響,采用中等網格數量開展數值仿真。

2 結果與分析

對4種相變模型開展研究,對比不同模型下貯箱內壓力上升速率與試驗實測值的偏差,同時對貯箱內的流體行為開展研究。仿真條件如表1所示,選取與試驗相同的初始壓力,并將初始溫度設置為該壓力下飽和溫度。假設貯箱為均勻受熱,選取試驗中平均熱流密度作為壁面熱流邊界條件。

表1 數值模擬條件

Tab.1 Conditions of Simulation

性能參數 球形貯罐直徑/cm22.86 體積充填率34.3% 平均熱流密度/(W·m-2)473.19 重力/(m·s-2)0.01 初始壓力/MPa0.1241 總受熱時間/s237

由于采用了兩種假設,本文將對界面假設和蒸發假設的合理性展開討論,并基于兩種假設,對采用的4種相變模型的對比分析。

2.1 界面假設

界面假設將相變界定在界面處,是否采用界面假設將對結果產生影響。采用/不采用界面假設代表兩種不同的相變原理。

汽化過程可分為界面蒸發和沸騰蒸發兩種方式。當模型不采用界面假設,液相溫度只要溫度超過飽和溫度,在任何位置均可發生汽化,這樣的模型更接近于沸騰。然而,在實際過程中,液體內部發生沸騰并產生氣泡需要達到一定的活化能,并非達到飽和溫度即開始汽化,在較低熱流密度的條件下相變往往以界面蒸發為主。熱量傳遞到界面需要一定的時間,當界面蒸發主導相變時,不采用界面假設將高估汽化傳質速率,即使與實際的沸騰過程相比,由于未考慮氣泡生成的過熱度,不采用加密假設的模型同樣會高估汽化傳質速率。

采用模型1和模型4來比較有/無界面假設的貯箱壓力上升結果如表2所示。在237 s內,無界面假設的模型得到的貯箱壓力和平均壓力升高速率均高于試驗值,而采用界面假設的模型得到的結果更接近于試驗值。結果表明,不采用界面假設的模型將高估汽化傳質速率,使壓力快速升高;采用界面假設的模型更為合理,進一步支撐了假設的合理性。對照試驗以界面蒸發過程為主,與沸騰過程有本質的區別,汽化過程僅發生在界面處,采用界面假設的模型也更符合實際。

表2 界面假設壓力上升結果對比

Tab.2 Pressure Rise Result of Interface Assumption

模型終壓/MPa壓力升高速率/(Pa·s-1) 試驗0.7302752557.7 模型1(無界面假設)0.8424493031.0 模型4(無界面假設)0.8882393224.2 模型1(界面假設)0.7569942670.4 模型4(界面假設)0.7682602718.0

在低溫推進劑貯箱的相變仿真中,是否采用界面假設,取決于流體的形態。若貯箱受熱較小,主要形態為界面蒸發,則使用界面假設;若貯箱受熱較大,主要形態為沸騰過程,則應當考慮不采用界面假設。

2.2 蒸發假設

蒸發假設的實質是忽略冷凝的作用。在實際過程中,發生在氣相內部(非界面處)的均勻冷凝一般很難發生,而非均勻冷凝則發生在有過冷界面存在的情形下[2]。而試驗中不存在大過冷度的過冷界面,若認為只要低于飽和溫度即發生冷凝,則可能高估冷凝的作用,造成計算偏差。因此,不采用純蒸發假設可能高估冷凝的作用。

采用模型1和模型3來比較有/無蒸發假設的貯箱壓力上升結果如圖3所示。

圖3 蒸發假設壓力上升結果對比曲線

圖3中,最終的壓力值和平均壓力上升速率可用于比較分析。由于試驗中加熱器啟動需要一定的時間,溫度由開始加熱到逐漸穩定,因此在試驗初始階段,加熱的熱流更小。而仿真中,熱流邊界條件設置為平均熱流密度,并保持恒定值,因而圖中曲線在100 s處壓力比數值模擬結果低是合理的,最終壓力是較為合理的比較參數。

由圖3可知,不采用蒸發假設時,模型3的最終壓力結果遠低于試驗值,而模型1的最終壓力同樣低于試驗值。不采用純蒸發假設的模型,高估了冷凝的作用,造成凈汽化速率的降低,壓力上升速率減緩,導致了與試驗的偏離。

采用蒸發假設的模型1和模型3的最終壓力值與試驗值更接近,結果更準確。通過有/無蒸發假設的對比分析,在沒有過冷壁面存在的條件下,采用蒸發假設的相變傳質模型更合理。

2.3 4種相變模型的結果分析

在界面假設和蒸發假設下,對4種蒸發模型開展了對比研究,以分析模型的準確性以及相平衡模型和非平衡模型的差別。

4種模型結果對比如表3所示,4種模型的壓力結果如圖4所示。

表3 4種模型結果對比

Tab.3 Results of Four Models

模型最終壓力/MPa平均壓力升高速率/(Pa·s-1)偏差 試驗0.730 2752557.7— 模型10.756 9942670.44.4% 模型20.657 5342250.8-12% 模型30.734 5462575.70.7% 模型40.768 2602718.06.3%

圖4 4種模型壓力結果

由表3可知,模型2的平均壓力升高速率偏差最大,為-12.0%。由于在相變模型中考慮了壓力,而壓力是較為敏感的參數,同時考慮壓力和溫度也增加了模型的復雜性,其計算結果可能出現較大的偏差。

模型4的壓力升高速率結果偏差為6.3%,比模型2的偏差更小,比其他兩種模型略為偏大,略高于試驗貯箱壓力結果。模型1是相平衡模型,而其他3種模型均為非平衡模型。模型1的偏差為4.4%,結果優于模型2、模型4,略高于試驗貯箱壓力結果。

模型3的壓力升高速率與試驗的偏差最小,偏差為0.7%,最適合用于微重力下液氫貯箱蒸發量的預示。

通過4種模型的對比和分析發現,模型1、模型3及模型4的偏差均小于7%,對微重力下低溫推進劑貯箱蒸發量預示的偏差均可被接受。其中,模型3考慮了在熱毛細力主導下的界面蒸發,對微重力下的情形更為適用,其結果相比于其他3種模型具備明顯的優勢,偏差最小,適用于微重力下低溫推進劑貯箱蒸發量預示和對貯箱壓力升高的數值模擬,具備良好的準確性。

在國內外對低溫推進劑蒸發的研究中,使用非平衡相變模型的較少,一般使用相平衡模型對蒸發過程進行數值模擬。根據以上的分析,相平衡模型具備在趨勢上預測貯箱壓力的能力,其仿真結果偏差在可接受的范圍內,這些研究的結果并不會在趨勢上受蒸發模型的影響。

在微重力這樣的特殊環境中,模型3相比于相平衡模型和其他非平衡模型具備準確性優勢。因此,在特定環境下,采用與環境相適應的非平衡模型將進一步提高仿真的準確性。

3 結 論

本文利用國外Aerobee探空火箭試驗數據對微重力下液氫貯箱內相變仿真開展CFD建模工作,根據不同的相變理論,通過兩種假設,對不同相變模型開展比較分析,得到如下結論:

a)在較低熱流、貯箱內以界面蒸發為主導的情況下,宜采用界面假設;在沒有過冷壁面存在的條件下,對低溫推進劑受熱蒸發相變的數值模擬宜采用蒸發假設。

b)本文比較了4種相變模型對封閉液氫貯箱內壓力升高的預測,其中包括1種相平衡模型和3種非平衡模型,結果表明,模型1、3、4均能在趨勢上對微重力下液氫封閉貯箱壓力升高趨勢進行預測,可有效模擬貯箱中的流體形態和溫度分布。相平衡模型1具備對貯箱內壓力升高趨勢的預測能力。

c)非平衡模型3仿真結果更接近試驗,對微重力下液氫蒸發的數值模擬具備良好的準確性,在微重力環境下的仿真中具備優勢。在特定環境下,采用與環境相適應的非平衡模型將進一步提高仿真的準確性。

[1] 吳雙應, 曾丹苓, 黃雙, 等. 微層蒸發模型的非平衡熱力學分析[J]. 熱科學與技術, 2005, 4(4): 283-288.

Wu Shuangying, Zeng Danling, Huang Shuang, et al. Non-equilibrium thermodynamic analysis of micro-layer evaporation model[J]. Journal of Thermal Science and Technology, 2005, 4(4): 283-288.

[2] Schrage R W. A theoretical study of interphase mass transfer[M]. NewYork: Columbia University Press, 1953.

[3] 李震東, 趙建福, 魯仰輝, 等. 池沸騰現象中熱毛細對流的成因[J]. 空間科學學報, 2008, 28(1): 38-43.

LI Zhendong, Zhao Jianfu, Lu Yanghui, et al. Origin of thermocapillary convection in pool boiling[J]. Chinese Journal of Space Science, 2008, 28(1):38-43.

[4] Tanasawa I. Advances in condensation heat transfer[J]. Advances in Heat Transfer, 1991, 21: 55-139.

[5] 劉秋生, 汪洋, 紀巖. 蒸發相變與界面流動耦合機理研究[J]. 工程熱物理學報, 2010(10): 1751-1754.

Liu Qiusheng, Wang Yang, Ji Yan. Coupling mechanism of evaporation phase-change and interfacial flow[J]. Journal of Engineering Thermophysics, 2010(10): 1751-1754.

[6] 程向華, 厲彥忠, 陳二鋒, 等. 新型運載火箭射前預冷液氧貯箱熱分層的數值研究[J]. 西安交通大學學報, 2008, 42(9): 1132-1136.

Cheng Xianghua, Li Yanzhong, Chen Erfeng, et al. Numerical investigation of thermal stratification in liquid Oxygen tank for new-style launch vehicle during ground precooling[J]. Journal of Xi'an Jiaotong University, 2008, 42(9): 1132-1136.

[7] Zilliac G, Karabeyoglu M A. Modeling of propellant tank pressurization[R]. AIAA, 2005-3549, 2005.

[8] Kartuzova O, Kassemi M, Agui J H, et al. A CFD model for the Multipurpose Hydrogen Test Bed (MHTB) ground-based self-pressurization and pressure control experiments[C]. Atlanta: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2014.

[9] Knoll R H, Smolak G R. Weightlessness experiments with liquid hydrogen in aerobee sounding rockets, uniform radiant heat addition-flight 1[R]. NASA TM X-484, 1962.

[10] ANSYS FLUENT 13.0 Theory Guide[M]. Canonsburg, PA, ANSYS. Inc., 2011.

Computational Research on Phase Change Model forCryogenic Propellant in Microgravity

Wang Xi1, Wang Jue2, Rong Yi1, Huang Hui1

(1. Beijing Institute of Astronautical Systems Engineering, Beijing, 100076; 2. China Academy of Launch Vehicle Technology, Beijing, 100076)

Boil off is a characteristic of cryogenic propellant, and the phenomenen of phase change is the major factor of cryogenic propellant storage on orbit. As the phase change model plays a key role in cryogenic fluid Computational Fluid Dynamics(CFD) simulation, the usage of reasonable phase change model will be important. Based on four different phase change theory, the commercial software FLUENT are used and four different phase change models are presented by user defined secondary developing code. A CFD research on liquid hydrogen evaporation in microgravity is present, comparing with NASA sounding rocket experiment. Finally, a reasonable phase change model is commended by comparing the pressurizing rate of the four models, which can be used in cryogenic fluid management simulation.

Cryogenic propellant; Phase change; Microgravity

1004-7182(2018)01-0036-05

10.7654/j.issn.1004-7182.20180107

V511

A

2016-12-14;

2017-02-20

王 夕(1989-),男,博士,工程師,主要研究方向為運載火箭總體設計

猜你喜歡
界面模型
一半模型
重要模型『一線三等角』
國企黨委前置研究的“四個界面”
當代陜西(2020年13期)2020-08-24 08:22:02
重尾非線性自回歸模型自加權M-估計的漸近分布
基于FANUC PICTURE的虛擬軸坐標顯示界面開發方法研究
空間界面
金秋(2017年4期)2017-06-07 08:22:16
電子顯微打開材料界面世界之門
人機交互界面發展趨勢研究
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
主站蜘蛛池模板: 狠狠干综合| 亚洲无限乱码| 国产乱人伦偷精品视频AAA| 毛片久久久| 波多野结衣无码AV在线| 在线国产毛片手机小视频 | 九九视频免费在线观看| 欧美精品伊人久久| 91亚洲免费视频| 成人福利在线免费观看| 三级国产在线观看| 这里只有精品在线播放| 国产浮力第一页永久地址 | 蜜桃臀无码内射一区二区三区| 日韩美女福利视频| 亚洲欧洲日产国产无码AV| 亚洲一区波多野结衣二区三区| 亚洲中文字幕23页在线| 亚洲成人精品在线| 一级成人a毛片免费播放| 久久久久无码精品国产免费| 精品人妻AV区| 永久免费无码成人网站| 青青青亚洲精品国产| 亚洲人成电影在线播放| 国产呦精品一区二区三区下载| 国产精品久久国产精麻豆99网站| 国产精品短篇二区| 五月婷婷激情四射| 久草性视频| 色有码无码视频| 亚洲精品第一页不卡| 国产精品人成在线播放| 亚洲av色吊丝无码| 午夜小视频在线| 91丝袜在线观看| 日本精品αv中文字幕| 精品亚洲国产成人AV| 动漫精品啪啪一区二区三区| 72种姿势欧美久久久大黄蕉| 婷婷六月在线| 午夜国产精品视频| 欧美一区二区福利视频| 91在线视频福利| 国产欧美视频一区二区三区| 久久一色本道亚洲| 国产免费自拍视频| 亚洲天堂.com| 国产成人精品一区二区免费看京| 日本国产精品一区久久久| 九色在线观看视频| 免费一极毛片| 亚洲全网成人资源在线观看| 久久久四虎成人永久免费网站| 亚洲精品国产精品乱码不卞 | 五月婷婷综合色| 欧美人人干| 国产精品林美惠子在线观看| 成人无码区免费视频网站蜜臀| 亚洲人成成无码网WWW| 国产精品人成在线播放| 国产香蕉在线视频| jizz在线观看| 成人欧美在线观看| 91精品网站| 小说区 亚洲 自拍 另类| 国产一区二区色淫影院| 福利姬国产精品一区在线| 亚洲精品动漫在线观看| 欧美成人影院亚洲综合图| 欧美精品黑人粗大| 最新亚洲人成无码网站欣赏网 | 成人a免费α片在线视频网站| 成年A级毛片| 国产一级二级三级毛片| 欧美三级自拍| 亚洲AV无码一区二区三区牲色| 欧美五月婷婷| 国产精品自在线拍国产电影| 黄色a一级视频| 福利在线一区| 国产在线观看成人91|