戴青松,鄧運來,歐世聲,付平
?
基于動態材料參數的5083鋁合金本構模型
戴青松1,鄧運來1,歐世聲1,付平2
(1. 中南大學 材料科學與工程學院,湖南 長沙,410083;2. 廣西柳州銀海鋁業股份有限公司,廣西 柳州,545006)
通過熱壓縮試驗研究5083鋁合金在應變速率為0.01~10 s-1、變形溫度為300~500 ℃、變形程度為50%條件下的流變行為,根據熱模擬數據建立基于動態材料參數的雙曲正弦函數本構模型(ZHCM)及冪函數本構模型(ZBCM),并對這2種本構模型的應力預測精確度進行計算。研究結果表明:ZHCM與ZBCM均有較高的應力預測精度,應力平均相對誤差分別為5.26%和3.92%,相比之下,ZHCM在應變速率為10 s?1、變形溫度為300 ℃的條件下應力精度比ZBCM的高,而當應變速率為0.01~1 s?1、變形溫度為350~500 ℃時,ZBCM的應力精度較高。
5083鋁合金;熱壓縮;流變應力;動態材料參數;本構模型
在金屬熱加工過程中,材料流變應力因微觀組織的變化而產生變化,流變應力將影響加工設備載荷與能耗,準確的流變應力本構模型(CM)可為加工設備的選型及載荷計算提供參考[1?6]。目前,表征金屬熱變形流變力學規律的本構模型主要有2種[7?9]:—種是冪函數和指數函數相結合,并包含了Zener?Hollomon參數的雙曲正弦函數(ZH);另一種是冪函數與指數函數相結合的Zuzin?Browman關系式(ZB)。這2種模型均涉及到材料參數的求解,為簡化計算,這些參數通常被當作常數處理[10?11],這種方式計算得出的本構模型可對峰值應力進行較精準預測,但若要建立可對整個變形過程進行精準預測的本構模型,還需考慮材料參數與熱變形條件間的動態變化關系。一些學者在材料參數的修正與優化方面進行了很多研究,如:GAN等[12]在求解6063鋁合金ZHCM時,考慮了材料參數與應變的關系;JIA等[13]在研究AZ31B鎂合金本構方程時,考慮了材料參數的動態變化。本文作者以5083鋁合金為研究對象,根據熱壓縮試驗結果建立基于動態材料參數的ZHCM和ZBCM這2種本構模型,并結合實測數據對2種本構模型進行誤差分析,以便為實際生產中設備選取與工藝制定提供參考。


圖1 熱壓縮試樣金相組織
圖2所示為5083鋁合金在不同變形條件下的真應力?真應變曲線。從圖2可以看出:在熱變形初期,5083鋁合金真應力隨著應變的增加迅速增大至峰值,當應力達到峰值以后,應變呈現穩態流變特征,甚至應力隨應變的增加呈下降趨勢。這是因為當應力達到峰值后,5083鋁合金因動態回復、動態再結晶所引起的動態軟化與位錯引起的加工硬化處于動態平衡,甚至動態軟化行為強于加工硬化,使材料呈現穩態流變特征,甚至呈現下降趨勢[14?16]。由圖2還可看出:在應變速率一定的情況下,5083鋁合金流變應力隨著變形溫度的升高而明顯下降。這是因為隨著變形溫度的升高,動態回復、動態再結晶引起的軟化行為加劇,材料位錯密度減小,因此,流變應力降低。而在變形溫度一定的情況下,流變應力隨著應變速率的增大而明顯增大,這是因為當應變速率增大時,變形時間縮短,在較短的時間內動態軟化行為來不及完全發生,位錯數量明顯增大,導致應力增大。

應變速率/s?1:(a) 0.01;(b) 0.1;(c) 1;(d) 10
描述金屬材料高溫變形的雙曲正弦函數本構模型表達式如下[17?20]。


在整個應力范圍內,



對式(1)~(3)取對數并求偏微分可得:




對式(3)和式(4)取自然對數并求偏導可得:



表1 5083鋁合金各參數值
由圖3中各參數曲線的擬合結果,可求得基于動態材料參數的5083鋁合金ZHCM為

材料高溫流變應力與變形條件間的關系可采用冪函表示[7, 13]:

式中:,,和分別表示材料參數、應變硬化指數應變速率敏感系數和溫度系數。

圖3 材料參數與的關系
Fig. 3 Relationship between material parameters and
對式(11)取自然對數后求偏微分可求得,和與各變形條件的關系:



根據熱壓縮試驗數據及式(12)~(14)可分別求得不同應變速率、不同變形溫度下的,不同真應變、不同變形溫度下的,不同真應變、不同應變速率下的。通過,和可反求出不同應變速率、不同變形溫度下的,計算結果如圖4和圖5所示。
由圖4可知:不同變形條件下的和具有明顯收斂至某一常數的特征,為簡化計算,可認為和為常數,對其求平均值可得:=?0.033 1,=?0.138 6。
由圖5可知:式(11)中的和均隨著應變速率的變化而明顯變化,若將和看成常數將影響到本構模型的應力精度,因此,建立和與應變速率的動態關系。

(a) p;(b) q

(a) b;(a) a


圖6 5083鋁合金的b與的關系

圖7 5083鋁合金的a與的關系
由以上分析可知,式(11)可表示為

根據圖6和圖7的曲線擬合結果,可求得基于動態參數的5083鋁合金ZBCM為

圖8所示為不同變形條件下實測流變應力與2種優化本構模型計算值的對比情況。由圖8可以看出:2種本構模型應力計算值都與實測值接近,說明2種模型都較準確。為更清晰地評價應力計算值與實測值之間的相對誤差,將圖8中數據代入式(17)和式(18)進行相對誤差計算。通過計算發現,ZHCM的平均相對誤差為5.26%,ZBCM的應力平均相對誤差為3.92%,ZBCM的應力精準度相對更高。



進一步計算同一溫度、同一應變量、不同應變速率下應力的相對誤差平均值,對比分析各變形溫度、應變量下應力的相對誤差,計算結果如圖9(a)所示。由圖9(a)可知:當變形溫度為300 ℃時,ZHCM的應力平均相對誤差為3.89%,整體上小于ZBCM的4.55%;而當變形溫度為350~500 ℃時,ZHCM的應力平均相對誤差為5.66%,大于ZBCM的3.64%。計算同一應變速率、同一應變量、不同溫度下的應力相對誤差平均值,對比分析各應變速率、應變量下的應力相對誤差,計算結果如圖9(b)所示。由圖9(b)可知:當應變速率為0.01~1 s?1時,ZBCM的應力相對誤差均比ZHCM的小,其應力平均相對誤差僅為3.33%;而當應變速率為10 s?1時,ZHCM的應力平均相對誤差為2.59%,小于ZBCM的5.68%。對比分析可知,ZHCM在低溫、較高應變速率下的應力精度比ZBCM的高,而ZBCM在較高溫度、低應變速率下具有更高的應力精度,根據圖2的流變曲線可知,流變應力隨著溫度的降低或應變速率的增大而增大,因此,說明ZHCM更適合高應力條件,ZBCM更適合低應力條件。本文ZHCM方程中建立了材料參數與應變的關系,而ZBCM方程建立了材料參數與應變速率的關系,材料參數與變形條件的關系可能是造成2種方程優選適用范圍不同的原因。材料試樣平均晶粒粒徑為50 μm,晶粒相對較小,應力水平較高,ZHCM方程材料參數隨應變變化而變化,更能對高應力條件進行預測,因此,ZBCM在高應力水平條件下的應力預測精度比ZHCM的精度低,而在低水平應力條件下應力預測精度比ZHCM的精度高。

/s?1:(a) 0.01;(b) 0.1;(c) 1;(d) 10

(a) 不同變形溫度;(b) 不同應變速率


[1] VILAMOSA V, CLAUSEN A H, B?RVIK T, et al. A physically-based constitutive model applied to AA6082 aluminium alloy at large strains high strain rates and elevated temperatures[J]. Materials and Design, 2016, 103: 391?405.
[2] YANG Qunying, YANG Dong, ZHANG Zhiqing, et al. Flow behavior and microstructure evolution of 6A82 aluminium alloy with high copper content during hot compression deformation at elevated temperatures[J]. Transactions of Nonferrous Metals Society China, 2016, 26(3): 649?657.
[3] WU Hongdan, ZHANG Hui, CHEN Shuang, et al. Flow stress behavior and processing map of extruded 7075AlSiC particle reinforced composite prepared by spray deposition during hot compression[J]. Transactions of Nonferrous Metals Society China, 2015, 25(3): 692?698.
[4] ZHANG Jiangtao, XIA Junkang, ZHANG Mei, et al. Tensile fracture mechanism and constitutive models of V-5Cr-5Ti alloy under different strain rate deformation at room temperature[J]. Materials Letters, 2016, 183: 40?43.
[5] 李軍, 于輝, 史慶南, 等. 純鈦高溫變形行為及其在精軋板中的應用[J]. 中南大學學報(自然科學版), 2016, 47(6): 1888?1895. LI Jun, YU Hui, SHI Qingnan, et al. Hot deformation behavior of pure titanium and its application in hot sheet finish rolling[J]. Journal of Central South University (Science and Technology), 2016, 47(6): 1888?1895.
[6] 丁漢林, 徐成志, 張曉軍, 等. ZX115鎂合金熱壓縮過程的本構分析及有限元模擬[J]. 中國有色金屬學報, 2015, 25(8): 2075?2082. DING Hanlin, XU Chengzhi, ZHANG Xiaojun, et al. Constitutive analysis and FEM simulation of hot compression of ZX115 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2075?2082.
[7] 于鑫, 孫杰, 熊青春, 等. 7050-T7451鋁合金銑削加工表面材料特性與本構關系模型的建立[J]. 中國有色金屬學報, 2015, 25(11): 2982?2989. YU Xin, SUN Jie, XIONG Qingchun, et al. Milling surface properties of 7050-T7451 aluminum alloy and establishment of constitutive model[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2982?2989.
[8] XIAO Gang, YANG Qinwen, LI Luoxing, et al. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Transactions of Nonferrous Metals Society China, 2016, 26(4): 1096?1104.
[9] 鄧馗, 李永堂, 付建華, 等. 鑄態P91耐熱合金鋼高溫流變行為及本構方程[J]. 鍛壓技術, 2015, 40(11): 100?106. DENG Kui, LI Yongtang, FU Jianhua, et al. High temperature rheological behavior and constitutive equation of as-cast heat-resisting alloy steel P91[J]. Forging Stamping Technology, 2015, 40(11): 100?106.
[10] ZHU Ruihua, LIU Qing, LI Jinfeng, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression[J]. Journal of Alloys and Compounds, 2015, 650: 75?85.
[11] 楊春秀, 陳忠平, 李華清, 等. 鋁青銅合金熱變形流變應力特征[J]. 稀有金屬材料與工程, 2010, 39(Suppl 1): 126?129. YANG Chunxiu, CHEN Zhongping, LI Huaqing, et al. Flow stress feature of aluminium bronze alloy under hot deformation[J]. Rare Metal Materials and Engineering, 2010, 39(Suppl 1): 126?129.
[12] GAN Chunlei, ZHENG Kaihong, QI Wenjun, et al. Constitutive equations for high temperature flow stress prediction of 6063 Al alloy considering compensation of strain[J]. Transactions of Nonferrous Metals Society China, 2014, 24(11): 3486?3491.
[13] JIA Weitao, XU Shuang, LE Qichi, et al. Modi?ed Fields-Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation[J]. Materials and Design, 2016, 106: 120?132.
[14] PARK S Y, KIM W J. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al-Zn-Mg-Cu (7075) alloys[J]. Journal of Materials Science & Technology, 2016, 32(7): 660?670.
[15] WU H, WEN S P, HUANG H, et al. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal of Alloys and Compounds, 2016, 685: 869?880.
[16] HESAM P, MEHDI P, SOHEIL F, et al. Study on the dynamic and static softening phenomena in Al-6Mg alloy during two-stage deformation through interrupted hot compression test[J]. Measurement, 2016, 77: 50?53.
[17] 陳寶東,郭鋒,溫靜,等. Mg-Zn-Zr-Y合金高溫塑性變形本構模型及流變行為預測[J]. 稀有金屬材料與工程, 2017, 46(11): 3305?3310.
CHEN Baodong, GUO Feng, WEN Jing, et al. Constitutive model of hot plastic deformation and flow behavior prediction of Mg-Zn-Zr-Y alloy[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3305?3310.
[18] 付平,劉栩,戴青松,等. 5083鋁合金熱壓縮流變應力曲線修正與本構方程[J]. 材料工程, 2017, 45(8): 76?82.
FU Ping, LIU Xu, DAI Qingsong, et al. Modification of flow stress curves and constitutive equations during hot compression deformation of 5083 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(8): 76?82.
[19] ZHU Shaozhen, LUO Tianjiao, ZHANG Tingan, et al. Hot deformation behavior and processing maps of as-cast Mg-8Zn-1Al-0.5Cu-0.5Mn alloy[J]. Transactions of Nonferrous Metals Society China, 2015, 25(10): 3232?3239.
[20] XU Zhaohua, LI Miaoquan, LI Hong, et al. Plastic flow behavior of superalloy GH696 during hot deformation[J]. Transactions of Nonferrous Metals Society China, 2016, 26(3): 712?721.
(編輯 劉錦偉)
Constitutive model of 5083 aluminum alloy based on dynamic material parameters
DAI Qingsong1, DENG Yunlai1, OU Shisheng1, FU Ping2
(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;2. Guangxi Liuzhou Yinhai Aluminum Co. Ltd., Liuzhou 545006, China)
The flow stress features of 5083 aluminum alloy were investigated by the isothermal compression test at the strain rates of 0.01?10 s?1, the temperatures of 300?500 ℃ and the deformation degree of 50%. According to the thermal simulation data, the hyperbolic sine constitutive model (ZHCM) and power function constitutive model (ZBCM) were established based on the dynamic material parameters. Furthermore, the stress prediction accuracies of two constitutive models were calculated. The results show that both ZHCM and ZBCM have high stress precision of prediction, and the average relative errors of stress are 5.26% and 3.92%, respectively. By contrast, the ZHCM has higher stress accuracy at the strain rate of 10 s?1and the deformation temperature of 300 ℃, while the stress accuracy of ZBCM predicts more accurately at the strain rate of 0.01?1 s?1and the deformation temperature of 350?500 ℃.
5083 aluminum alloy; hot compression; flow stress; dynamic material parameter; constitutive model
10.11817/j.issn.1672-7207.2018.05.007
TG146.2
A
1672?7207(2018)05?1072?08
2017?05?15;
2017?07?03
廣西科學研究與技術開發計劃項目(1598001-2,14122001-5) (Projects(1598001-2, 14122001-5) supported by the Scientific Research and Technology Development Program of Guangxi)
鄧運來,教授,博士生導師,從事有色金屬材料加工工程研究;E-mail: luckdeng@csu.edu.cn