999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Applications of moving framesto Whitham-Broer-Kaup system

2018-05-25 02:03:52,,

, ,

(School of Science, Dalian Ocean University, Dalian 116023, China)

0 Introduction

Shallow water equations are widely applicable models in mathematical physics. Whitham-Broer-Kaup(WBK) system for the dispersive long wave in the shallow water

(1)

In this paper, a complete basis of the invariantized Maurer-Cartan forms of Whitham-Broer-Kaup system is obtained by the method of equivariant moving frames. The invariantized Maurer-Cartan forms play an important role in finding the complete system of differential invariants for the nonlinear partial differential equations. Sophus Lie used his infinitesimal method based on the infinitesimal determining system obtained by linearizing the determining system, and Cartans method using intricate recursive prolongation of exterior differential systems are either limited in scope or impractical from the standpoint of applications. Along this line of research in the last decade, many other methods were developed[8-11]. Their algorithms were successfully applied to certain types of Lie symmetry pseudo-groups of differential equations. A major drawback, however, is that their methods were based on ad hoc series expansions and became significantly more complicated, requiring more case-by-case analyses, if they worked at all, when it came to intransitive pseudo-group actions. More recently, the invariant contact forms on the diffeomorphism jet bundle were interpreted as the Maurer-Cartan forms of the Lie pseudo-group[12]. As a result, a very efficient method for constructing the structure equations of the Maurer-Cartan forms was discovered. This method bypasses the troublesome process of integrating either the determining system or its linearization, or the complicated Cartan prolongation process. Moreover, the algorithm directly applies to completely general Lie pseudo-group actions, whether finite or infinite dimensional, transitive or intransitive, and can be easily implemented in computer algebra systems. This efficient method is based on a new, equivariant formulation of Cartan’s method of moving frames that was initiated in[13-14]and developed[17-21]. The goal of this paper is to use the constructive computational algorithms[12-14]to determine a complete basis of the invariantized Maurer-Cartan forms of WBK system.

The paper is organized as follows. In Section 1, the preliminaries about the algorithms we use are presented. In Section 2, a complete basis of the invariantized Maurer-Cartan forms of WBK system is solved. Section 3 includes the conclusion and discussion about the further research.

1 Preliminaries

In this part, we will generally show the theoretical preliminaries, which are from[12-16]. Firstly we consider the point symmetry group of a system of differential equations

Δσ(x,un)=0,σ=1,2,…,k,

Let

denote thenthorder prolongation of the vector field toJn(M,p). A vector fieldvis an infinitesimal symmetry of the system of differential equations if and only if it satisfies the infinitesimal symmetry conditions.

Let

(2)

denote the completion of the system ofinfinitesimaldeterminingequations, which includes the original determining equations along with all equations obtained by repeated differentiation.

Definition1 Annthordermovingframefor a pseudo-groupGacting onp-dimensional submanifoldsN?Mis a locallyG-equivariant sectionρ(n):Jn(M,p)→H(n).

Local coordinates on H(n). Have the form(x,u(n),λ(n)), where (x,u(n)) arejet coordinates onJn(M,p) while the fiber coordinatesλ(n)represent the pseudo-group parameters of order≤n.

Theorem1 Alocallyequivariantmovingframeexists in a neighborhood of a jet(x,u(n))∈Jn(M,p) if and only ifGacts locally freely at(x,u(n)).

A practical wayto construct a moving frameρ(n)is through the normalization procedure based on the choice of a cross-section to theG-orbits. Once a moving frame is fixed, invariantizing thenthorder jet coordinates (x,u(n)) leads to thenormalizeddifferentialinvariants

(3)

whereιis the inducedinvariantizationprocess.

A basis for theinvariantdifferentialoperatorsD1,…,Dpcan be obtained by invariantizing the total differential operatorsD1,…,Dp. Thecontact-invarianthorizontalcoframeωi=ι(dxi), wherei=1,2,…,p, can be obtained by invariantizing the horizontal coordinate coframe.

Theorem2 The restricted Maurer-Cartan forms satisfy the lifted determining equations

which are obtained by applying the following replacement rules:

xiXi,uαUα,,

for alli,α,A, to the infinitesimal determining equations (2).

Definition2 Given a moving frameρ(n):Jn(M,p)→H(n), we define theinvariantizedMaurer-Cartanformsto be the horizontal components of the pull-backs

(4)

Theorem3 The invariantized Maurer-Cartan forms satisfy the invariantized determining equations

(5)

Extending the invariantization process, we set

to be the corresponding invariantized Maurer-Cartan forms (4).

Theorem4 The recurrence formulas for the normalized differential invariants (3) are

(6)

2 The invariantized Maurer-Cartan forms for Whitham-Broer-Kaup system

For Whitham-Broer-Kaup system (1)

the underlying total space isM=4with coordinates (t,x,u,v). A vector field

is an infinitesimal symmetry of the WBK system if and only if its coefficients satisfy the infinitesimal symmetry determining equations

(7)

along with all their differential consequences.

Let

denote the corresponding normalized differential invariants and

denote theinvariantized Maurer-Cartan forms. The complete system of linear dependencies among them is derived from (7) as

(8)

and so on. Therefore a basis of the invariantized Maure-Cartan forms can be obtained from (8) as followsμ,γ,μT,γT.

(9)

Then the recurrence formulas are directly obtained from (9) and (6) as follows

(10)

The normalizations are chosen as

(11)

Substituting (11) into equations (10) yields the basis of the invariantized Maurer-Cartan forms,

(12)

for the basic invariant forms. The higher order invariantized Maurer-Cartan forms can berecursively deduced from them.

3 Conclusion

The equivariant moving frame method has proved to be a very powerful tool in determining a basis of the invariantized Maurer-Cartan forms. In this paper, only using the infinitesimal determining equations and choice of cross-section normalization completely has yielded a basis of the invariantized Maurer-Cartan forms of Whitham-Broer-Kaup system. These results can be used to find the complete system of differential invariants for Whitham-Broer-Kaup system. Further more, how to solve the original equation via the invariantized Maurer-Cartan forms and differential invariants, which is interesting and meaningful, deserves our further research.

Acknowledgement

This work is supported by General Scientific Research Project of Liaoning Province(L2014279),Natural Science Foundation of Liaoning Province(20170540103), Foundation of Dalian Ocean University(HDYJ201409), National Natural Science Foundation of China(11501076).

References

[1]WHITHAM G B. Variational methods and applications to water waves[C]. Proc R Soc Lond Ser A Math Phys Eng Sci, 1967,299:6-25.

[2]BROER L J F. Approximate equations for long water waves[J]. Appl Sci Res, 1975,31:377-395.

[3]KAUP D J. A higher-order water-wave equation and the method for solving it[J]. Progr Theoret Phys, 1975,54:396-408.

[4]KUPERSHMIDT B A. Mathematics of dispersive water waves[J]. Commun Math Phys, 1985,99:51-73.

[5]YAN Zhenya,ZHANG Hongqing. New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics[J]. Phys Lett A, 1999,252:291-296.

[6]XIE Fuding,YAN Zhenya,ZHANG Hongqing. Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations[J]. Phys Lett A, 2001,285:76-80.

[7]FAN Engui,ZHANG Hongqing. A new approach to B?cklund transformations of nonlinear evolution equations[J]. Appl Math Mech, 1998,19:645-650.

[8]LISLE I G,REID G J. Cartan structure of infinite Lie pseudo-groups[C]∥Geometrical Approaches to Differential Equations, PJVassiliou and IG Lisle eds, 2000:116-145.

[9]LISLE I G,REID G J,BOULTON A. Algorithmic determination of the structure of infinite symmetry groups of differential equations[C]∥Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, 1995.

[10]REID G J,LISLE I G,BOULTON A,et al. Algorithmic determination of commutation relations for Lie symmetry algebras of PDEs[C]∥Proceedings of the 1992 International Symposium on Symbolic and Algebraic Computation, 1992:63-68.

[11]REID G J. Finding abstract Lie symmetry algebras of differential equations without integrating determining equations[J]. Euro J Appl Math, 1991,2:319-340.

[12]OLVER P J,POHJANPELTO J. Maurer-Cartan forms and the structure of Lie pseudo-groups[J]. Selecta Math, 2005,11:99-126.

[13]FELS M,OLVER P J. Moving coframes Ⅰ. A practical algorithm[J]. Acta Appl Math, 1998,51:161-213.

[14]FELS M,OLVER P J. Moving coframes Ⅱ. Regularization and theoretical foundations[J]. Acta Appl Math, 1999,55:127-208.

[15]OLVER P J. Equivalence, invariants and symmetry[M]. Cambridge: Cambridge University Press, 1995.

[16]OLVER P J. Applications of lie groups to differential equations. second ed. graduate texts in mathe-matics[M]. New York: Springer-Verlag, 1993.

[17]KOGAN I A,OLVER P J. Invariants of objects and their images under surjective maps[J]. Lobachevskii J Math, 2015,36:260-285.

[18]OLVER P J. The symmetry groupoid and weighted signature of a geometric object[J]. J Lie Theory, 2015,26:235-267.

[19]OLVER P J. Recursive moving frames[J]. Results Math, 2011,60:423-452.

[20]OLVER P J. Differential invariant algebras[J]. Contemp Math, 2011,549:95-121.

[21]ROBERTT,FRANCIS V.Group foliation of finite difference equations[J].CommunNonlinear Sci, 2018,59:235-254.

主站蜘蛛池模板: 欧美日韩国产系列在线观看| 视频一区视频二区日韩专区| 一本一本大道香蕉久在线播放| 国产精品久久久久久久久kt| 国产精品区网红主播在线观看| 欧美另类第一页| 美女啪啪无遮挡| 亚洲三级色| 国产精品白浆在线播放| 美女视频黄又黄又免费高清| www.精品国产| 91视频区| 久久久久88色偷偷| 素人激情视频福利| 99re这里只有国产中文精品国产精品| 国产成人久久综合777777麻豆| 强奷白丝美女在线观看| 国产在线日本| 97久久免费视频| 国产理论精品| 亚洲美女操| 亚洲成网站| 中文字幕久久亚洲一区| 午夜a视频| 国产欧美另类| 色综合热无码热国产| 欧美一级在线看| 亚洲欧美成人在线视频| 成年女人a毛片免费视频| 天堂在线www网亚洲| 免费人成网站在线观看欧美| 国产福利2021最新在线观看| 综合色在线| 国产三级毛片| 国产导航在线| 久久精品一卡日本电影| 成人在线天堂| 亚洲日韩在线满18点击进入| 欧美三級片黃色三級片黃色1| 欧美国产日韩在线观看| 亚洲色图欧美一区| 一级毛片免费播放视频| 欧美日韩国产精品va| 精品人妻无码中字系列| 日韩精品亚洲精品第一页| 国产肉感大码AV无码| 午夜福利在线观看入口| 亚洲成人高清在线观看| 秘书高跟黑色丝袜国产91在线| 亚洲第一网站男人都懂| 乱人伦中文视频在线观看免费| 欧美精品亚洲精品日韩专区va| 伊人AV天堂| 午夜福利视频一区| 国产欧美视频一区二区三区| 国产精品综合久久久| 国产成人一级| 欧美精品另类| 成人午夜视频在线| 久久女人网| 午夜影院a级片| a欧美在线| 国产精品不卡永久免费| 99re热精品视频中文字幕不卡| 91青草视频| 麻豆精品国产自产在线| 在线视频亚洲色图| 天堂网亚洲系列亚洲系列| 国产手机在线小视频免费观看| 日韩精品毛片人妻AV不卡| www.国产福利| 午夜视频日本| 丁香五月婷婷激情基地| 中文一区二区视频| 波多野结衣中文字幕一区二区| 亚洲最大情网站在线观看| 女人18毛片水真多国产| 依依成人精品无v国产| 日本午夜影院| 国产va在线观看免费| 久久黄色视频影| 国产精品无码AV中文|