楊 帆,馬 鑫,武 涌,陳紅兵,3,李 欣,*
食物過敏是食品安全的重要問題之一。目前大多數研究集中在食物過敏的效應階段,主要探索過敏原對肥大細胞和嗜堿性粒細胞的刺激和引起相關抗體和細胞因子的變化。而對食物過敏的致敏階段,尤其針對腸道黏膜系統中的相關免疫細胞研究較少。食物過敏原必然經過胃腸道消化,因此其在胃腸道消化后引發的致敏階段才應是食物過敏研究的根本。本文針對食物過敏原在胃腸道中消化穩定性和腸道黏膜系統中腸上皮細胞、樹突狀細胞(dendritic cells,DCs)、B淋巴細胞以及CD4+T淋巴細胞的變化探索食物過敏原在腸道黏膜引起免疫應答的工作機制,為食物過敏在致敏階段的研究提供理論參考。
機體消化吸收食物是食物從口腔到胃部再到腸道的動態分段消化吸收過程。消化后的食物中的大部分蛋白質會被降解,形成容易被小腸吸收的小肽或者氨基酸,從而給機體提供營養。其中部分蛋白質在胃腸道中被消化降解成氨基酸數小于8的多肽或氨基酸后,無法被抗原提呈細胞識別與遞呈[1]。因此,具有致敏作用的肽段須具有一定長度。例如van Beresteijn等[2]發現引起過敏反應的乳清肽最低分子質量為3 kDa。也有些蛋白質或多肽能夠抵抗胃腸道消化,保持完整抗原表位,甚至表位暴露。
因此,食物過敏原蛋白經胃腸道消化后的分子大小是食物是否能引發致敏的重要因素之一。Takagi等[3]在對多種主要食物過敏原消化穩定性的研究中發現,雞蛋卵白蛋白分子質量為45.9 kDa,經胃腸道消化后降低至40.5 kDa,將消化后的雞蛋卵白蛋白進行小鼠抗-雞蛋卵白蛋白抗血清免疫印跡分析,其能夠形成明顯的條帶,說明消化后的雞蛋卵白蛋白具有致敏性。Martos等[4]在生理條件下體外模擬消化雞蛋卵白蛋白,其中分子質量為40.1 kDa的肽段在胃部消化過程能穩定存在,且具有很強的免疫球蛋白(immunoglobulin,Ig)E結合能力,而在后續腸道中消化60 min后基本被降解為小分子肽段,但其消化產物依舊存在IgE結合表位。花生蛋白中Ara h 2與Ara h 6引起的過敏占總花生過敏患病率80%~90%,是花生的兩個主要過敏原[5-7]。Sen等[8]對純化后的Ara h 2進行體外模擬胃腸道消化,分析消化肽段氨基酸序列,發現Ara h 2中從第23位氨基酸開始,包含約90個氨基酸組成的約10 kDa的肽段在胃腸道中不被消化;通過對花生過敏患者的血清進行免疫印跡分析,發現此消化肽段具有2~7 個IgE結合表位。Koppelman等[9]通過對純化的花生主要過敏原Ara h 1、Ara h 2、Ara h 3以及Ara h 6進行不同濃度的胃蛋白酶消化穩定性評估,發現Ara h 2與Ara h 6在消化60 min后,仍有部分肽段穩定存在,而Ara h 1與Ara h 3分別在消化60 min和4 min后完全被降解為小分子肽段。其中,Ara h 2與Ara h 6中的一個分子質量為10 kDa的肽段能抵抗胃腸道消化,具有與原蛋白相同的IgE結合能力[5];而Ara h 1與Ara h 3降解后片段的致敏性還未得到證實。Liu Guangming等[10]通過體外模擬胃腸道消化實驗對比了太平洋白蝦與草對蝦中肌球蛋白消化穩定性,發現太平洋白蝦相對草對蝦中蝦肌球蛋白在胃腸道中消化穩定性更強,并在用甲殼類動物過敏患者血清檢測消化后產物致敏性的研究中,發現太平洋白蝦中蝦肌球蛋白在胃部消化60 min及腸道消化240 min后均具有更強的潛在致敏性。
腸道黏膜免疫系統包括固有免疫系統與適應性免疫系統,涉及多種組織屏障、免疫細胞以及免疫分子。腸道固有免疫系統由腸道上皮組織、腸道上皮下的黏膜組織中固有免疫細胞(DCs、吞噬細胞、自然殺傷細胞與嗜酸性粒細胞)與固有免疫分子(干擾素(interferon,IFN)-γ、白細胞介素(interleukin,IL)等)共同組成。腸道上皮組織下的黏膜組織中還包括了由腸相關淋巴組織(gut associated lymphoid tissue,GALT)、B淋巴細胞和T淋巴細胞等構成的適應性免疫應答系統。其中,腸道上皮組織形成物理化學屏障,不僅具備分子篩作用,能有效阻止分子質量大于600 Da的食物過敏原蛋白進入機體,還能進一步降解食物過敏原蛋白[11]。然而,腸道上皮細胞能通過其他多種途徑攝取食物大分子抗原,使抗原進入腸黏膜。例如,腸上皮細胞通過旁路擴散轉運抗原,而M細胞通過轉胞吞作用攝取抗原,杯狀細胞則通過相關抗原通道轉運抗原[12-13]。另外,腸上皮細胞能夠低表達主要組織相容性復合體Ⅱ類(major histocompatibility complex Ⅱ,MHCⅡ)分子,作為非專職性抗原遞呈細胞來加工遞呈抗原[11-14]。
腸上皮細胞呈單層緊密排列組成腸道上皮組織并覆蓋于黏膜表面,形成外界環境與體內環境之間的動態保護屏障。腸道上皮組織中排布著5 種類型腸上皮細胞:吸收性柱狀上皮細胞(腸細胞)、杯狀細胞、內分泌細胞、潘氏細胞及M細胞。其中,腸細胞占80%以上,其表面突起許多微絨毛結構,一方面增大了與外界物質接觸的表面積,從而利于吸收外源物質;另一方面在刷狀緣表面可表達分泌多種蛋白質降解酶,可對進入腸腔中的蛋白質進一步降解[15]。杯狀細胞是一種分泌型腸上皮細胞,它可分泌多種黏蛋白組成腸道上皮組織黏液屏障。黏液可通過疏水作用結合外源抗原蛋白,從而限制它們進入腸黏膜。而根據相關研究報道,杯狀細胞可通過其他通道使可溶性小分子食物蛋白進入腸黏膜中[16-17]。而M細胞是一種存在于腸道上皮組織中特化的抗原轉運細胞,其細胞表面無微絨毛結構,不能分泌消化酶和黏液,使得抗原物質更容易通過M細胞進入腸黏膜。同時還有Occludin家族、Claudin家族、ZOs家族等50多種蛋白通過形成緊密連接來調控腸道上皮組織的滲透性[18]。這種緊密連接可以阻止過多的食物抗原通過細胞旁路途徑進入腸道黏膜組織。據報道,腸上皮細胞基底外側表達的多聚免疫球蛋白受體,能夠結合固有層中漿細胞分泌的二聚體IgA,并通過主動轉胞吞作用將二聚體IgA轉運至腸腔,有助于清除腸腔中的蛋白抗原[19]。Frossard等[20]在對β-乳球蛋白過敏的小鼠模型研究中發現,β-乳球蛋白致敏的小鼠糞便中抗原特異性IgA的效價比耐受組高。由此可見腸上皮細胞既構成了阻礙外界抗原進入腸黏膜的屏障,同時也促進了機體對營養物質甚至是食物抗原的吸收,且在固有免疫與適應性免疫應答之間起重要的連接作用。
由于動物腸上皮細胞體外培養技術的限制,目前,國內外對于腸上皮細胞在物質吸收轉運研究大多數是建立一種腸上皮細胞模型,即20世紀80年代發現一種在形態學和生物化學上的性質和小腸上皮細胞相似的細胞——人結腸腺癌(Caco-2)細胞,并將這種細胞模型運用到藥物吸收研究中。之后許多食物過敏原轉運吸收的研究均以此模型為基礎并加以改進[21-23]。但這種細胞模型在食物過敏原蛋白消化吸收研究工作中依舊存在不足,細胞之間連接太過緊密,缺少微絨毛結構而不能分泌消化酶與黏液,且相對正常腸細胞具有極少的M細胞和杯狀細胞。因此,為了能更好地進行食物過敏機制的研究,期望能模擬出一種與腸上皮細胞體內生長更相似的培養方法。
DCs作為專職性抗原遞呈細胞之一,也是唯一能夠活化初始T淋巴細胞的抗原遞呈細胞。不同來源的DCs亞群具有相似性,但目前在DCs功能方面的研究主要來源于小鼠,人源的較少。小鼠小腸中的DCs亞群高表達CD11c及MHCⅡ,不表達IgG高親和力受體CD64,且基于CD11b、CD8α、CD103以及CX3CR1分子的表達可對DCs亞群進行分類[24]。小鼠小腸固有層中主要存在的CD103+CX3CR1-DCs包括CD11b+CD8α-以CD11b-CD8α+兩種異質群體,而來自血液的CD103-DCs主要存在于小鼠腸系淋巴結[25]。源于腸道的CD103-CX3CR1+DCs定居在腸道固有層,其樹突能在腸上皮細胞間隙延伸至腸腔攝取抗原,并使抗原進入到腸道黏膜。有研究發現,小鼠小腸中CD103+CD11b+、CD103+CD8α+和CD103-是3 種可遷移至腸系膜淋巴結的DCs亞群,且分別在免疫耐受形成、外源抗原遞呈進入腸系膜淋巴結,以及初始T淋巴細胞誘導分化中發揮重要作用[25]。人體腸道中共表達CD141和DNGR-1兩種分子的CD103+SIRPα-DCs等同于小鼠腸道中的CD103+CD11b-CD8α+DCs,而不表達這兩種分子的CD103+SIRPα-DCs則相當于小鼠腸道中的CD103+CD11b+DCs,對于表達CX3CR1的CD103-CD64-SIRPα+DCs可能與CD103+CD11b-DCs相同[24]。同時,由于受到外界抗原刺激,腸道黏膜組織分泌不同的細胞因子,包括IL-1β、IL-6、IL-10、IL-12、IL-18、轉化生長因子(transforming growth factor,TGF)-β、腫瘤壞死因子(tumor necrosis factor,TNF)-α及視黃酸。這些細胞因子導致DCs分化為不同亞型并分泌相關免疫因子,且通過參與CD4+T淋巴細胞分化成為效應T淋巴細胞來對機體免疫與耐受進行調節[26]。
正常情況下,DCs在腸道組織中處于未成熟狀態,具有很強的抗原攝取能力,能低表達MHCⅡ分子、共刺激分子及黏附因子。未成熟的DCs接觸到抗原或受到一些炎性細胞因子(TNF-α、IL-1β)刺激后開始成熟;此時DCs表面高表達的MHCⅡ分子特異性結合抗原分子后,經由傳入淋巴管進入腸相關淋巴組織,并識別初始T淋巴細胞表面受體(T cell receptor,TCR)促使T淋巴細胞初步活化,同時DCs也上調表達共刺激分子促進T淋巴細胞完全活化。Man等[27]通過建立牛乳致敏小鼠模型發現,在口服牛乳的小鼠腸道派氏淋巴結(peyer patch,PP)中,DCs將牛乳過敏原遞呈給CD4+T淋巴細胞后,相對不喂養牛乳的對照組的凋亡時間延長,且僅在存在特異性牛乳抗原時DCs才會凋亡。研究結果表明,腸道中的DCs可攝取并攜帶組織中的抗原進入腸相關淋巴系統,誘導初始T淋巴細胞分化,進而引起腸道黏膜免疫的發生,且腸道DCs成熟與凋亡依賴于對T淋巴細胞特異性抗原遞呈與加工。
腸道黏膜系統中產生致敏的部位包括PP、孤立淋巴濾泡、腸系膜淋巴結、固有層及腸道上皮組織內,這些部位均分布著T淋巴細胞與B淋巴細胞。其中T淋巴細胞根據其表面受體的不同,可分為αβ T淋巴細胞與γδ T淋巴細胞,其中αβ T淋巴細胞為主要的T淋巴細胞,占95%以上,對抗原識別具有特異性;根據表面分子不同又可分為CD4+CD8-、CD4-CD8+及CD4-CD8-T淋巴細胞;根據功能不同可分為CD4+輔助性T(T helper,Th)細胞、CD8+細胞毒性T淋巴細胞和調節性T淋巴(regulatory T,Tregs)細胞。目前發現Th細胞包括Th1、Th2、Th9、Th17、Th22及Tfh幾種亞型,它們由初始CD4+T淋巴細胞受抗原刺激后分化而來,分化結果受到抗原性質、細胞因子和抗原遞呈細胞表達的共刺激分子的共同控制,并在局部免疫調節過程中起著重要的作用[28]。
而外周成熟的B淋巴細胞根據其表面表達的CD5分子,可分為CD5+的B1細胞和CD5-的B2淋巴細胞,其中B2淋巴細胞占90%以上,通過分泌抗體參與體液免疫應答。IgM是免疫應答中首先分泌的抗體,但隨著B淋巴細胞受到抗原刺激和Th細胞輔助而活化增殖,IgM產生類別轉換,形成IgG、IgA或IgE。腸道固有層內占70%~80%的B淋巴細胞產生的表面膜免疫球蛋白A(membrane IgA,mIgA)、TGF-β及IL-10能夠促進B淋巴細胞分化為分泌型IgA(secretory IgA,SIgA)的IgA+漿細胞,在腸道黏膜系統發生免疫應答及維持腸道穩態過程中,SIgA可通過轉胞吞作用進入腸腔,并作為首道防線對抗原物質進行清除[29-31]。過敏原進入腸道黏膜系統,B淋巴細胞特異性識別抗原,提呈給CD4+Th細胞并表達CD40L,與B淋巴細胞表面分子CD40結合后被完全通過活化,CD4+Th細胞活化分泌的IL-4、IL-21及IL-6能夠促進漿細胞合成介導體液免疫的抗體[32-33]。
腸上皮細胞主要是通過細胞因子與腸黏膜中免疫細胞產生相互作用并通過表達多種細胞因子和趨化因子受體,對淋巴細胞增殖、分化以及腸道上皮組織穩態調節發揮作用。有研究發現,Th3調節性細胞產生的轉化生長因子以及抗炎性細胞因子能夠保護腸道上皮細胞之間的緊密連接[34]。另有研究報道乳糜瀉患者攝入麩質蛋白后,腸道上皮細胞過表達的IL-15在T淋巴細胞增殖與活化中起重要作用[35]。之后Korneychuk等[36]在雞蛋過敏導致的腸下垂疾病發病機理的研究中發現,作為雞蛋中的主要過敏原之一,卵白蛋白能促進腸道上皮細胞過表達IL-15,且在IL-15與CD4+T淋巴細胞共同作用下能夠刺激誘導CD8+T淋巴細胞形成,而對腸道造成損傷,進而增加對抗原的吸收。研究報道促炎性細胞因子如IFN-γ與TNF-α能夠下調腸道上皮細胞間緊密連接的蛋白的表達[37]。最近又有報道指出,腸道上皮細胞表面可表達IFN-γ受體,且腸黏膜中產生的IFN-γ可增大腸道上皮屏障滲透性并提高抗原遞呈能力[38]。Kominsky等[39]對炎性腸病中IFN-γ的功能研究中發現,IFN-γ可以通過誘導腸道上皮細胞頂膜表達IL-10受體(IL-10R、IL-10R1),來恢復腸道穩態功能。而位于腸道上皮細胞頂膜的具有與IgE抗體低親和力結合的受體CD23,能夠保護抗原轉運過程不被降解,導致大量的能引發過敏反應的免疫原性蛋白進入到黏膜免疫系統[40]。腸上皮細胞產生的這些細胞因子與受體在體內組成龐大而完整的網絡,在免疫反應極向的調節以及黏膜損傷后的修復中發揮著重要作用,為腸道黏膜下的其他細胞提供活化和化學趨化信號。
DCs及其分泌的細胞因子與T淋巴細胞表面共刺激分子的表達可調節免疫應答種類和強度。在食物過敏模型中,DCs表面IgE受體與過敏原發生交聯時,能夠激活CD4+T淋巴細胞自發性產生Th2型細胞因子,且DCs本身能夠產生大量的促炎性細胞因子[41]。Yang Pingchang等[42]在利用葡萄球菌腸毒素B與雞蛋卵白蛋白誘導小鼠致敏的實驗中發現,葡萄球菌腸毒素B可上調腸道黏膜DCs表面黏蛋白域蛋白-4共刺激分子表達,并誘導雞蛋卵白蛋白特異性Th2細胞免疫應答。Feng Baisui等[43]通過建立口服花生及佐劑霍亂毒素(cholera toxin,CT)小鼠致敏模型得出相同結論:CT能夠上調腸道黏膜DCs表面黏蛋白域蛋白-4共刺激分子表達,并誘導花生特異性Th2細胞免疫應答。Blazquez等[44]在研究雞蛋過敏原卵白蛋白致敏小鼠模型中,對比于口服磷酸鹽緩沖溶液(phosphate buffered saline,PBS)組小鼠,口服雞蛋卵白蛋白及CT組小鼠腸系膜淋巴結中CD103+CD11b-CD8-DCs數量顯著增多,且上調CD103+CD11b-CD8-DCs中共刺激分子CD86以及OX40L的表達;同時檢測到致敏小鼠脾細胞中含有大量的IL-4、IL-13及少量的IFN-γ、IL-17,通過中和OX40L能完全抑制Th2分化,而IFN-γ、IL-17的產生不受影響,可見DCs表達OX40L決定了Th2的分化。Smit等[45]通過建立小鼠花生致敏模型發現,實驗組致敏小鼠腸道上皮內淋巴細胞中CD11b+DCs數量明顯增加,CD103+DCs數量減少,且主要誘導產生Th2細胞分化。Denning等[46]將不同小鼠腸道固有層DCs、初始CD4+T淋巴細胞以及雞蛋卵白蛋白進行共同培養,發現C57BL/6小鼠腸道中的CD103+CD11b+DCs能獨特地表達合成IL-6與TGF-β的mRNA及催化視黃酸形成的酶,從而有效地誘導初始CD4+T淋巴細胞分化為Th17,且CD103+CD11b-DCs誘導Tregs細胞產生與初始CD4+T淋巴細胞及DCs兩種細胞在腸道固有層中的比例有關。Cerovic等[25]建立雞蛋卵白蛋白的小鼠致敏模型,發現位于小鼠腸道淋巴邊界的CD103-DCs誘導初始CD4+T淋巴細胞與CD8+T淋巴細胞分化形成的效應T淋巴細胞均能分泌IL-17和IFN-γ。Scott等[47]建立野生型與CCR2缺陷型小鼠模型,通過雞蛋過敏原雞蛋卵白蛋白刺激小鼠小腸固有層CD103+CD11b+DCs、CCR2+或CCR2-亞群的CD103-CD11b+DCs,再與初始CD4+T淋巴細胞共培養,發現CCR2+CD103-CD11b+DCs能更有效地誘導初始CD4+T淋巴細胞分化為Th17,并分泌IL-17。可見CD103-DCs誘導初始T淋巴細胞分化與DCs表面CCR2分子表達有關。
口服耐受的產生往往與腸道黏膜中具有免疫抑制功能的Tregs細胞形成有關,且腸系膜淋巴結的存在是產生口服耐受的基本因素[48]。存在于腸黏膜固有層中的CD103+DCs,在接受外源抗原后可從腸道固有層遷移至腸系膜淋巴結,并將食物蛋白抗原遞呈給初始T淋巴細胞,并在其他免疫分子作用下誘導分化產生Tregs細胞。Sun Chengming等[49]證實了CD103+DCs在TGF-β和視黃酸作用下,能夠促進腸道相關淋巴系統中Tregs細胞的形成,且視黃酸可以提高Tregs細胞上參與腸歸巢的表面分子CCR9與α4β7的表達,從而形成并維持腸道發生免疫耐受。Iliev等[50]發現CD103+DCs的分化依賴于腸上皮細胞產生的視黃酸與TGF-β,且在兩者的共同作用下,CD103+DCs可產生大量的IL-10,從而誘導CD4+T淋巴細胞分化成Tregs細胞,發生免疫耐受。Ruiter等[51]發現非糖基化的花生蛋白可上調人骨髓DCs的視黃醛脫氫酶2的表達,從而使腸道合成更多的視黃酸,且有助于誘導天然T淋巴細胞產生整合素α4β7。Boucard-Jourdin等[52]發現整合素αvβ8優先由CD103+DCs合成,且促使CD103+DCs激活TGF-β并誘導產生Tregs細胞;而對于TGF-β和視黃酸,它們可以促進CD103+DCs表達整合素αvβ8。另外,Matteoli等[53]發現腸道CD103+DCs能表達吲哚胺2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO),而體內外抑制IDO形成或遺傳性缺失IDO均會導致CD4+FoxP3+Tregs細胞形成受阻,從而增加初始CD4+T淋巴細胞分化成Th1或Th17;由此可見,CD103+DCs產生的IDO在免疫耐受形成中也必不可少。
Rescigno等[54]首次發現腸道DCs能夠延伸樹突至腸腔捕捉抗原進入腸黏膜,通過表達腸道上皮緊密連接蛋白來維持腸道上皮屏障完整性。Schulz等[55]發現發揮這種作用的DCs表達表面分子CD11b與CX3CR1,且CD11b+CX3CR1+DCs定居于腸道固有層,攝取外源抗原進入腸道固有層后,再由CD103+DCs攜帶抗原遷移至腸系淋巴結誘導免疫耐受產生。Mazzini等[56]利用C57BL/6小鼠分別研究野生型與CX3CR1缺陷型小鼠小腸對雞蛋卵白蛋白的攝取情況,發現CX3CR1+DCs能夠有效地攝取腸腔中雞蛋卵白蛋白,且與缺乏表達CX3CR1分子的小鼠脾細胞對比,CX3CR1缺陷型小鼠促炎性因子IFN-γ產生降低。可見,CX3CR1+DCs及CD103+DCs在腸道中建立明確的分工來誘導Tregs細胞生成,從而形成腸道免疫耐受。
B淋巴細胞在對食物過敏原蛋白的應答過程中需要Th細胞的輔助,首先Th細胞表面的共刺激分子可提供B淋巴細胞活化必需的第二信號,其次Th細胞也被B淋巴細胞活化,分泌的細胞因子促進B淋巴細胞活化、增殖和分化,產生抗體。IgE介導的食物過敏的致敏過程是由Th2細胞通過分泌IL-4、IL-5及IL-13發揮作用,其中IL-4與IL-13能夠促使B淋巴細胞活化產生IgM,IL-4可誘導抗體類別轉化為IgE,且IL-5能夠增強這種效應[57-59]。另有研究發現,食物過敏組所產生的過敏原特異性IgG尤其是IgG1與IgG4的水平顯著高于不發生食物過敏的對照組,且這些抗體受Th2型細胞分泌的細胞因子調控,也表明IgG可能在食物過敏中發揮重要作用[60-61]。然而,非IgE介導的食物胃腸道過敏患者血清與正常組人血清中IgG水平都明顯上升,表明IgG不能作為非IgE介導的食物過敏中檢測指標[62-63]。目前研究對非IgE介導食物過敏的機制尚不清楚,漿細胞產生的抗體在其中發揮的作用有待進一步探索。
食物過敏原蛋白需要克服胃腸道中惡劣的消化環境及腸道上皮屏障,并保證完整的抗原表位進入到腸道黏膜系統才能誘導發生免疫應答。腸上皮細胞通過分泌細胞因子與CD4+T淋巴細胞產生相互作用,導致大量的食物過敏原蛋白進入到腸道黏膜系統。食物過敏原蛋白通過DCs識別并提呈給CD4+T淋巴細胞,然而,不同亞群的DCs影響著CD4+T淋巴細胞分化的方向。而Th細胞與B淋巴細胞之間相互作用在體液免疫中起重要作用,尤其是Th2型細胞經活化產生的細胞因子通過誘導漿細胞產生IgE來介導過敏反應。非IgE介導的腸道黏膜免疫機制更為復雜,需要更深入地研究。
[1] UNTERSMAYR E, JENSEN-JAROLIM E. The role of protein digestibility and antacids on food allergy outcomes[J]. Journal of Allergy and Clinical Immunology, 2008, 121(6): 1301-1308. DOI:10.1016/j.jaci.2008.04.025.
[2] VAN BERESTEIJN E C, MEIJER R J, SCHMIDT D G. Residual antigenicity of hypoallergenic infant formulas and the occurrence of milk-speciベc IgE antibodies in patients with clinical allergy[J]. Journal of Allergy and Clinical Immunology, 1995, 96(3): 365-374. DOI:10.1016/S0091-6749(95)70056-0.
[3] TAKAGI K, TESHIMA R, OKUNUKI H, et al. Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion[J]. Biological & Pharmaceutical Bulletin, 2003, 26(7):969-973. DOI:10.1248/bpb.26.969.
[4] MARTOS G, CONTRERAS P, MOLINA E, et al. Egg white ovalbumin digestion mimicking physiological conditions[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5640-5648. DOI:10.1021/jf904538w.
[5] APOSTOLOVIC D, STANIC-VUCINIC D, DE JONGH H H, et al. Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity[J]. Scientiベc Reports, 2016, 6: 29249. DOI:10.1038/srep29249.
[6] KOPPELMAN S J, WENSING M, ERTMANN M, et al. Relevance of Ara h 1, Ara h 2 and Ara h 3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h 2 is the most important peanut allergen[J].Clinical and Experimental Allergy, 2004, 34(4): 583-590. DOI:10.1111/j.1365-2222.2004.1923.x.
[7] KULIS M, CHEN X, LEW J, et al. The 2S albumin allergens of Arachis hypogaea, Ara h 2 and Ara h 6, are the major elicitors of anaphylaxis and can effectively desensitize peanut-allergic mice[J]. Clinical & Experimental Allergy, 2012, 42(2): 326-336. DOI:10.1111/j.1365-2222.2011.03934.x.
[8] SEN M, KOPPER R, PONS L, et al. Protein structure plays a critical role in peanut allergen Ara h 2 stability and may determine immunodominant IgE binding epitopes[J]. Journal of Allergy and Clinical Immunology,2002, 109(1): S300. DOI:10.1016/S0091-6749(02)82054-1.
[9] KOPPELMAN S J, HEFLE S L, TAYLOR S L, et al. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: a comparative in vitro study and partial characterization of digestion-resistant peptides[J].Molecular Nutrition & Food Research, 2010, 54(12): 1711-1721.DOI:10.1002/mnfr.201000011.
[10] LIU Guangming, CAO Minjie, HUANG Yuanyuan, et al. Comparative study of in vitro digestibility of major allergen tropomyosin and other food proteins of Chinese mitten crab (Eriocheir sinensis)[J]. Journal of the Science of Food and Agriculture, 2010, 90(10): 1614-1620.DOI:10.1002/jsfa.3988.
[11] REITSMA M, WESTERHOUT J, WICHERS H J, et al. Protein transport across the small intestine in food allergy[J]. Molecular Nutrition & Food Research, 2014, 58(1): 194-205. DOI:10.1002/mnfr.201300204.
[12] OHSHIMA Y. Mucosal immunity and the onset of allergic disease[J].Allergology International, 2013, 62(3): 279-289. DOI:10.2332/allergolint.13-RAI-0585.
[13] MéNARD S, CERF-BENSUSSAN N, HEYMAN M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens[J].Mucosal Immunology, 2010, 3(3): 247-259. DOI:10.1038/mi.2010.5.
[14] VITALE S, PICASCIA S, GIANFRANI C. The cross-talk between enterocytes and intraepithelial lymphocytes[J]. Molecular and Celluar Pediatrics, 2016, 3(1): 20. DOI:10.1186/s40348-016-0048-4.
[15] GAVROVIC-JANKULOVIC M, WILLEMSEN L E M. Epithelial models to study food allergen-induced barrier disruption and immune activation[J]. Drug Discovery Today: Disease Models, 2015, 17/18:29-36. DOI:10.1016/j.ddmod.2016.09.002.
[16] MCDOLE J R, WHEELER L W, MCDONALD K G, et al. Goblet cells deliver luminal antigen to CD103+dendritic cells in the small intestine[J]. Nature, 2012, 483: 345-349. DOI:10.1038/nature10863.
[17] HOWE S E, LICKTEIG D J, PLUNKETT K N, et al. The uptake of soluble and particulate antigens by epithelial cells in the mouse small intestine[J]. PLoS ONE, 2014, 9(1): e86656. DOI:10.1371/journal.pone.0086656.
[18] 張金衛, 林漢杰, 韓凌. 腸上皮細胞緊密連接的研究進展[J]. 中國醫藥導報, 2015, 12(6): 160-163.
[19] PETERSON L W, ARTIS D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis[J]. Nature Reviews Immunology, 2014, 14(3): 141-153. DOI:10.1038/nri3608.
[20] FROSSARD C P, HAUSER C, EIGENMANN P A. Antigen-speciベc secretory IgA antibodies in the gut are decreased in a mouse model of food allergy[J]. Journal of Allergy and Clinical Immunology, 2004,114(2): 377-382. DOI:10.1016/j.jaci.2004.03.040.
[21] PRICE D, ACKLAND M L, SUPHIOGLU C. Identifying epithelial endocytotic mechanisms of the peanut allergens Ara h 1 and Ara h 2[J]. International Archives of Allergy and Immunology, 2017,172(2): 106-115. DOI:10.1159/000451085.
[22] MORENO F J, RUBIO L A, OLANO A, et al. Uptake of 2S albumin allergens, Ber e 1 and Ses i 1, across human intestinal epithelial Caco-2 cell monolayers[J]. Journal of Agricultural and Food Chemisty, 2006,54(22): 8631-8639. DOI:10.1021/jf061760h.
[23] BODINIER M, LEGOUX M A, PINEAU F, et al. Intestinal translocation capabilities of wheat allergens using the Caco-2 cell line[J]. Journal of Agricultural and Food Chemisty, 2007, 55(11):4576-4583. DOI:10.1021/jf070187e.
[24] BEKIARIS V, PERSSON E K, AGACE W W. Intestinal dendritic cells in the regulation of mucosal immunity[J]. Immunological Reviews,2014, 260(1): 86-101. DOI:10.1111/imr.12194.
[25] CEROVIC V, HOUSTON S A, SCOTT C L, et al. Intestinal CD103(-)dendritic cells migrate in lymph and prime eあector T cells[J]. Mucosal Immunology, 2013, 6(1): 104-113. DOI:10.1038/mi.2012.53.
[26] SCHIAVI E, SMOLINSKA S, O’MAHONY L. Intestinal dendritic cells[J]. Current Opinion in Gastroenterology, 2015, 31(2): 98-103.DOI:10.1097/MOG.0000000000000155.
[27] MAN A L, BERTELLI E, REGOLI M, et al. Antigen-speciベc T cellmediated apoptosis of dendritic cells is impaired in a mouse model of food allergy[J]. Journal of Allergy and Clinical Immunology, 2004,113(5): 965-972. DOI:10.1016/j.jaci.2004.02.038.
[28] WAWRZYNIAK M, O’MAHONY L, AKDIS M. Role of regulatory cells in oral tolerance[J]. Allergy, Asthma & Immunology Research,2017, 9(2): 107-115. DOI:10.4168/aair.2017.9.2.107.
[29] MANTIS N J, ROL N, CORTHéSY B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut[J]. Mucosal Immunology, 2011, 4(6): 603-611. DOI:10.1038/mi.2011.41.
[30] FAGARASAN S, HONJO T. Intestinal IgA synthesis: regulation of front-line body defences[J]. Nature Reviews Immunology, 2003, 3(1):63-72. DOI:10.1038/nri982.
[31] 王玉奇. IgA抗體的結構、功能與調控[J]. 實驗血液學雜志,1995(3): 253-259.
[32] ETO D, LAO C, DITORO D, et al. IL-21 and IL-6 are critical for diあerent aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) diあerentiation[J]. PLoS ONE, 2011,6(3): e17739. DOI:10.1371/journal.pone.0017739.
[33] GASCAN H, GAUCHAT J F, AVERSA G, et al. Anti-Cd40 monoclonal-antibodies or CD4+T-cell clones and IL-4 induce Igg4 and Ige switching in purified human B-cells via different signaling pathways[J]. Journal of Immunology, 1991, 147(1): 8-13.
[34] PLANCHON S, FIOCCHI C, TAKAFUJI V, et al. Transforming growth factor-beta1 preserves epithelial barrier function: identiベcation of receptors, biochemical intermediates, and cytokine antagonists[J].Journal of Celluar Physiology, 1999, 181(1): 55-66. DOI:10.1002/(SICI)1097-4652(199910)181:1<55::AID-JCP6>3.0.CO;2-M.
[35] PAGLIARI D, CIANCI R, FROSALI S, et al. The role of IL-15 in gastrointestinal diseases: a bridge between innate and adaptive immune response[J]. Cytokine & Growth Factor Reviews, 2013, 24(5): 455-466. DOI:10.1016/j.cytogfr.2013.05.004.
[36] KORNEYCHUK N, RAMIRO-PUIG E, ETTERSPERGER J, et al.Interleukin 15 and CD4(+) T cells cooperate to promote small intestinal enteropathy in response to dietary antigen[J]. Gastroenterology, 2014,146(4): 1017-1027. DOI:10.1053/j.gastro.2013.12.023.
[37] MACDONALD T T, HUTCHINGS P, CHOY M Y, et al. Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inぼamed human intestine[J]. Clinical and Experimental Immunology, 1990, 81(2): 301-305. DOI:10.1111/j.1365-2249.1990.tb03334.x.
[38] ONYIAH J C, COLGAN S P. Cytokine responses and epithelial function in the intestinal mucosa[J]. Cellular and Molecular Life Sciences, 2016, 73(22): 4203-4212. DOI:10.1007/s00018-016-2289-8.[39] KOMINSKY D J, CAMPBELL E L, EHRENTRAUT S F, et al.IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia[J]. Journal of Immunology, 2014, 192(3): 1267-1276. DOI:10.4049/jimmunol.1301757.
[40] MORENO F J. Gastrointestinal digestion of food allergens: eあect on their allergenicity[J]. Biomedicine & Pharmacotherapy, 2007, 61(1):50-60. DOI:10.1016/j.biopha.2006.10.005.
[41] FRISCHMEYER-GUERRERIO P A, GUERRERIO A L,CHICHESTER K L, et al. Dendritic cell and T cell responses in children with food allergy[J]. Clinical and Experimental Allergy, 2011,41(1): 61-71. DOI:10.1111/j.1365-2222.2010.03606.x.
[42] YANG Pingchang, XING Zhou, BERIN C M, et al. TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-speciベc Th2 diあerentiation and intestinal allergy[J]. Gastroenterology, 2007,133(5): 1522-1533. DOI:10.1053/j.gastro.2007.08.006.
[43] FENG Baisui, CHEN Xiao, HE Shaoheng, et al. Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model[J]. Journal of Allergy and Clinical Immunology, 2008,122(1): 55-61. DOI:10.1016/j.jaci.2008.04.036.
[44] BLAZQUEZ A B, BERIN M C. Gastrointestinal dendritic cells promote Th2 skewing via OX40L[J]. Journal of Immunology, 2008,180(7): 4441-4450. DOI:10.4049/jimmunol.180.7.4441.
[45] SMIT J J, BOL-SCHOENMAKERS M, HASSING I, et al. The role of intestinal dendritic cells subsets in the establishment of food allergy[J].Clinical & Experimental Allergy, 2011, 41(6): 890-898. DOI:10.1111/j.1365-2222.2011.03738.x.
[46] DENNING T L, NORRIS B A, MEDINA-CONTRERAS O, et al.Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization[J]. Journal of Immunology, 2011, 187(2): 733-747. DOI:10.4049/jimmunol.1002701.
[47] SCOTT C L, BAIN C C, WRIGHT P B, et al. CCR2+CD103-intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells[J]. Mucosal Immunolology, 2015, 8(2): 327-339. DOI:10.1038/mi.2014.70.
[48] WORBS T, BODE U, YAN S, et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells[J]. Journal of Experimental Medicine, 2006, 203(3): 519-527.DOI:10.1084/jem.20052016.
[49] SUN Chengming, HALL J A, BLANK R B, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid[J]. Journal of Experimental Medicine, 2007,204(8): 1775-1785. DOI:10.1084/jem.20070602.
[50] ILIEV I D, MILETI E, MATTEOLI G, et al. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning[J]. Mucosal Immunology, 2009, 2(4):340-350. DOI:10.1038/mi.2009.13.
[51] RUITER B, GRISHINA G, JAGER S D, et al. Human dendritic cells stimulated with a novel peanut protein express high levels of retinaldehyde dehydrogenase 2 and induce RA-sensitive genes in naive T-cells[J]. Allergy, 2012, 67: 120-121. DOI:10.1016/j.jaci.2011.12.043.
[52] BOUCARD-JOURDIN M, KUGLER D, ENDALE AHANDA M L, et al. β8 integrin expression and activation of TGF-β by intestinal dendritic cells are determined by both tissue microenvironment and cell lineage[J]. Journal of Immunology, 2016, 197(5): 1968-1978.DOI:10.4049/jimmunol.1600244.
[53] MATTEOLI G, MAZZINI E, ILIEV I D, et al. Gut CD103+dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T eあector cell balance and oral tolerance induction[J]. Gut,2010, 59(5): 595-604. DOI:10.1136/gut.2009.185108.
[54] RESCIGNO M, URBANO M, VALZASINA B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria[J]. Nature Immunology, 2001, 2(4): 361-367.DOI:10.1038/86373.
[55] SCHULZ O, JAENSSON E, PERSSON E K, et al. Intestinal CD103+,but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions[J]. Journal of Experimental Medicine,2009, 206(13): 3101-3114. DOI:10.1084/jem.20091925.
[56] MAZZINI E, MASSIMILIANO L, PENNA G, et al. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+macrophages to CD103+dendritic cells[J]. Immunity, 2014,40(2): 248-261. DOI:10.1016/j.immuni.2013.12.012.
[57] CABRERA C M, URRA J M. Food allergy and the oral immunotherapy approach[J]. Archivum Immunologiae et Therapiae Experimentalis, 2015, 63(1): 31-39. DOI:10.1007/s00005-014-0304-z.
[58] KUMAR S, VERMA A K, DAS M, et al. Molecular mechanisms of IgE mediated food allergy[J]. International Immunopharmacology,2012, 13(4): 432-439. DOI:10.1016/j.intimp.2012.05.018.
[59] MORITA H, NOMURA I, MATSUDA A, et al. Gastrointestinal food allergy in infants[J]. Allergology International, 2013, 62(3): 297-307.DOI:10.2332/allergolint.13-RA-0542.
[60] SCOTT-TAYLOR T H, HOURIHANE J O’B, STROBEL S.Correlation of allergen-specific IgG subclass antibodies and T lymphocyte cytokine responses in children with multiple food allergies[J]. Pediatric Allergy and Immunology, 2010, 21(6):935-944. DOI:10.1111/j.1399-3038.2010.01025.x.
[61] ATKINSON W, SHELDON T A, SHAATH N, et al. Food elimination based on IgG antibodies in irritable bowel syndrome: a randomised controlled trial[J]. Gut, 2004, 53(10): 1459-1464. DOI:10.1136/gut.2003.037697.
[62] HOCHWALLNER H, SCHULMEISTER U, SWOBODA I, et al. Patients suffering from non-IgE-mediated cow’s milk protein intolerance cannot be diagnosed based on IgG subclass or IgA responses to milk allergens[J]. Allergy, 2011, 66(9): 1201-1207.DOI:10.1111/j.1398-9995.2011.02635.x.
[63] SHEK L P C, BARDINA L, CASTRO R, et al. Humoral and cellular responses to cow milk proteins in patients with milk-induced IgE-mediated and non-IgE-mediated disorders[J]. Allergy, 2005, 60(7):912-919. DOI:10.1111/j.1398-9995.2005.00705.x.