巴達(dá)日夫
摘 要: 傳統(tǒng)基于LabVIEW的水文特征分析系統(tǒng)存在對(duì)水文特征監(jiān)測結(jié)果準(zhǔn)確率低,監(jiān)測用時(shí)長的問題。因此設(shè)計(jì)基于遙感圖像的水文特征分析系統(tǒng),采用B/S模式設(shè)計(jì)系統(tǒng)總體架構(gòu),確保用戶在搜索需要資料的同時(shí)提高系統(tǒng)整體的運(yùn)行效率。設(shè)計(jì)的系統(tǒng)顯示界面可實(shí)現(xiàn)站點(diǎn)查詢、水文特征、水文形態(tài)、水質(zhì)監(jiān)測和底圖切換的功能,系統(tǒng)采用的SQL Server數(shù)據(jù)庫包括遙感影像數(shù)據(jù)庫、水文特征信息數(shù)據(jù)庫和資料管理維護(hù)數(shù)據(jù)庫,完成水文特征數(shù)據(jù)的全面存儲(chǔ)。水文特征分析模塊采取數(shù)據(jù)預(yù)處理、水流的流向分析、匯流累積量計(jì)算以及河網(wǎng)生成等操作,對(duì)水文特征進(jìn)行全面、準(zhǔn)確分析,系統(tǒng)中的水位預(yù)警分析模塊通過對(duì)水域水位進(jìn)行監(jiān)測,依照不同安全級(jí)別將水位監(jiān)測結(jié)果進(jìn)行劃分,實(shí)現(xiàn)對(duì)危險(xiǎn)水位的準(zhǔn)確預(yù)警。實(shí)驗(yàn)結(jié)果表明,所設(shè)計(jì)系統(tǒng)能對(duì)水文特征進(jìn)行準(zhǔn)確分析,具有較高的監(jiān)測效率。
關(guān)鍵詞: 水文特征分析; 水資源評(píng)價(jià); 地下水; GIS; 水文地質(zhì)結(jié)構(gòu); 遙感圖像
中圖分類號(hào): TN911.73?34; TU991 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)08?0068?04
Abstract: The traditional hydrological characteristic analysis system based on LabVIEW has problems of low accurate hydrological characteristic monitoring results and long monitoring time. Therefore, a hydrological characteristic analysis system based on remote sensing images is designed. The B/S mode is adopted to design the overall architecture of the system to ensure that the overall operation efficiency of the system can be improved while users are searching the materials they need. Functions of site query, hydrological characteristic monitoring, hydrological pattern monitoring, water quality monitoring and base map switching are realized on the designed display interface of the system. The SQL Server database which includes remote sensing image database, hydrological characteristic information database and material management and maintenance database is adopted in the system to achieve overall storage of hydrological characteristic data. In the hydrological characteristic analysis module, operations such as data preprocessing, water flow direction analysis, river flow accumulation calculation, and river network generation are conducted for comprehensive and accurate analysis of hydrological characteristics. The water level warning analysis module is adopted in the system to execute monitoring according to the water level of water area and divide the security levels of water level monitoring results to achieve accurate warning of danger water levels. The experimental results show that the designed system can accurately analyze hydrological characteristics and has high monitoring efficiency.
Keywords: hydrological characteristic analysis; water resource assessment; underground water; GIS; hydrogeological structure; remote sensing image
近年來,隨著經(jīng)濟(jì)的發(fā)展、人口數(shù)量的增長以及大量的能源消耗,導(dǎo)致洪災(zāi)旱災(zāi)的發(fā)生日益頻繁,使水域附近的生態(tài)環(huán)境承受巨大壓力。為降低水域周邊環(huán)境的惡化速度,以及加強(qiáng)政府部門對(duì)水域的動(dòng)態(tài)掌握,有必要建立水文特征分析系統(tǒng)。遙感技術(shù)以其監(jiān)測范圍廣[1],獲取有效信息的用時(shí)短以及不受地理?xiàng)l件約束等特點(diǎn),被廣泛地應(yīng)用在水文特征分析中。中分辨率成像光譜儀(Moderate?Resolution Imaging Spectroradiometer,MODIS)遙感數(shù)據(jù)在數(shù)據(jù)的監(jiān)測頻率上明顯高出其他星源,MODIS遙感數(shù)據(jù)較高的數(shù)據(jù)獲取頻率能夠滿足對(duì)水文特征動(dòng)態(tài)監(jiān)測的需求。傳統(tǒng)基于LabVIEW的水文特征分析系統(tǒng)對(duì)水文特征監(jiān)測結(jié)果存在準(zhǔn)確率和效率低的問題。本文設(shè)計(jì)基于遙感圖像的水文特征分析系統(tǒng),對(duì)減輕洪水災(zāi)害對(duì)水域環(huán)境的威脅,促進(jìn)水域環(huán)境的可持續(xù)發(fā)展具有良好作用。
MODIS遙感圖像應(yīng)用于水文特征分析的主要原因?yàn)椋和ㄟ^GIS獲得的MODIS傳感圖像是免費(fèi)使用的,這就造就MODIS遙感圖像的廣泛應(yīng)用;MODIS遙感圖像涵蓋范圍廣,波段的涵蓋多達(dá)36個(gè)且對(duì)250 m,500 m和1 000 m外拍攝影像都有較高的分辨率;TERRA和AQUA衛(wèi)星均為太陽的同步衛(wèi)星,在同一個(gè)監(jiān)測點(diǎn)處分別在上午和下午經(jīng)過,拍攝影像的時(shí)間頻率互相替換,因此MODIS遙感影像的實(shí)用性較高。
1.1 系統(tǒng)總體架構(gòu)設(shè)計(jì)
本文設(shè)計(jì)的基于遙感圖像的水文特征分析系統(tǒng)是B/S模式。該結(jié)構(gòu)共分為表示層、業(yè)務(wù)邏輯層以及數(shù)據(jù)訪問層。其中表示層主要將用戶的瀏覽器作為運(yùn)行平臺(tái);業(yè)務(wù)邏輯層包括系統(tǒng)程序開發(fā)以及系統(tǒng)的各項(xiàng)業(yè)務(wù)的更新[2];數(shù)據(jù)訪問層涵蓋數(shù)據(jù)管理、更新以及維護(hù)等功能。這種層次結(jié)構(gòu)分明的設(shè)計(jì)模式能極大提高系統(tǒng)的運(yùn)行效率。圖1為本文的系統(tǒng)總體架構(gòu)圖。
表示層主要表達(dá)用戶系統(tǒng)的頁面,讓用戶可以使用系統(tǒng)的各種功能,用戶輸入需要查詢的內(nèi)容經(jīng)過業(yè)務(wù)邏輯層來對(duì)數(shù)據(jù)內(nèi)容進(jìn)行提取[3],提取結(jié)果在表示層顯示給用戶。系統(tǒng)的業(yè)務(wù)邏輯層負(fù)責(zé)進(jìn)行系統(tǒng)的開發(fā)、運(yùn)行調(diào)試等一系列工作,屬于系統(tǒng)的核心操作層。在表示層和數(shù)據(jù)訪問層間起到承接的作用。數(shù)據(jù)訪問層存儲(chǔ)系統(tǒng)所有數(shù)據(jù),并對(duì)數(shù)據(jù)實(shí)施更新、修改及刪除等功能。
1.2 系統(tǒng)數(shù)據(jù)庫模塊設(shè)計(jì)
本文系統(tǒng)建立的數(shù)據(jù)庫為SQL Server數(shù)據(jù)庫,同樣為三層B/S模式。SQL Server數(shù)據(jù)庫具有結(jié)構(gòu)簡便、適用于分布式環(huán)境效果好、反應(yīng)快速快以及經(jīng)濟(jì)性能好等優(yōu)點(diǎn),因此被廣泛使用。其中數(shù)據(jù)庫的組成包括:
1) 基本地理信息數(shù)據(jù):地理信息數(shù)據(jù)包括湖泊、河流以及水文監(jiān)測站的地理坐標(biāo)信息;
2) 遙感圖像本文選取的是MODIS 250左右的圖像數(shù)據(jù),以及少量的資源環(huán)境衛(wèi)星拍攝的影像數(shù)據(jù);
3) 各個(gè)監(jiān)測站點(diǎn)需要對(duì)水文特征包括水位、含沙量、輸沙量、流量以及徑流量進(jìn)行實(shí)時(shí)監(jiān)測[4],除此之外,還需利用3 s技術(shù)對(duì)地下水的質(zhì)量進(jìn)行監(jiān)測,對(duì)水資源進(jìn)行詳細(xì)的評(píng)價(jià)。
1.3 系統(tǒng)實(shí)現(xiàn)
1.3.1 水文特征分析模塊實(shí)現(xiàn)
在進(jìn)行水文特征分析前需要對(duì)DEM數(shù)據(jù)進(jìn)行預(yù)處理。處理內(nèi)容包括平滑操作和填坑處理。填坑處理的操作過程為先填平再墊高,水流的流向計(jì)算采用D8,對(duì)上游的積水面積進(jìn)行計(jì)算,提取水系,水文特征分析步驟如圖2所示。
水文特征的分析需要經(jīng)過一系列處理步驟,進(jìn)行水文特征分析前需要進(jìn)行數(shù)據(jù)預(yù)處理,即DEM格網(wǎng)數(shù)據(jù)生成操作。采用在ArcMap中添加離散點(diǎn)數(shù)據(jù),使用空間分析插值工具的方法將數(shù)據(jù)轉(zhuǎn)變?yōu)閇Spatial Analyst]>;>;[Interpolate to Raster]>;>;[Spline]。網(wǎng)格設(shè)置大小即可得到分辨率為多少的DEM網(wǎng)格數(shù)據(jù)。水域流向分析是研究水文特征的關(guān)鍵。本文使用Flow Direction命令應(yīng)用于DEM數(shù)據(jù)可生成水域的流向圖。確定水流方向后,通過水流方向計(jì)算匯流積累量,對(duì)于不同的柵格[5?6],柵格的匯流積累量越大,表明該地區(qū)形成的表徑流越容易。
1.3.2 水位預(yù)警分析模塊實(shí)現(xiàn)
水位預(yù)警模塊是確保水位安全的最后防線,在水文特征分析系統(tǒng)具有重要地位。系統(tǒng)對(duì)水域進(jìn)行水位監(jiān)測[7],與程序的設(shè)定值進(jìn)行比較分析,得到不同的安全級(jí)別。根據(jù)不同的水位監(jiān)測結(jié)果分為安全、危險(xiǎn)和非常危險(xiǎn)三個(gè)等級(jí)[8],并設(shè)置三個(gè)報(bào)警指示燈。根據(jù)季節(jié)的不同和水位變化的特點(diǎn)不同可對(duì)參數(shù)進(jìn)行修改,也可以采取增加其他變量來提高系統(tǒng)的危險(xiǎn)預(yù)警能力[9]。系統(tǒng)通過水位監(jiān)測裝置測得水位若處于最低水位和警戒水位之間,說明該水域當(dāng)前處于安全范圍內(nèi);若測得的水位值在警戒值和危險(xiǎn)值之間說明水體處于危險(xiǎn)狀態(tài),處于危險(xiǎn)水位以上可能會(huì)出現(xiàn)嚴(yán)重的洪災(zāi),水位監(jiān)測裝置見圖3。
系統(tǒng)針對(duì)不同的危險(xiǎn)等級(jí)設(shè)置不同的警報(bào)聲音,以便工作人員對(duì)不同的危險(xiǎn)等級(jí)做不同的對(duì)應(yīng)措施。
實(shí)驗(yàn)為驗(yàn)證本文系統(tǒng)對(duì)水文特征的分析效果,現(xiàn)對(duì)某市的某條河流進(jìn)行水文特征分析,利用遙感技術(shù)能從整體看出河流的所有支流的走向以及河道的寬度,對(duì)分析水文特征起到較好的輔助作用。實(shí)驗(yàn)現(xiàn)采用本文系統(tǒng)對(duì)水文特征的實(shí)地監(jiān)測,以基于LabVIEW的水文特征分析系統(tǒng)的水文特征監(jiān)測結(jié)果為對(duì)比實(shí)驗(yàn),分析兩種系統(tǒng)對(duì)不同水文特征的監(jiān)測結(jié)果準(zhǔn)確率。
實(shí)地的監(jiān)測對(duì)象為上述實(shí)驗(yàn)中的河流,為了保證實(shí)驗(yàn)結(jié)果具有較高的普遍性,分別在該河流的12個(gè)不同地點(diǎn)采用本文系統(tǒng)和基于LabVIEW的水文特征分析系統(tǒng)進(jìn)行實(shí)地監(jiān)測,實(shí)驗(yàn)結(jié)果見表1和表2。
從表1和表2系統(tǒng)的實(shí)地水文特征監(jiān)測結(jié)果可以看出,本文系統(tǒng)對(duì)不同水文特征的監(jiān)測結(jié)果的正確率均在90%以上,對(duì)水文特征分析結(jié)果準(zhǔn)確率高,而基于LabVIEW的水文特征分析系統(tǒng)的準(zhǔn)確率最高值為78.2%,遠(yuǎn)低于本文系統(tǒng)的最低水平。結(jié)果說明,本文系統(tǒng)在應(yīng)用實(shí)際中監(jiān)測結(jié)果的準(zhǔn)確性好。
為了使系統(tǒng)監(jiān)測結(jié)果用時(shí)對(duì)比效果更明顯,用圖4和圖5所示的折線圖進(jìn)行表示。
從圖4和圖5監(jiān)測用時(shí)可以明顯看出,本文系統(tǒng)的監(jiān)測用時(shí)在2.5 s以內(nèi),對(duì)水文特征分析的效率和準(zhǔn)確性均較高;基于LabVIEW的水文特征分析系統(tǒng)用時(shí)在6 s左右,用時(shí)較高于本文系統(tǒng)用時(shí)。綜合上述結(jié)論說明,本文系統(tǒng)對(duì)水文特征的監(jiān)測結(jié)果正確率以及監(jiān)測效率高。
本文設(shè)計(jì)的以及遙感圖像的水文特征分析系統(tǒng),能夠基于衛(wèi)星遙感拍攝的圖像對(duì)水文特征進(jìn)行分析,提高系統(tǒng)對(duì)水文特征監(jiān)測結(jié)果的正確率,提高系統(tǒng)的效率。
參考文獻(xiàn)
[1] 李盛陽,于海軍,韓潔,等.基于三維地球的海量遙感影像高效可視化管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J].遙感技術(shù)與應(yīng)用,2016,31(1):170?176.
LI Shengyang, YU Haijun, HAN Jie, et al. Design and implementation of efficient visualization management system for massive remote sensing images based on three?dimensional globe [J]. Remote sensing technology and application, 2016, 31(1): 170?176.
[2] 史潔青,馮仲科,劉金成.基于無人機(jī)遙感影像的高精度森林資源調(diào)查系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):82?90.
SHI Jieqing, FENG Zhongke, LIU Jincheng. Design and experiment of high precision forest resource investigation system based on UAV remote sensing images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 82?90.
[3] 楊宜菩,楊帆,潘國峰,等.基于同態(tài)系統(tǒng)濾波的高分辨率遙感圖像河流信息提取[J].計(jì)算機(jī)應(yīng)用,2016,36(1):248?253.
YANG Yipu, YANG Fan, PAN Guofeng, et al. River information extraction from high resolution remote sensing image based on homomorphic system filtering [J]. Journal of computer applications, 2016, 36(1): 248?253.
[4] 曹穎,王宏斌,王強(qiáng)強(qiáng),等.基于遙感技術(shù)的北京西山巖溶水系統(tǒng)劃分[J].水文,2015,35(6):57?60.
CAO Ying , WANG Hongbin, WANG Qiangqiang, et al. Application of remote sensing technology in division of karst water systems in west Beijing [J]. Journal of China hydrology, 2015, 35(6): 57?60.
[5] 毛華松,羅評(píng),沙田.響應(yīng)山地水文特征的沖溝地段城市設(shè)計(jì)策略研究[J].中國園林,2017,33(2):34?38.
MAO Huasong, LUO Ping, SHA Tian. Study on urban design strategy of gully area in response to mountain hydrological characteristics [J]. Chinese landscape architecture, 2017, 33(2): 34?38.
[6] 葛青,余超,李巧玲,等.基于主成分分析法的嵌套流域水文相似性研究[J].水力發(fā)電,2016,42(12):29?32.
GE Qing, YU Chao, LI Qiaoling, et al. Research on hydrological similarity among nested basins based on principal component analysis [J]. Water power, 2016, 42(12): 29?32.
[7] 夏娟,丁賢榮,康彥彥,等.輻射沙脊群地貌遙感制圖[J].國土資源遙感,2014,26(1):122?126.
XIA Juan, DING Xianrong, KANG Yanyan, et al. Geomorphologic mapping by remote sensing in radial submarine sand ridges [J]. Remote sensing for land &; resources, 2014, 26(1): 122?126.
[8] 葉章蕊,盧毅敏,張永田.基于曲線割線斜率法的水文特征提取[J].人民黃河,2016,38(2):28?31.
YE Zhangrui, LU Yimin, ZHANG Yongtian. Extraction of hydrological characteristics based on slop of curve?secant method [J]. Yellow river, 2016, 38(2): 28?31.
[9] 劉蛟,劉鐵,黃粵,等.基于遙感數(shù)據(jù)的葉爾羌河流域水文過程模擬與分析[J].地理科學(xué)進(jìn)展,2017,36(6):753?761.
LIU Jiao, LIU Tie, HUANG Yue, et al. Simulation and analysis of the hydrological processes in the Yarkant River Basin based on remote sensing data [J]. Progress in geography, 2017, 36(6): 753?761.
[10] 段瑞琪,董艷輝,周鵬鵬,等.高光譜遙感水文地質(zhì)應(yīng)用新進(jìn)展[J].水文地質(zhì)工程地質(zhì),2017,44(4):23?29.
DUAN Ruiqi , DONG Yanhui, ZHOU Pengpeng, et al. Advances in application of hyperspectral remote sensing in hydrogeology [J]. Hydrogeology and engineering geology, 2017, 44(4): 23?29.