999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PERIODIC SOLUTIONS OF A NONHOMOGENEOUS ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATION

2018-04-02 06:52:22ZHAOHouyu
數學雜志 2018年2期

ZHAO Hou-yu

(School of Mathematics,Chongqing Normal University,Chongqing 401331,China)(Department of Pure Mathematics,University of Waterloo,Waterloo N2L 3G1,Canada)

1 Introduction

Recently,iterative functional differential equations of the form

appeared in several papers,here x[0](t)=t,x[1](t)=x(t),x[2](t)=x(x(t)),···,x[n](t)=x(xn?1(t)).In[1],Cooke pointed out that it is highly desirable to establish the existence and stability properties of periodic solutions for equations of the form

in which the lag h(t,x(t))implicitly involves x(t).Stephan[2]studied the existence of periodic solutions of equation

Eder[3]considered the iterative functional differential equation

and obtained that every solution either vanishes identically or is strictly monotonic.Feckan[4]studied the equation

and obtained an existence theorem for solutions satisfying x(0)=0.Later,Wang and Si[5]studied

and showed the existence theorem of analytic solutions.In particularly,Si and Cheng[6]discussed the smooth solutions of equation of

Some various properties of solutions for several iterative functional differential equations,we refer the interested reader to[7–10].

Since Burton[11]applied Krasnoselskii’s fixed theorem to prove the existence of periodic solutions,which was extensively used in proving stability,periodic of solutions and boundedness of solutions in functional differential(difference)equations.2005,Raffoul[12]used fixed point theorem to show a nonlinear neutral system

has a periodic solution.In[13],Guo and Yu discussed the existence and multiplicity of periodic of the second order difference equation.Some other works can also be found in[14–16].

In this paper,we consider the existence of periodic solutions of equation

where c1>0.For convenience,we will make use of C(R,R)to denote the set of all real valued continuous functions map R into R.

For T>0,we define

then PTis a Banach space with the norm

For P,L≥0,we define the set

which is a closed convex and bounded subset of PT,and we wish to find T-periodic functions x∈PT(P,L)satisfies(1.1).

2 Periodic Solutions of(1.1)

In this section,the existence of periodic solutions of equation(1.1)will be proved.Now let us state the Krasnoselskii’s fixed point theorem,it will be used to prove our main theorem.

Theorem 2.1(see[17])Let ? be a closed convex nonempty subset of a Banach space(B,‖ ·‖).Suppose that A and B map ? into B such that

(i)A is compact and continuous,

(ii)B is a contraction mapping,

(iii)x,y∈?,implies Ax+By∈?,

then there exists z∈? with z=Az+Bz.

We begin with the following lemma.

Lemma 2.2For any ?,ψ ∈ PT(P,L),

The result can be obtained by the definition of PT(P,L).

Lemma 2.3Suppose c1/=0.If x∈PT,then x(t)is a solution of equation(1.1)if and only if

where

ProofLet x(t)∈PT(P,L)be a solution of(1.1),multiply both sides of the resulting equation with e?c1tand integrate from t to t+T to obtain

Using the fact x(t+T)=x(t),the above expression can be put in the form

This completes the proof.

It is clear that G(t,s)=G(t+T,s+T)for all(t,s)∈R2,and for s∈[t,t+T],we have

Now we need to construct two mappings to satisfy Theorem 2.1.Set the map A,B:PT(P,L)→PTas the follwoing,

where F∈PT(P,L),G(t,s)defined as(2.3).

Lemma 2.4Operator A is continuous and compact on PT(P,L).

ProofTake ?,ψ ∈ PT(P,L),t∈ R,use(2.1)and(2.4),

This proves A is continuous.

Now we show that A is a compact map.It is easy to see that PT(P,L)is uniformly bounded and equicontinuous on R,thus by Arzela-Ascoli theorem,it is a compact set.Since A is continuous,it maps compact sets into compact sets,therefore A is compact.This completes the proof.

Lemma 2.5Operator B is a contraction mapping on PT(P,L).

ProofTake ?,ψ ∈ PT(P,L),

for any 0≤η<1,hence B defines a contraction mapping.

Theorem 2.6Suppose F∈PT(P,L)is given,c1>0 and the following inequalities are held

then eq.(1.1)has a periodic solution in PT(P,L).

ProofFor any ?,ψ ∈ PT(P,L),by(2.4)and(2.7),

Without loss of generality,we assume t2≥t1,by(2.7),

where t1≤ξ≤t2.

This shows that(A?)(t)+(Bψ)(t)∈ PT(P,L).By Lemma 2.4 and Lemma 2.5,we see that all the conditions of Krasnoselskii’s theorem are satisfied on the set PT(P,L).Thus there exists a fixed point x in PT(P,L)such that

Differential both sides of(2.10)and from Lemma 2.3,we can find(1.1)has a T-periodic solution.This completes the proof.

3 Uniqueness and Stability

In this section,uniqueness and stability of(1.1)will be proved.

Theorem 3.1In addition to the assumption of Theorem 2.6,suppose that

then(1.1)has a unique solution in PT(P,L).

ProofDefine an operator H from PT(P,L)into PT,

where G(t,s)defined as(2.3).Denote ?,ψ ∈ PT(P,L)are two different T-periodic solutions of(1.1),

where Γ=|c2|MT(1+L),thus

From(3.1),we know Γ < 1 and the fixed point ? must be unique.

Theorem 3.2The unique solution obtained in Theorem 3.1 depends continuously on the given functions F and ci(i=1,2).

ProofUnder the assumptions of Theorem 3.1,for any two functions Fi(x)in PT(P,L)are given,λiand μi,i=1,2 are constants satisfy(2.7).Then there are two unique corresponding functions ?(t)and ψ(t)in PT(P,L)such that

and

where

We have

where

thus

From(3.1),

and

This completes the proof.

Example 1Now we will show that the conditions in Theorem2.6 do not self-contradict.Consider the following equation

where

A simple calculation yields 4.19<and(1+|c2|)MT<0.47<1.Let P=1,L=8,2P(1+|c2|)=2.2<8,then(2.7)is satisfied.By Theorem 2.6,equation(3.4)has aperiodic solution x such that‖x‖≤ 1,and

[1]Cooke K L.Functional differential systems:some models and perturbation problems.In Proceedings of the international symposium on differential equations and dynamical systems[M].New York:Academic Press,1967.

[2]Stephan B H.On the existence of periodic solutions of z′(t)= ?az(t?r+μk(t,z(t)))+F(t)[J].J.Diff.Equ.,1969,6:408–419.

[3]Eder E.The functional differential equation x′(t)=x(x(t))[J].J.Diff.Equ.,1984,54:390–400.

[4]Feckan E.On certain type of functional differential equations[J].Math.Slovaca,1993,43:39–43.

[5]Si J G,Wang X P.Analytic solutions of an iterative functional differential equation[J].J.Math.Anal.Appl.,2001,262:490–498.

[6]Si J G,Cheng S S.Smooth solutions of a nonhomogeneous iterative functional differential equation[J].P.Roy.Soc.Edinb.,1998,128(A):821–831.

[7]Minsker S.On splitting the area under curves[J].J.Diff.Equ.,1977,26:443–457.

[8]Minsker S.On splitting the area under curves II[J].J.Diff.Equ.,1982,45:182–190.

[9]Stanek S.On global properties of solutions of functional differential equations x′(t)=x(x(t))+x(t)[J].Dyn.Sys.Appl.,1995,4:263–278.

[10]Wang K.On the equation x′(t)=f(x(x(t)))[J].Funkcial.Ekvac.,1990,33:405–425.

[11]Burton T A.Stability by fixed point theory for functional differential equations[M].New York:Dover,2006.

[12]Raffoul Y.Positive periodic solutions of nonlinear functional differential equations[J].Electron.J.Diff.Eqns.,2002,55:1–8.

[13]Guo Z.,Yu J.Existence of periodic and subharmonic solutions for second-order superlinear difference equations[J].Sci.China,2003,46(4):506–515.

[14]Chow S N.Existence of periodic solutions of autonomous functional differential equations[J].J.Diff.Equ.,1974,15:350–378.

[15]Kaufmann E R,Raffoul Y.Periodic solutions for a neutral nonlinear dynamical equation on a time scale[J].J.Math.Anal.Appl.,2006,319:315–325.

[16]Zhou Z,Yu J,Guo Z.Periodic solutions of higher-dimensional discrete systems[J].P.Roy.Soc.Edinb.,2004,134(A):1013–1022.

[17]Smart D R.Fixed points theorems[M].Cambridge:Cambridge University Press,1980.

主站蜘蛛池模板: 国产91视频观看| 国产在线一区视频| 欧美性猛交一区二区三区| 欧美v在线| 国产精品内射视频| 天天色天天综合| 亚洲香蕉久久| 91成人在线免费观看| 米奇精品一区二区三区| 亚洲男人天堂2020| 国产va免费精品观看| 免费观看精品视频999| 亚洲一区二区三区香蕉| 2019年国产精品自拍不卡| 欧美激情伊人| 欧亚日韩Av| 亚洲小视频网站| 女人av社区男人的天堂| 亚洲日产2021三区在线| 福利在线免费视频| 国产精品福利尤物youwu| 欧美日韩中文国产va另类| 亚洲精品动漫在线观看| 91色在线观看| 亚洲精品大秀视频| 国产系列在线| 国产欧美日韩另类| 国产日韩久久久久无码精品| 人妻丰满熟妇αv无码| 91亚洲视频下载| 亚洲第一区欧美国产综合| 亚洲 日韩 激情 无码 中出| 国产自视频| 91在线激情在线观看| 亚洲av综合网| 97人妻精品专区久久久久| 国产无码高清视频不卡| 国内精品一区二区在线观看| 婷婷亚洲综合五月天在线| 国产午夜人做人免费视频中文| 国产精品一老牛影视频| 成年人福利视频| 精品国产91爱| 成人中文在线| 欧洲日本亚洲中文字幕| 亚洲视屏在线观看| 色综合五月| 亚洲日本精品一区二区| AV天堂资源福利在线观看| 91精品伊人久久大香线蕉| 找国产毛片看| 国产免费a级片| 日韩欧美高清视频| 亚洲天堂网在线观看视频| 国产精品成人一区二区不卡| 无码精品国产dvd在线观看9久| 国产福利免费视频| 欧美激情首页| 亚洲国产天堂在线观看| 免费xxxxx在线观看网站| 亚洲国产精品日韩av专区| 91丝袜美腿高跟国产极品老师| 久久人午夜亚洲精品无码区| 色综合久久无码网| 国产欧美精品午夜在线播放| 亚洲人成人无码www| 国产传媒一区二区三区四区五区| 亚洲成人免费看| 色偷偷男人的天堂亚洲av| 精品小视频在线观看| 日本少妇又色又爽又高潮| 国产成人亚洲精品蜜芽影院| 国产精品原创不卡在线| 内射人妻无码色AV天堂| 久久这里只精品国产99热8| 无码 在线 在线| 欧美三级不卡在线观看视频| 色婷婷天天综合在线| 内射人妻无套中出无码| 国产成人精品一区二区三区| 91久久青青草原精品国产| 欧美啪啪视频免码|