韓永超 張慶華 過(guò)聰
摘要 灰霉病是草莓生產(chǎn)過(guò)程中的主要病害,亟需開(kāi)發(fā)實(shí)用的草莓灰霉病綠色防控技術(shù),保障草莓持續(xù)健康發(fā)展。本研究從第一花序盛花期至果實(shí)大量成熟,每周使用鼓風(fēng)機(jī)將發(fā)育中果實(shí)(花托)上殘留的衰老花瓣吹落。在第一、二次吹落花瓣前后分別統(tǒng)計(jì)每朵花上花瓣數(shù)量,計(jì)算每朵花平均花瓣數(shù)和花瓣吹落效率。49 d后分別調(diào)查花瓣吹落處理區(qū)與對(duì)照區(qū)果實(shí)灰霉病發(fā)病率。結(jié)果顯示:草莓盛花期花瓣不易脫落,在盛花期一周后使用鼓風(fēng)機(jī)吹落花瓣的效率較高。連續(xù)7次使用鼓風(fēng)機(jī)清理后,對(duì)照區(qū)果實(shí)灰霉病平均發(fā)病率(8.27%)顯著高于處理區(qū)(1.52%)。在草莓第一批果實(shí)發(fā)育期間使用鼓風(fēng)機(jī)吹落衰老花瓣能顯著降低果實(shí)灰霉病發(fā)病率,該方法對(duì)果實(shí)灰霉病防效為81.56%。
關(guān)鍵詞 草莓; 花瓣; 灰霉病; 鼓風(fēng)機(jī); 弱寄生
中圖分類(lèi)號(hào): S 436. 68
文獻(xiàn)標(biāo)識(shí)碼: B
DOI: 10.16688/j.zwbh.2017465
Abstract Strawberry (Fragaria×ananassa Duch.) is an important fruit widely planted in China. Gray mold is very harmful to the strawberry production. Development of practical green control method for gray mold in strawberry will reduce the use of chemical pesticides in strawberry production, reduce pesticide residues in strawberry fruits and ensure the sustainable and healthy development of strawberry industry. Strawberry cultivar ‘Sweet Charlie was used in this study, and the test area was evenly divided into two parts, one for the petals treat area (PT) and the other for the control area (CK). In PT, a blower was used to blowing residual senescence petals away from the developing strawberry fruit (receptacle). The CK was not treated with blower. The PT was treated with a blower once a week, from the flowering period of first inflorescence to the fruits mature period. The number of petals on each flower was counted before and after the petal blowing treatment, and the average number of petals per flower and the rate of petal blow-down were calculated. When fruit of the first inflorescences were mature (after 49 days), the incidence of Botrytis fruit rot in PT and CK was investigated respectively. The result indicated a large number of senescent petals can be blow away from developing fruits (receptacle) when using a blower against the strawberry petals during the flowering season. Because of the high percentage of fresh petals in full flowering stage, the rate of blow-off of petals was 7.83% after blow-up. But the blow-off rate of petals one week later after full flowering stage was 17.54%, which is significantly higher than that at full flowering stage. After cleaning senescent petals with blower for 7 times, the average incidence ofBotrytisfruit rot in control area (8.27%) was significantly higher than that in the treatment area (1.52%). The use of a blower in a greenhouse could significantly reduce the incidence of fruit gray mold disease and the control efficacy reached 81.56%.
Key words strawberries; petals; Botrytis fruit rot; blower; weak parasite
3 結(jié)論與討論
分生孢子是植物病害流行的侵染源,初侵染后會(huì)在罹病組織上大量形成分生孢子,分生孢子通過(guò)氣流、雨水等方式傳播,為病害再侵染和田間病害流行提供大量菌源[19-20]。本研究在設(shè)施大棚內(nèi)使用鼓風(fēng)機(jī)清理草莓花瓣,會(huì)導(dǎo)致病原菌孢子飛散,可能會(huì)加重病害傳播。炭疽病、灰霉病、白粉病是我國(guó)草莓生產(chǎn)上的三大主要病害[21-22]。草莓炭疽病由刺盤(pán)孢屬真菌Colletotrichum spp.侵染引起。炭疽菌的最適生長(zhǎng)溫度為28~30℃,最高和最低生長(zhǎng)溫度分別為42℃和6℃[22]。炭疽病是典型的高溫病害,主要在夏季草莓育苗期及緩苗期發(fā)生,冬季低溫環(huán)境不利于炭疽病發(fā)生[21]。草莓白粉病由羽衣草單囊殼菌Sphaerotheca aphanis侵染引起。溫度是影響白粉病發(fā)病的關(guān)鍵因子。白粉病發(fā)生的溫度范圍為0~25℃,其中最適溫度為15~20℃,25℃以上病害發(fā)生受到抑制[23],連續(xù)10 d溫度高于25.53℃即可終止此病害的病程[24]。草莓白粉病的初侵染源主要來(lái)自夏季繁育的生產(chǎn)苗,而我國(guó)南方地區(qū)夏季持續(xù)高溫不利于白粉菌孢子越夏,因此,草莓白粉病主要在我國(guó)北方地區(qū)發(fā)生,南方地區(qū)偶有發(fā)生[25]。灰霉病是草莓結(jié)果期的主要病害,在我國(guó)草莓種植區(qū)普遍發(fā)生。灰葡萄孢主要通過(guò)分生孢子在田間傳播,自然情況下草莓果實(shí)上灰葡萄孢的帶菌率很高[13],但是灰葡萄孢在健康組織中保持潛伏或休眠狀態(tài),被侵染的組織通常沒(méi)有癥狀,一直到果實(shí)采收都不會(huì)發(fā)病[12]。在本研究中,在持續(xù)使用鼓風(fēng)機(jī)7次后,大棚內(nèi)草莓炭疽病發(fā)病率沒(méi)有顯著升高;同時(shí),使用鼓風(fēng)機(jī)清理果實(shí)上殘留的花瓣能夠顯著降低果實(shí)灰霉病發(fā)病率,對(duì)草莓果實(shí)灰霉病防效為81.56%(圖3)。因此,通過(guò)綜合分析,在我國(guó)南方地區(qū),確認(rèn)大棚內(nèi)沒(méi)有白粉病發(fā)生的前提下可以使用鼓風(fēng)機(jī)清理草莓花瓣防治草莓果實(shí)灰霉病。
花是植物生殖器官,花瓣具有吸引授粉昆蟲(chóng)傳粉的作用,過(guò)早地將花瓣吹落可能會(huì)影響授粉導(dǎo)致畸形果比例增加。花瓣脫落涉及細(xì)胞結(jié)構(gòu)、生理生化代謝、轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)節(jié)等多個(gè)層面的變化,既受植物自身發(fā)育的調(diào)節(jié),也受外界環(huán)境因素的影響[26]。草莓花瓣脫落快慢主要與品種有關(guān), ‘晶瑤現(xiàn)蕾后7 d花瓣自然脫落率高達(dá)99.0%,而‘甜查理現(xiàn)蕾后7 d花瓣自然脫落率只有26.0%[18]。自然情況下花瓣脫落快的品種,無(wú)需額外采用人工清理花瓣,而在我國(guó)南方地區(qū)廣泛種植的‘甜查理花瓣脫落慢,需要采用人工清理花瓣以降低果實(shí)灰霉病發(fā)病率。本研究以草莓品種‘甜查理為材料,發(fā)現(xiàn)新鮮花瓣不易被吹落,授粉完成后衰老的花瓣則容易被吹落。乙烯是多種植物中調(diào)節(jié)花瓣衰老的關(guān)鍵信號(hào)物質(zhì),正常植物花中乙烯含量很低[27-30]。新鮮花瓣與花托結(jié)合緊密不易脫落,花中的乙烯含量在授粉完成后迅速上升,促進(jìn)離層形成和花瓣脫落[16, 31]。盛花期草莓新鮮花瓣比例高,使用鼓風(fēng)機(jī)清理后只有7.83%的花瓣被吹落,而一周后再次清理則能吹落17.54%的花瓣(表 1)。因此,在實(shí)際使用過(guò)程中不需要擔(dān)心吹風(fēng)使新鮮花瓣提前脫落,導(dǎo)致畸形果率增加的問(wèn)題。從清理效率和節(jié)約人工的角度考慮,在實(shí)際使用過(guò)程中應(yīng)在大部分花瓣開(kāi)始衰老后進(jìn)行花瓣清理。同時(shí),由于草莓是連續(xù)開(kāi)花,每隔一段時(shí)間就需要清理一次花瓣。目前并沒(méi)有用于棚內(nèi)吹花瓣的專(zhuān)用機(jī)械,本研究中我們使用經(jīng)過(guò)改裝的農(nóng)用噴粉機(jī)清理草莓花瓣,在實(shí)際使用過(guò)程中仍會(huì)有一些衰老的花瓣無(wú)法被清理。機(jī)械、天氣、濕度、溫度等都可能影響花瓣清理效率,后續(xù)研究中有必要對(duì)該技術(shù)進(jìn)一步優(yōu)化。
本研究結(jié)果表明,針對(duì)花瓣脫落慢的草莓品種‘甜查理,在第一批果實(shí)發(fā)育期間使用鼓風(fēng)機(jī)將草莓果實(shí)上的衰老花瓣吹落,能顯著降低果實(shí)灰霉病發(fā)病率。
參考文獻(xiàn)
[1] 農(nóng)業(yè)部.2015年全國(guó)各地蔬菜、西瓜、甜瓜、草莓、馬鈴薯播種面積和產(chǎn)量[J].中國(guó)蔬菜, 2017(1): 18.
[2] DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(4): 414-430.
[3] 張建人,陸宏.南方草莓灰霉病的發(fā)生與綜合防治[J].植物保護(hù),1991(4):6-7.
[4] CHEN Hua, XIAO Xiang, WANG Jun, et al. Antagonistic effects of volatiles generated byBacillus subtilison spore germination and hyphal growth of the plant pathogen,Botrytis cinerea[J]. Biotechnology Letters, 2008, 30(5): 919-923.
[5] YIN D, CHEN X, Hamada M S, et al. Multiple resistance to QoIs and other classes of fungicides inBotrytis cinerea populations from strawberry in Zhejiang Province, China [J]. European Journal of Plant Pathology, 2015, 141(1): 169-177.
[6] FAN F, HAMADA M, LI N, et al. Multiple fungicide resistance inBotrytis cinerea from greenhouse strawberries in Hubei Province, China [J]. Plant Disease, 2017, 101(4): 601-606.
[7] 韓永超, 方建坤, 劉建軍, 等. 武漢市城郊草莓產(chǎn)業(yè)發(fā)展情況調(diào)研報(bào)告[J]. 湖北農(nóng)業(yè)科學(xué), 2016, 55(24): 6470-6473.
[8] 張中義. 中國(guó)真菌志 第26卷 葡萄孢屬 柱隔孢屬[M]. 北京: 科學(xué)出版社, 2006.
[9] WILLIAMSON B, TUDZYNSK B, TUDZYNSKI P, et al.Botrytis cinerea: the cause of grey mould disease [J]. Molecular Plant Pathology, 2007, 8(5): 561-580.
[10]SUTTON J C. Botrytis fruit rot (gray mold) and blossom blight [M]∥MAAS J L. Compendium of strawberry diseases, 3rd ed. American Phytopathological Society, St. Paul M N. 1998: 28-31.
[11]GONZLEZ-FERNNDEZ R, ALORIA K, VALERO-GALVN J, et al. Proteomic analysis of mycelium and secretome of differentBotrytis cinerea wild-type strains [J]. Journal of Proteomics, 2014, 97: 195-221.
[12]DIK A J, WUBBEN J P. Epidemiology ofBotrytis cinerea diseases in greenhouses [M]∥ ELAD Y, WILLIAMSON B, TUDZYNSKI P, et al.Botrytis:biology,pathology and control. Springer, Dordrecht, 2007: 319-333.
[13]高翠珠,楊紅玲,黃夏宇騏,等.湖北省設(shè)施草莓灰霉病發(fā)生規(guī)律及流行因子分析[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(9):1617-1623.
[14]BULGER M A, ELLIS M A, MADDEN L V. Influence of temperature and wetness duration on infection of strawberry flowers byBotrytis cinerea and disease incidence of fruit originating from infected flowers [J].Phytopathology,1987,77(8):1225-1230.
[15]BRISTOW P R, MCNICOL R J, WILLIAMSON B. Infection of strawberry flowers byBotrytis cinerea and its relevance to grey mould development[J]. Annals of Applied Biology, 1986, 109(3): 545-554.
[16]COUZIGOU J M, MAGNE K, MONDY S, et al. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops[J]. New Phytologist, 2016, 209(1): 228-240.
[17]BOFF P, KASTELEIN P, DE KRAKER J, et al. Epidemiology of grey mould in annual waiting-bed production of strawberry [J].European Journal of Plant Pathology,2001,107(6):615-624.
[18]韓永超, 曾祥國(guó), 向發(fā)云, 等. 草莓花瓣脫落對(duì)果實(shí)灰霉病的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(22): 4460-4468.
[19]DAHLBERG K R, ETTEN J L V. Physiology and biochemistry of fungal sporulation[J]. Annual Review of Phytopathology, 1982, 20(1): 281-301.
[20]徐成楠, 王亞南, 胡同樂(lè), 等. 藍(lán)莓炭疽病病原菌鑒定及致病性測(cè)定[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(20): 3992-3998.
[21]向發(fā)云, 韓永超, 曾祥國(guó), 等. 湖北省草莓育苗期炭疽病病害調(diào)查[J]. 湖北農(nóng)業(yè)科學(xué), 2012, 51(24): 5650-5653.
[22]HAN Yongchao, ZENG Xiangguo, XIANG Fayun, et al. Distribution and characteristics ofColletotrichum spp. associated with anthracnose of strawberry in Hubei, China [J]. Plant Disease, 2016, 100(5): 996-1006.
[23]劉娜.四川省小麥白粉病的流行研究[D].成都:四川農(nóng)業(yè)大學(xué),2013.
[24]李伯寧, 周益林, 段霞瑜. 小麥白粉病與溫度的定量關(guān)系研究[J]. 植物保護(hù), 2008, 34(3): 22-25.
[25]胡銳, 邢彩云, 楊?lèi)?ài)華, 等. 保護(hù)地草莓白粉病的發(fā)生與防治[J]. 中國(guó)果菜, 2011(9): 26-27.
[26]TAYLOR J E, WHITELAW C A. Signals in abscission [J]. New Phytologist, 2001, 151(2): 323-340.
[27]WANG K L C, LI H, ECKER J R.Ethylene biosynthesis and signaling networks [J]. Plant Cell, 2002, 14:131-151.
[28]MEIR S, PHILOSOPH-HADAS S, SUNDARESAN S, et al. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion [J]. Plant Physiology, 2010, 154(4): 1929-1956.
[29]BROEKGAARDEN C, CAARLS L, VOS I A, et al. Ethylene: traffic controller on hormonal crossroads to defense [J]. Plant Physiology, 2015, 169(4): 2371-2379.
[30]WEN C K. Ethylene in plants [M]. Springer Netherlands, 2015.
[31]IANNETTA P PM, LAARHOVEN L J, MEDINA-ESCOBAR N, et al. Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit [J]. Physiologia Plantarum, 2006, 127(2): 247-259.
(責(zé)任編輯:楊明麗)