過利敏,張文生*,李士明*
活性羰基化合物(reactive carbonyl species,RCS)主要指美拉德反應和還原糖自氧化形成的甲基乙二醛(methylglyoxal,MG)、乙二醛(glyoxal,GO)和3-脫氧葡萄糖醛酮(3-deoxyglucosone,3-DG)[1]。它們的反應活性很強,與活性氧類(reactive oxygen species,ROS)物質類似,能夠同蛋白質和DNA/RNA中的氨基、巰基發生親核加成反應,生成晚期糖基化終產物(advanced glycosylation end products,AGEs)[2]在體內引起多種病理變化[3]。其中,MG是研究最多的一種RCS,它可以由體內代謝產生,也能在食品和飲料的加工中產生并積累[4]。MG具有細胞毒性[5],并能通過與蛋白質及核酸發生非酶羰基化反應,改變蛋白質和DNA的結構和功能[6-7],引發羰基應激,誘發氧化應激與細胞凋亡[8],引起多種機體病變,如糖尿病及其并發癥、代謝綜合征、心血管疾病、神經退行性病變等慢性疾病和癌癥[9-11]。因此,如何安全、有效地清除食品和體內的MG是一個亟待解決的關鍵性問題。本文介紹了食品中MG的來源與產生機理,討論了MG及其衍生AGEs對人體的病理危害,最后總結了目前關于MG天然清除劑的體內外研究進展,為MG天然清除劑的優選及開發利用提供理論指導和參考。
在食品加工與貯藏過程中,由于美拉德反應及單糖自氧化作用,MG會不斷產生并積累,這是食品與飲料中MG的主要來源[12-14]。此外,酯類降解和微生物發酵過程中也會產生MG。在美拉德反應的初始階段和發展階段中,還原糖(通常為單糖)的醛基與蛋白質的氨基發生反應,產物脫水后形成醛亞胺,也叫西佛堿,再經Amadori分子重排形成產物果糖胺。醛亞胺和果糖胺都不穩定,繼續發生分子重排并脫水形成1,2-烯醇或2,3-烯醇,再發生異構化分別生成1-脫氧葡萄糖醛酮(1-deoxyglucosone,1-DG)或3-DG。3-DG經逆向羥醛縮合反應可降解為MG。在高溫下,單糖會發生自氧化形成烯醇,再經逆羥醛縮合反應裂解形成MG(圖1),這一途徑在含糖較高的食品加工中占主導[15]。
MG的生成與還原糖和蛋白質的種類、濃度及加工方式密切相關。葡萄糖和果糖含量高的食品中MG含量較高[15-16]。例如,高果糖玉米糖漿中MG含量為1.38~10.88 μg/mL[12],在含高果糖玉米糖漿的碳酸飲料中MG可高達139.5 μg/100 mL[13]。炒制咖啡豆[17]、麻花[14]的長期存放、油脂中多不飽和脂肪酸的氧化或高溫降解[18]及葡萄的乳酸發酵[19]都會產生MG和GO。部分MG會繼續和蛋白質的氨基發生反應生成AGEs,在高蛋白食品中MG衍生AGEs含量較高,并且AGEs含量隨加工溫度升高及時間延長而增多[20-21]。

圖1 MG等RCS的主要食品來源及其產生機理Fig. 1 Major food sources and formation pathways of MG and other RCS
在體內,美拉德反應產物經Amadori重排和裂解生成MG,但機體中MG主要由糖、蛋白質和脂類的氧化分解生成,涉及一系列酶促或非酶催化反應[4]。正常生理狀態下,機體內葡萄糖在糖酵解過程中由磷酸丙酮中間體經非酶催化裂解產生MG,隨后被乙二醛酶系統(glyoxalase-I和glyoxalase-II)有效降解。但是在高血糖患者體內,MG的血液濃度為正常人的3~5 倍[10]。由于葡萄糖利用出現問題,致使葡萄糖、果糖、磷酸丙糖及糖化蛋白等大量積累,它們都能降解并產生MG,是血液和組織中MG水平升高的主要來源;此外,在葡萄糖利用不足時,蛋白質和脂肪也能經代謝分解產生MG[4,10]。
MG是研究最多的一種1,2-二羰基化合物,它是體內AGEs形成的最重要前體[4,22],主要與蛋白質的胍基(如精氨酸)、側鏈氨基(如賴氨酸)和巰基(如半胱氨酸)反應生成AGEs。MG含有2 個相鄰并相互活化的羰基,反應活性很強,為葡萄糖的2萬 倍[10]。MG極易與精氨酸和賴氨酸發生親核反應,而這2 種氨基酸在蛋白質活性結構域中所占比例很高,因此體內蛋白質很容易與MG發生糖化反應[22]。此外,MG還能與DNA發生糖化反應,導致基因功能降低甚至缺失[6]。
在蛋白質和核酸的糖化加合物中,研究較多的是MG與精氨酸反應形成的一類氫化咪唑酮類產物,它們環化形成3 種異構體,分別是Nd-(5-氫-5-甲基-4-咪唑酮-2-基)-L-鳥氨酸(Nd-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-ornithine,MG-H1)、2-氨基-5-(2-氨基-5-氫-5-甲基-4-咪唑酮-1-基)-戊酸(2-amino-5-(2-amino-5-hydro-5-methyl-4-imidazolon-1-yl)-pentanoic acid,MG-H2)和2-氨基-5-(2-氨基-4-氫-4-甲基-5-咪唑酮-1-基)-戊酸(2-amino-5-(2-amino-4-hydro-4-methyl-5-imidazolon-1-yl)pentanoic acid,MG-H3),它們之間相互轉化并處于動態平衡狀態[23]。MG與賴氨酸反應生成1,3-二(Ne-賴氨酸)-4-甲基咪唑鎓(1,3-di(Ne-lysino)-4-methylimidazolium,MOLD)和Ne-1-羧乙基賴氨酸(Ne-(1-carboxyethyl)lysine,CEL),見表1。有研究表明,血漿中高濃度的MG及其糖化蛋白MG-H1和CEL的水平與糖尿病、腎病的發生發展有直接關系。因此,氫化咪唑酮類產物可以成為糖尿病、腎病早期診斷的生物標志物[24]。

表1 MG與氨基酸的主要加合產物[2,24]Table 1 Major addition products of MG and amino acids[2,24]
攝入富含MG及其糖化產物(AGEs)的食物很可能對身體健康產生不良影響。身體內的MG具有細胞毒性,與蛋白質發生糖化反應,造成分子交聯,引起蛋白質功能紊亂,同時生成AGEs,AGEs與糖基化終產物受體(receptor for advanced glycation endproducts,RAGE)結合,激活多條信號通路,誘導機體發生氧化應激與炎癥反應,引起細胞凋亡及組織損傷。這一過程與糖尿病及其并發癥[9]、代謝綜合征、心血管疾病[25]、阿爾茨海默癥(Alzheimer’s disease,AD)等神經退行性疾病[26]和惡性腫瘤[11,27]的發展密切相關。在此概述MG與糖尿病、神經退行性疾病和癌癥的關系。
大量動物實驗證明,MG在Ⅱ型糖尿病及其并發癥的發生發展中起了重要作用[28]。胰島素是由胰腺β細胞產生的肽激素,用于調節葡萄糖的體內平衡。MG及其衍生的AGEs是造成糖尿病患者β細胞功能障礙和胰島素抵抗的誘因之一。MG與胰島素B鏈的精氨酸殘基及其N-末端苯丙酸能夠發生糖基化反應,使胰島素活性降低,不能正常調節對葡萄糖的攝取[7],阻礙胰島素信號傳導,產生胰島素抵抗[9]。AGEs通過激活其膜受體RAGE,產生氧化應激,造成炎癥環境,從而損害胰島細胞,降低胰島素分泌[29]。研究表明,連續28 d給Sprague-Dawley大鼠背部皮下注入MG(60 mg/(kg·d))或飲水中添加1 mg/100 mL MG,導致了大鼠體內葡萄糖水平升高,胰島素受體底物1失活,脂肪細胞中葡萄糖轉運蛋白(glucose transporter 4,GLUT4)表達減少,誘導了胰島素抵抗的發生[30-32]。食品中的MG會衍生形成AGEs,長期攝入AGEs含量高的食物會導致或加速血管疾病的發生[33],所以限制AGEs攝入量有助于改善代謝等疾病[34-35]。
MG造成的糖基化能誘導內皮功能障礙、損害微血管系統。MG與糖尿病腎病和視網膜病變密切相關[9]。由于機體循環中多數RCS和AGEs在腎臟中被過濾與清除,因而腎臟作為AGEs的主要代謝器官,易發生高血糖誘導的微血管損傷[36-37]。MG增加了不同類型腎細胞中黏附分子、促炎細胞因子和轉化生長因子TGFβ的表達[38],也使腎細胞的電子呼吸鏈受抑制,導致線粒體功能障礙,還誘導ROS的生成并激活了轉化生長因子[39]。這些因素都促使腎小球基底膜增厚和腎臟纖維化,造成糖尿病腎病[40]。由MG衍生的主要AGEs中,MG-H1是腎小球基底膜增厚的一個顯著性獨立預測因子,MG-H1和CEL是糖尿病腎病發展的重要早期指標[41]。血漿中的高MG含量與糖尿病腎病高患病率密切相關[42-44],通常的情況是,即便糖尿病病人的血糖水平得到了控制,蛋白質非酶糖基化和氧化應激反應仍然繼續,即所謂的“高血糖記憶狀態”[45]。清除MG能夠有效阻斷非酶糖基化反應,繼而防治糖尿病并發癥的發生發展,是近年來食物預防與藥物治療糖尿病并發癥的研究重點之一。
大腦對能量和氧的需求量大,對氧化應激高度敏感。MG是造成氧化應激的原因之一。例如,在SH-SY5Y神經瘤母細胞中,MG處理會嚴重影響線粒體的呼吸及細胞能量狀態,導致ROS和乳酸水平增加,造成線粒體膜電位降低和細胞內ATP水平下降[46]。在小鼠神經母細胞瘤細胞中,MG處理能促進絲裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)中JNK和p38信號傳導途徑激活,誘導細胞凋亡[47]。在AD中,MG能夠活化GSK-3β和p38 MAPK,并調節大腦中tau的過磷酸化過程[48]。同時,在AD患者的大腦中,β-淀粉樣蛋白(β-amyloid peptide,Aβ)沉積逐漸增多。在體外,Aβ與MG發生反應生成Aβ-AGEs,把Aβ-AGEs注射到SD大鼠的側腦室中,加劇了Aβ誘導的認知損傷,還觀察到RAGE的過度表達和RAGE介導的通路關鍵蛋白如GSK3、NF-κB、p38等的激活[49-50]。總之,增加MG的代謝和清除效率能夠減輕蛋白羰基化,有助于延緩AD及衰老等慢性疾病的發生和發展。
MG與腫瘤的關系迄今為止尚無一致的認識。一方面,MG能夠抑制癌細胞的擴散和腫瘤局部生長,另一方面,研究顯示MG能誘發腫瘤的形成與發展。一項于20世紀60年代的研究發現,相對于控制組,MG有效地阻止了瑞士白鼠移植腹水肉瘤的生長[51]。MG的代謝酶glyoxalase-Ⅰ在多種腫瘤組織中均存在過度表達現象,而glyoxalase-Ⅰ的過度表達使得MG被過度清除,致使MG的腫瘤抑制作用消失,腫瘤得以發展[52]。類似的研究顯示,用MG清除劑處理后,能提高癌細胞對腫瘤治療藥物的敏感性[53]。相反地,用MG處理乳腺癌細胞,影響了Hsp90的伴侶活性,并降低了它與Hippo途徑關鍵激酶大腫瘤抑制基因1的結合,使癌細胞生長和轉移潛力增強[54]。MG衍生的MG-BSA能夠增加人乳腺癌細胞的增殖、遷移和侵襲,表明MG-AGEs在癌癥中具有促腫瘤作用[27]。與非糖尿病患者相比,糖尿病患者的癌癥發病率較高,這與患者體內高MG濃度密切相關。降糖藥二甲雙胍具有捕獲并降低糖尿病患者血漿MG水平的作用,也通過誘導細胞周期阻滯和細胞凋亡,降低各種癌細胞株的增殖,所以,二甲雙胍也具有抗癌作用[55]。總之,目前學術界對MG與腫瘤的關系缺乏統一認識,癌細胞中MG的應激作用亟待探索與解釋。
無論生理健康還是病理條件下,體內都會產生MG。正常情況下,機體清除MG的機制比較完善,體內MG處于正常水平;但在病理和衰老過程中,由于人體自身清除MG的效率降低,體內MG及其衍生的AGEs逐漸增多并不斷積累,帶來諸多疾病。在諸多RCS中,MG細胞毒性最強,但是,通過加速體內磷酸丙酮的代謝通量,或提高MG代謝酶glyoxalase-I的蛋白表達,或者攝入MG等RCS的清除劑,都能有效地降低體內MG水平。近年來研究發現,包括黃酮、二苯乙烯苷等化合物在內的植物多酚容易與MG等RCS反應,因而具有有效的MG清除作用。
據報道,一些天然植物化學成分具有優良的MG清除能力,尤其是天然多酚類化合物,包括茶多酚(兒茶素、表沒食子兒茶素沒食子酸酯和茶黃素)[56]、蘋果多酚(phloretin和phloridzin)[57]、槲皮素、蘆丁、白藜蘆醇[58]、石榴原花青素[59-60]、姜黃素[61]、姜辣素、姜烯醇[62]和何首烏芪[63]等。它們與MG形成加合物,相應的物質結構也都得到了鑒定。其中,茶多酚多具有高效的MG清除活性。例如,綠茶中的主要多酚表沒食子兒茶素沒食子酸酯能在反應5 min時捕獲并清除超過90%的MG[64]。這是由于A環的C6和C8位的電子云密度高,極易與缺電子的MG發生親核反應。清除MG的重大意義在于抑制相關AGEs的形成。體外研究一般采用牛血清白蛋白(bovine serum albumin,BSA)模擬人血漿白蛋白。例如,在模擬生理條件下,綠原酸、槲皮素和蘆丁都能以劑量依賴性方式抑制MG對BSA的糖化,其中蘆丁效率最高,反應1 h時對MG的捕獲率可超過80%[65-66]。
采用細胞學模型對MG的細胞毒性及其可能的病理機理的研究較多,而關于天然產物對MG的毒性干預作用報道較少,作用機制也很少涉及對MG的清除作用。一些多酚具有直接保護細胞免受MG損傷的活性,機理涉及保護細胞線粒體功能損傷及改善能量代謝[67]。例如,從蠟果楊梅的根皮中分離出的楊梅黃素及二氫楊梅素,分別改善了SH-SY5Y和PC12神經細胞中由MG引起的細胞損傷,機理分別涉及到了AGEs/RAGE/NF-κB通路和AMPK/GLUT4通路,說明這類天然物質具有降低MG的細胞毒性并治療糖尿病、腦病的潛力[68]。再如,紅花的主要活性成分羥基紅花黃色素A具有抗糖化作用,在10~100 μmol/L濃度范圍內能夠保護由MG引起的人腦微血管內皮細胞的損傷,濃度為100 μmol/L時能夠抑制MG衍生AGEs的形成[69]。MG能夠干擾3T3-L1脂肪細胞對葡萄糖的利用,而原花青素預處理能夠起到保護細胞的作用,并能抑制CML和MG-AGEs等特定AGEs的形成[60]。有文獻報道,在小鼠尿液中能夠檢測到大豆異黃酮與MG的2 種加合物[70]。采用綠茶多酚單體(+)-兒茶素(epicatechin,EC)灌胃16 周,改善了糖尿病db/db小鼠的腎病損傷,并在腎臟中檢測到EC和MG的加合物,同時,EC也阻斷了AGE引起的促炎細胞因子TNF-α和IL-1β的釋放[71]。在馬兜鈴酸誘導的小鼠腎病模型中,腎臟MG的積累較對照組高出12 倍。采用低分子殼聚糖(500 mg/(kg?d))喂食14 d,顯著地降低了腎臟中的MG及CEL的積累(P<0.05)[72];在D-半乳糖誘導的癡呆小鼠腦中,補充齊墩果酸(0.05%~0.20%)和原兒茶酸(0.5%~2.0%)都能夠劑量依賴性地預防和減輕小鼠腦中ROS和蛋白糖基化,抑制MG水平升高,降低CML水平,改善glyoxalase-I的活性和蛋白表達,抑制NF-κB p65入核及阻止炎癥因子IL-1β、TNF-α和前列腺素E2的釋放,具有預防和延緩衰老的功能[73-74]。
在食品加工和貯藏過程中,MG及其衍生物AGEs的產生與積累影響了食品的色澤和風味,更給人體健康帶來諸多危害。過多的MG在人體內循環,使組織內MG含量升高,AGEs的體內生成量增加,繼而加劇氧化應激、炎癥發生及RAGE活性上調,從而影響人體健康,促進糖尿病及其并發癥、代謝綜合征、癌癥、心血管疾病以及AD等神經退行性疾病的發生和發展。因此,有效地捕獲和清除體內的MG對維持人體健康非常重要。對于體內MG的清除,主要有2 個機制:其一是協助和增強體內清除MG的乙醛酶系統,促進MG的快速代謝;其二是體內MG的直接捕獲,即一些物質包括食品和其他天然產物在機體內與MG發生親核反應,生成的加合物能夠被代謝并排出體外,例如目前發現大多數酚類化合物都是有效的MG清除劑。總之,如何有效地清除人體內的MG是一個很重要的研究方向,而食品或其他天然產物通過直接捕獲MG或者加速乙醛酶系統對MG的代謝,都是行之有效的MG清除途徑。隨著對天然植物(包括傳統醫食兩用植物)在清除MG和抗羰基應激方面的深入研究,尤其是對其中有效活性成分及加合產物的鑒定和機理研究,將為清除MG功能食品的理論研究和產品開發提供理論依據,進而促進相應功能食品在人類健康領域的廣泛應用。
參考文獻:
[1] THORNALLEY P J, LANGBORG A, MINHAS H S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose[J]. Biochemical Journal, 1999, 344: 109-116.DOI:10.1042/0264-6021:3440109.
[2] NEMET I, VARGA-DEFTERDAROVIC L, TURK Z. Methylglyoxal in food and living organisms[J]. Molecular Nutrition and Food Research, 2006, 50(12): 1105-1117. DOI:10.1002/mnfr.200600065.
[3] CAI Weijing, RAMDAS M, ZHU Li, et al. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1[J].Proceedings of the National Academy of Sciences, 2012, 109(39):15888-15893. DOI:10.1073/pnas.1205847109.
[4] THORNALLEY P J. Pharmacology of methylglyoxal: formation,modification of proteins and nucleic acids, and enzymatic detoxification-a role in pathogenesis and antiproliferative chemotherapy[J]. General Pharmacology, 1996, 27(4): 565-573.DOI:10.1016/0306-3623(95)02054-3.
[5] CHAKRABORTY S, KARMAKAR K, CHAKRAVORTTY D.Cells producing their own nemesis: understanding methylglyoxal metabolism[J]. IUBMB Life, 2014, 66(10): 667-678. DOI:10.1002/iub.1324.
[6] MURATAKAMIYA N, KAMIYA H. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA[J]. Nucleic Acids Research, 2001, 29(16): 3433-3438. DOI:10.1093/nar/29.16.3433.
[7] JIA Xuming, OLSON J H D, ROSS R S A, et al. Structural and functional changes in human insulin induced by methylglyoxal[J]. The FASEB Journal, 2006, 20(9): 1555-1557. DOI:10.1096/fj.05-5478fje.
[8] RABBANI N, THORNALLEY J P. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease[J]. Biochemical and Biophysical Research Communications, 2015, 458(2): 221-226.DOI:10.1097/00003246-199507000-00010.
[9] MATAFOME P, SENA C, SEICA R. Methylglyoxal, obesity, and diabetes[J]. Endocrine, 2013, 43(3): 472-484. DOI:10.1007/s12020-012-9795-8.
[10] VAN NGUYEN C. Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs [J].Molecular Nutrition and Food Research, 2006, 50(12): 1140-1149.DOI:10.1002/mnfr.200600144.
[11] LIN J A, WU C H, LU C C, et al. Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: an emerging biological factor in cancer onset and progression[J]. Molecular Nutrition & Food Research, 2016, 60(8): 1850-1864. DOI:10.1002/mnfr.201500759.
[12] GENSBERGER S, MITTELMAIER S, GLOMB MA, et al.Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup[J]. Analytical and Bioanalytical Chemistry, 2012, 403(10): 2923-2931. DOI:10.1007/s00216-012-5817-x.
[13] LO Chiyu, LI Shiming, WANG Yu, et al. Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup[J]. Food Chemistry, 2008, 107(3):1099-1105. DOI:10.1016/j.foodchem.2007.09.028.
[14] LIU Huicui, LI Juxiu. Changes in glyoxal and methylglyoxal content in the fried dough twist during frying and storage[J]. European Food Research and Technology, 2014, 238(2): 323-331. DOI:10.1007/s00217-013-2110-y.
[15] ALVAREZ-SUAREZ J M, GIAMPIERI F, BATTINO M. Honey as a source of dietary antioxidants: structures, bioavailability and evidence of protective effects against human chronic diseases[J]. Current Medicinal Chemistry, 2013, 20(5): 621-638.DOI:10.2174/092986713804999358.
[16] ZHANG Dongmei, JIAO Ruiqing, KONG Lingdong. High dietary fructose: direct or indirect dangerous factors disturbing tissue and organ functions[J]. Nutrients, 2017, 9(4): 335-359. DOI:10.3390/nu9040335.
[17] WANG J, CHANG T J. Methylglyoxal content in drinking coffee as a cytotoxic factor[J]. Journal of Food Science, 2010, 75(6): 167-171.DOI:10.1111/j.1750-3841.2010.01658.x.
[18] KAZUTOSHI F, TAKAYUKI S. Formation of genotoxic dicarbonyl compounds in dietary oils upon oxidation[J]. Lipids, 2004, 39(5): 481-486. DOI:10.1007/s11745-004-1254-y.
[19] SANTOS C M, VALENTE I M, GONCALVES L M, et al.Chromatographic analysis of methylglyoxal and other alpha-dicarbonyls using gas-diffusion microextraction[J]. Analyst,2013, 138(23): 7233-7237. DOI:10.1039/c3an00766a.
[20] 房紅娟, 王麗娟, 張雙鳳, 等. 高蛋白食品加工模擬體系中晚期糖基化末端產物的形成[J]. 中國食品學報, 2014, 14(2): 28-34.DOI:10.13982/j.mfst.1673-9078.2014.12.006.
[21] GOLDBERG T, CAI Weijing, PEPPA M, et al. Advanced glycoxidation end products in commonly consumed foods[J]. Journal of the American Dietetic Association, 2004, 104(8): 1287-1291.DOI:10.1016/j.jada.2004.05.214.
[22] RABBANI N, THORNALLEY P J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy[J]. Diabetes, 2014, 63(1): 50-52. DOI:10.2337/db13-1606.
[23] RABBANI N, THORNALLEY P J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome[J]. Amino Acids, 2012, 42(4): 1133-1142.DOI:10.1007/s00726-010-0783-0.
[24] BEISSWENGER J P, HOWELL K S, RUSSELL G, et al. Detection of diabetic nephropathy from advanced glycation endproducts(AGEs) differs in plasma and urine, and is dependent on the method of preparation[J]. Amino Acids, 2014, 46(2): 311-319. DOI:10.1007/s00726-013-1533-x.
[25] HANSSEN N M, WOUTERS K, HUIJBERTS M S, et al. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype[J]. European Heart Journal, 2014, 35(17): 1137-1146.DOI:10.1093/eurheartj/eht402.
[26] ANGELONI C, ZAMBONIN L, HRELIA S. Role of methylglyoxal in Alzheimer’s disease[J]. BioMed Research International, 2014, 2014:1-12. DOI:10.1155/2014/238485.
[27] SHARAFA1 H, MATOU-NASRIB1 S, WANGA Q, et al. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231[J]. Biochimica et Biophysica Acta: Molecular Basis of Disease, 2015, 1852(3): 429-441.DOI:10.1016/j.bbadis.2014.12.009.
[28] SIREESH D, BHAKKIYALAKSHMI E, PONJAYANTHI B, et al. Pathophysiological insights of methylglyoxal induced type-2 diabetes[J]. Chemical Research in Toxicology, 2015, 28(9): 1666-1674. DOI:10.1021/acs.chemrestox.5b00171.
[29] LUIS M A O, ANA L, RICARDO A G, et al. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation[J]. BMC Biochemistry, 2011, 12(1): 41-52.DOI:10.1186/1471-2091-12-41.
[30] JIA Xuming, WU Lingyun. Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats[J]. Molecular and Cellular Biochemistry, 2007, 306(1/2): 133-139.DOI:10.1007/s11010-007-9563-x.
[31] DHAR A, DHAR I, JIANG Bo, et al. Chronic methylglyoxal infusion by minipump causes pancreatic β-cell dysfunction and induces type 2 diabetes in sprague-dawley rats[J]. Diabetes, 2011, 60(3): 899-908.DOI:10.2337/db10-0627.
[32] GUO Qi, MORI T, JIANG Yue, et al. Methylglyoxal contributes to the development of insulin resistance and salt sensitivity in Sprague-Dawley rats[J]. Journal of Hypertension, 2009, 27(8): 1664-1671. DOI:10.1097/HJH.0b013e32832c419a.
[33] URIBARRI J, CAI Weijing, WOODWARD M, et al. Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity?[J].Journal of Clinical Endocrinology and Metabolism, 2015, 100(5):1957-1966. DOI:10.1210/jc.2014-3925.
[34] URIBARRI J, CAI Weijing, RAMDAS M, et al. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of ager1 and sirt1[J]. Diabetes Care,2011, 34(7): 1610-1616. DOI:10.2337/dc11-0091.
[35] DE COURTEN B, DE COURTEN M P, SOLDATOS G, et al. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial[J]. American Journal of Clinical Nutrition, 2016, 103(6): 1426-1433. DOI:10.3945/ajcn.115.125427.
[36] NEGRESALVAYRE A, SALVAYRE R, AUGé N, et al.Hyperglycemia and glycation in diabetic complications[J].Antioxidants & Redox Signaling, 2009, 11(12): 3071-3109.DOI:10.1089/ars.2009.2484.
[37] NAKAJOU K, HORIUCHI S, SAKAI M, et al. Renal clearance of glycolaldehyde- and methylglyoxal- modified proteins in mice is mediated by mesangial cells through a class A scavenger receptor(SR-A)[J]. Diabetologia, 2005, 48(2): 317-327. DOI:10.1007/s00125-004-1646-6.
[38] ZHAO Yanhua, BANERJEE S, LEJEUNE W S, et al. NF-κB-inducing kinase increases renal tubule epithelial inflammation associated with diabetes[J]. Journal of Diabetes Research, 2011, 2011:192564. DOI:10.1155/2011/192564.
[39] ROSCA M, MUSTATA T, KINTER M, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation[J]. American Journal of Physiology Renal Physiology, 2005, 289(2): F420-F430. DOI:10.1152/ajprenal.00415.2004.
[40] TANG S C W, CHAN L Y Y, LEUNG J C K, et al. Differential effects of advanced glycation end-products on renal tubular cell inflammation[J]. Nephrology, 2011, 16(4): 417-425. DOI:10.1111/j.1440-1797.2010.01437.x.
[41] BEISSWENGER P J, HOWELL S K, RUSSELL G B, et al. Early progression of diabetic nephropathy correlates with methylglyoxalderived advanced glycation end products[J]. Diabetes Care, 2013,36(10): 3234-3239. DOI:10.2337/dc12-2689.
[42] LU Jianxin, RANDELL E, HAN Yingchun, et al. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy[J]. Clinical Biochemistry, 2011,44(4): 307-311. DOI:10.1016/j.clinbiochem.2010.11.004.
[43] NAKAYAMA K, NAKAYAMA M, IWABUCHI M, et al. Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients[J]. American Journal of Nephrology, 2008, 28(6):871-878. DOI:10.1159/000139653.
[44] BEISSWENGER P J, DRUMMOND K S, NELSON R G, et al.Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress[J]. Diabetes, 2005, 54(11): 3274-3281. DOI:10.2337/diabetes.54.11.3274.
[45] PANENI F, COSENTINO F. Advanced glycation end products and plaque instability: a link beyond diabetes[J]. European Heart Journal,2014, 35(17): 1095-1097. DOI:10.1093/eurheartj/eht454.
[46] DE ARRIBA S G, STUCHBURY G, YARIN J, et al. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells-protection by carbonyl scavengers[J]. Neurobiology of Aging,2007, 28(7): 1044-1050. DOI:10.1016/j.neurobiolaging.2006.05.007.
[47] HUANG Shangming, CHUANG Hongchin, WU Chihao, et al.Cytoprotective effects of phenolic acids on methylglyoxal-induced apoptosis in Neuro-2A cells[J]. Molecular Nutrition and Food Research, 2008, 52(8): 940-949. DOI:10.1002/mnfr.200700360.
[48] LI Xiaohong, XIE Jiazhao, XIA Jiang, et al. Methylglyoxal induces tau hyperphosphorylation via promoting AGEs formation[J].Neuromolecular Medicine, 2012, 14(4): 338-348. DOI:10.1007/s12017-012-8191-0.
[49] CHEN Chong, LI Xiaohong, TU Yue, et al. Abeta-AGE aggravates cognitive deficit in rats via RAGE pathway[J]. Neuroscience, 2014,257: 1-10. DOI:10.1016/j.neuroscience.2013.10.056.
[50] LI Xiaohong, DU Lailing, CHENG Xiangshu, et al. Glycation exacerbates the neuronal toxicity of β-amyloid[J]. Cell Death &Disease, 2013, 4: e673. DOI:10.1038/cddis.2013.180.
[51] EGYüD L G, SZENT-GY?RGYI A. Cancerostatic action of methylglyoxal[J]. Science, 1968, 160: 1140. DOI:10.1126/science.160.3832.1140.
[52] 王蕾, 朱迪娜, 呂翠, 等. 甲基乙二醛與相關疾病的研究進展[J]. 中國藥理學通報, 2014, 30(4): 456-459. DOI:10.3969/j.issn.1001-1978.2014.04.004.
[53] SAKAMOTO H, MASHIMA T, YAMAMOTO K, et al. Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification[J]. Journal of Biological Chemistry, 2002,277: 45770-45775. DOI:10.1074/jbc.M207485200.
[54] NOKIN M J, DURIEUX F, PEIXOTO P, et al. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis[J]. eLife, 2016, 5: e19375. DOI:10.7554/eLife.19375.
[55] SAHRA I B, LAURENT K, LOUBAT A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level[J]. Oncogene, 2008, 27(25): 3576-3586.DOI:10.1038/sj.onc.1211024.
[56] LO C Y, LI S J, TIAN D, et al. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions[J].Molecular Nutrition and Food Research, 2006, 50(12): 1118-1128.DOI:10.1002/mnfr.200600094.
[57] SHAO Xi, BAI Naisheng, HE Kan, et al. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species[J].Chemical Research in Toxicology, 2008, 21(10): 2042-2050.DOI:10.1021/tx800227v.
[58] SHEN Yixiao, XU Zhimin, SHENG Zhanxu. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal[J]. Food Chemistry, 2017, 216: 153-160. DOI:10.1016/j.foodchem.2016.08.034.
[59] KUMAGAI Y, NAKATANI S, ONODERA H, et al. Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro[J]. Journal of Agricultural and Food Chemistry, 2015, 63(35): 7760-7764. DOI:10.1021/acs.jafc.5b02766.
[60] LIU Weixi, MA Hang, FROST L, et al. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species[J]. Food and Function, 2014, 5(11): 2996-3004.DOI:10.1039/c4fo00538d.
[61] HU Teyu, HU Miaolin, CHYAU Charngcherng, et al. Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells[J]. Journal of Agricultural and Food Chemistry, 2012, 60(33): 8190-8196. DOI:10.1021/jf302188a.
[62] WEI Yan, HAN Chanshuai, WANG Yujing, et al. Ribosylation triggering alzheimer’s disease-like tau hyperphosphorylation via activation of camkii[J]. Aging Cell, 2015, 14(5): 754-763.DOI:10.1111/acel.12355.
[63] Lü Lishuang, SHAO Xi, WANG Liyan, et al. Stilbene glucoside from polygonum multiflorum thunb: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal[J].Journal of Agricultural and Food Chemistry, 2010, 58(4): 2239-2245.DOI:10.1021/jf904122q.
[64] SANG Shengmin, SHAO Xi, BAI Naisheng, et al. Tea polyphenol(?)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species[J]. Chemical Research in Toxicology, 2007, 20(12):1862-1870. DOI:10.1021/tx700190s.
[65] YOON S R, SHIM S M. Inhibitory effect of polyphenols in houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal[J]. LWT-Food Science and Technology, 2015, 61(1):158-163. DOI:10.1016/j.lwt.2014.11.014.
[66] 李曉明, 鄧榮華, 孔陽輝, 等. 蘆丁抑制牛血清白蛋白糖基化[J]. 食品科學, 2014, 35(3): 85-89. DOI:10.7506/spkx1002-6630-201403018.
[67] WANG Yuehua, YU Haitao, PU Xiaoping, et al. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells[J]. Journal of Molecular Neuroscience, 2014, 53(4): 562-570. DOI:10.1007/s12031-013-0222-2.
[68] JIANG Baoping, LE Le, PAN Huimin, et al. Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells[J]. Brain Research Bulletin, 2014, 109: 117-126. DOI:10.1016/j.brainresbull.2014.10.010.[69] LI Wenlu, LIU Jie, HE Ping, et al. Hydroxysafflor yellow a protects methylglyoxal-induced injury in the cultured human brain microvascular endothelial cells[J]. Neuroscience Letters, 2013, 549:146-150. DOI:10.1016/j.neulet.2013.06.007.
[70] WANG Pei, CHEN Huadong, SANG Shengmin. Trapping of methylglyoxal by genistein and its metabolites in mice[J]. Chemical Research in Toxicology, 2016, 29(3): 406-414. DOI:10.1021/acs.chemrestox.5b00516.
[71] ZHU Dina, WANG Lei, ZHOU Qile, et al. (+)-Catechin ameliorates diabetic nephropathy by trapping methylglyoxal in type 2 diabetic mice[J]. Molecular Nutrition and Food Research, 2014, 58(12): 2249-2260. DOI:10.1002/mnfr.201400533.
[72] CHOU C K, CHEN S M, LI Y C, et al. Low-molecular-weight chitosan scavenges methylglyoxal and Nε-(carboxyethyl)lysine, the major factors contributing to the pathogenesis of nephropathy[J].SpringerPlus, 2015, 4: 312. DOI:10.1186/s40064-015-1106-4.
[73] TSAI S J, YIN M C. Anti-oxidative, anti-glycative and anti-apoptotic effects of oleanolic acid in brain of mice treated by D-galactose[J].European Journal of Pharmacology, 2012, 689(1/2/3): 81-88.DOI:10.1016/j.ejphar.2012.05.018.
[74] TSAI S J, YIN M C. Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by D-galactose[J]. Food and Chemical Toxicology, 2012, 50(9): 3198-3205. DOI:10.1016/j.fct.2012.05.056.