張 寧,艾連中,張 匯
(上海理工大學醫療器械與食品學院,上海食品微生物工程技術研究中心,上海 200093)
膳食纖維是不被人體胃腸道消化吸收,但可被腸道微生物降解的多糖及木質素類的總稱,主要存在于植物細胞壁中[1-2]。精細食品在人們飲食中的比例不斷增加,膳食纖維的比例不斷減少,導致我國糖尿病、心血管疾病等患者逐年增加[3]。谷物β-葡聚糖作為一種可溶性膳食纖維得到廣泛關注[4],對人體健康起著不可忽視的作用。谷物β-(1→3,1→4)-葡聚糖(β-葡聚糖)是由不同聚合度的β-(1→4)-寡葡聚糖(纖維片段)組成,這些纖維片段通過β-(1→3)-鍵連接,形成鏈狀大分子形式的β-葡聚糖。不同谷物來源β-葡聚糖的精細結構,比如β-(1→4)-和β-(1→3)-鍵比例和DP3∶DP4比例不同,鏈狀的空間構象會發生相應的變化,從而導致其理化性質(如溶解性和成膠性)和生理活性的差異[5]。研究表明:β-葡聚糖能有效預防代謝綜合征和II型糖尿病等慢性疾病[6-7],具有改善脂肪性肥胖[8]、維護腸道健康[9]、抗腫瘤[10]、抗炎[11]和免疫調節[12]等生物活性。
歐洲食品安全局(EFSA)已認證每天食用定量的β-葡聚糖能維持并降低血液膽固醇水平和餐后血糖響應值[13]。近年來我國對β-葡聚糖的認識也越來越深入,同時,西藏、青海和內蒙古等地區大量種植青稞和燕麥,為β-葡聚糖的提取和開發利用提供了廣泛的原料基礎[14]。基于此,本文將對谷物β-葡聚糖的提取純化方法進行總結,對谷物β-葡聚糖的結構特征、理化性質、功能特性等進行綜述,對β-葡聚糖的開發應用進行展望。
糧食作物中大麥的β-葡聚糖含量最高,其次是燕麥和小麥,分別為2.5%~11.3%,2.2%~7.8%和0.2%~1.2%[13,15]。β-葡聚糖主要分布于谷物種子的胚乳層和糊粉層細胞壁,采用剛果紅染色法對谷物種子進行處理,切片觀察到β-葡聚糖(紅色區域)的分布情況,如圖1所示[16],約85%燕麥β-葡聚糖分布于胚乳層細胞壁,并主要集中于亞糊粉層次生壁(圖1a),約70%大麥β-葡聚糖均勻分布于胚乳層細胞壁(圖1b),然而,小麥β-葡聚糖主要分布于糊粉層細胞壁(圖1c)。由此可見,β-葡聚糖是細胞壁的重要組成成分,對細胞的結構起著固定和支撐的作用。基于此,選擇合適的方法對谷物β-葡聚糖進行制備。谷物β-葡聚糖的制備一般包括谷物前處理、谷物β-葡聚糖的提取和純化三個部分[17]。

圖1 剛果紅染色觀察燕麥(a)和大麥(b) 和小麥(c)中的β-葡聚糖分布情況Fig.1 The distribution of β-glucan in oat(a),barley(b)and wheat(c)by congo red staining
Myriam等[18]通過0.5 mm篩減小谷物粒徑,增大谷物與提取液接觸的機會,增加β-葡聚糖的得率。谷物中的內源性β-葡聚糖酶能降解β-葡聚糖,導致其分子量下降[19],因此常用高壓滅菌法、乙醇回流法和烘箱加熱法等滅活酶,不同滅酶方法結果差異較大,以乙醇回流法最為常用[20]。
谷物β-葡聚糖大多利用水提、堿提或酶處理等從谷物中提取可溶性的β-葡聚糖。Izydorczyk等[21]采用熱水法從大麥中提取得到了β-葡聚糖,發現60 ℃相比于40 ℃水溶液提取的β-葡聚糖具有更小的摩爾質量。Cui等[17]以小麥麩皮為原料,用1.0 mol/L的NaOH溶液提取β-葡聚糖,提取率為1.37%,純度為57.13%。酶法提取β-葡聚糖作為一種綠色工藝[22],具有操作簡單、耗費時間少、環保無污染、提取率高等優點,但由于谷物中含有阿拉伯木聚糖等可溶性膳食纖維使得產品純度相對較低。此外,Hematian等[23]借助超聲波輔助提取大麥中的β-葡聚糖,有效地縮短了提取時間,并且β-葡聚糖提取率達3.87%。不同提取谷物β-葡聚糖方法的優缺點如表1所示。

表1 不同提取β-葡聚糖方法比較Table 1 Comparison of the extraction methods for β-glucans
谷物β-葡聚糖提取物中通常含有少量的淀粉、蛋白質和阿拉伯木聚糖等成分,為進一步提高產品純度,采用硫酸銨沉淀、乙醇分級沉淀和柱層析等方法進行純化。
β-葡聚糖在較低濃度的硫酸銨溶液(20%~55%)中形成沉淀,而阿拉伯木聚糖需要在較高濃度的硫酸銨溶液(55%~95%)中才能沉淀,因此,可通過該性質將兩者進行分離。Cui等[21]經硫酸銨分級小麥麩皮中β-葡聚糖得到91.58%β-葡聚糖產品。乙醇分級沉淀是基于不同分子量的多糖在不同濃度乙醇溶液中溶解度不同而達到分離效果,隨著乙醇濃度的增加,分子量從大到小的β-葡聚糖可逐漸被分級。宋雪梅等[24]用乙醇沉淀莜麥麩皮中的β-葡聚糖,結果表明乙醇濃度為70%時分級效果最好。凝膠柱層析是多糖分離純化最常用的一種方法,基于不同分子量進行分級,可得到分子量分布窄,純度高的多糖組分,但純化效率較低,成本較高。對于谷物β-葡聚糖,一般可采用瓊脂糖凝膠柱層析法進行分離純化[24],袁建等[25]用此方法分離純化小麥麩皮的β-葡聚糖提取物,得到產品的純度為97.03%。
綜上,制備谷物β-葡聚糖的一般流程可總結如下:
谷物(麩皮或顆粒)→粉碎過篩→脫脂滅酶→溶劑提取→離心取上清(殘渣可二次提取)→去除淀粉、蛋白→乙醇沉淀→干燥→β-葡聚糖粗品→純化→高純度β-葡聚糖。
以上流程得到β-葡聚糖粗品的純度為33%~87%[26]。在制備谷物β-葡聚糖時,需綜合考慮成本、得率、純度及特性等各方面因素,選擇合適的提取和純化工藝,最大程度地利用谷物β-葡聚糖。
谷物β-葡聚糖由β-D-吡喃型葡萄糖基單元通過β-(1→4)-糖苷鍵重復連接形成纖維三糖或四糖片段,同時含有5~14個葡萄糖殘基的纖維素寡聚物,這些纖維素寡聚物再通過單一的β-(1→3)-糖苷鍵連接組合,形成線型同聚多糖[27]。谷物β-葡聚糖的化學結構相對簡單,可通過常規的甲基化和核磁共振分析對其化學結構進行解析[27-28]。
此外,還可通過選擇性酶解的方式釋放寡糖片段,通過寡糖片段的組合判斷谷物β-葡聚糖的精細結構。地衣聚糖酶(Licheninase,EC 3.2.1.73)可特異性水解谷物β-葡聚糖中與β-(1→3)-鍵相連的β-(1→4)-糖苷鍵,從而得到不同聚合度的寡糖片段[29],如圖2所示。通過陰離子交換色譜(HPAEC)或基質輔助激光解吸電離飛行時間質譜(MALDI-TOF MS)技術判斷寡糖片段的聚合度和比例,通過組合即可進一步明確谷物β-葡聚糖的化學結構。

圖2 谷物β-葡聚糖經地衣聚糖酶(EC 3.2.1.73)水解后寡糖產物Fig.2 The structure of β-glucan and hydrolysates after treatment of licheninase
不同來源谷物β-葡聚糖的精細結構具有較大的差異,主要體現在纖維三糖和纖維四糖的比例以及β-(1→4)-與β-(1→3)-糖苷鍵的比例[30-32]。如小麥、大麥和燕麥β-葡聚糖里纖維三糖(DP3)的相對比例分別為67%~72%、52%~69%和53%~61%,而纖維四糖(DP4)的相對比例分別為21%~24%、25%~33%和34%~41%,DP3和DP4比例分別為3.0%~4.5%、1.8%~3.5%和1.5%~2.3%[29,33],兩者的摩爾比被稱為谷物β-葡聚糖的結構指紋,是結構特征的重要差異,比例越高,纖維三糖的含量就越高[34]。此外,即使同種谷物β-葡聚糖的DP3和DP4比例也有差異,從而β-(1→4)-和β-(1→3)-糖苷鍵的比例也有差異,這可能與谷物品種和生長環境的不同有關[17,35]。常見的谷物的β-葡聚糖含量、分子量、纖維三糖和四糖比例及β-(1→3)-與β-(1→4)-糖苷鍵的比例如表2所示。

表2 谷物β-葡聚糖含量、分子量、纖維三糖/ 纖維四糖比例及β-(1→4)-與β-(1→3)-糖苷鍵的比例Table 2 Content,molecular weight,ratio of trisaccharide and tetrasaccharide and ratio of β-(1→4)- and β-(1→3)-glycosidic linkage of cereal β-glucans
由于谷物β-葡聚糖的結構比較明確,因此,可通過特定的方法對樣品中的β-葡聚糖含量進行定性和定量測定。
β-葡聚糖與熒光增白劑特異性結合,結合后Caleofluor熒光強度增強,其熒光強度增量與β-葡聚糖含量呈一定的線性關系[36]。該法簡便快速、精確度高、實用性強,對工業上β-葡聚糖的含量測定起一定的指導意義。但熒光增白劑對光敏感,影響測定結果,因此,難以在較廣范圍內使用。
β-葡聚糖與剛果紅染料特異性結合,吸收強度隨β-葡聚糖的濃度增加而增強,可用于β-葡聚糖的定量分析[37]。該方法快速、簡便,但水不溶的β-葡聚糖無法被檢測到,結果偏低。
最常用的就是Mcclear等[38]提出的酶法,經過簡化以后成為常用分析方法,即AOAC955.16法[39]。β-葡聚糖酶特異性水解與β-(1→3)-鍵相連的β-(1→4)-糖苷鍵,降解為寡糖片段,β-葡聚糖苷酶再將寡糖片段降解為葡萄糖,通過測定葡萄糖含量,進而換算得到β-葡聚糖含量。該法要求酶的純度高,否則測定結果不準確。該法簡便,用樣量少,但價格相對較高,是目前定量測定β-葡聚糖廣泛使用的方法。表3總結了不同測定β-葡聚糖方法的優缺點,在實際應用中可選擇合適的方法進行定性和定量分析。

表3 不同測定β-葡聚糖方法比較Table 3 Comparison of the methods of measurement of β-glucans
通常情況下,谷物β-葡聚糖為白色粉末,溶于水呈淡黃色,不溶于乙醇、丙酮等有機試劑,具有吸水溶脹能力,有良好的持水性,Lee等[40]報道,大麥β-葡聚糖的持水性達6.02~6.81 g/g。水溶液中β-葡聚糖分子間相互纏繞并發生氫鍵作用形成聚集體,表現出高黏度和凝膠化的性質[3,41-42]。Nicolai等[43]表示隨β-葡聚糖濃度增加,分子鏈間聚集纏繞更緊密;分子量降低,分子鏈短而移動性增加,成膠速率增加,濃度增加較分子量降低而言更有利于成膠。Li等[41]表示三糖和四糖比例高的β-葡聚糖分子濃溶液更容易聚集而成膠,這是由于纖維三糖單元易形成網絡交聯區所致。Burkus等[44]研究表明β-葡聚糖的臨界濃度、黏度、黏彈行為和剪切變稀性質主要和多糖分子量有關,分子量在100~200 kDa的谷物β-葡聚糖在室溫下很容易成膠(8%~10%,w/v),分子量越大,黏度越大,儲能模量越小。谷物β-葡聚糖的高黏度和易成膠特性使之具有良好生理功能和潛在的商業應用價值。
β-葡聚糖增加乳狀液的外相黏度,限制了液滴的運動,降低油水界面表面張力[45],有利于乳狀液的穩定。在制備和穩定乳液的過程中,大液滴被外力作用后變小,乳化劑吸附到小液滴上,阻止液滴間聚集或絮凝成大液滴,進而維持其長期穩定性。當乳化劑濃度太低或外力作用較大而乳化劑不能及時被液滴吸附時,乳化劑在界面連續相一側形成的具有粘彈性的界面膜被破壞,液滴就會聚集或絮凝,乳化穩定性下降,如圖3所示[46]。Kontogiorgos等[47]表明低分子量β-葡聚糖分子鏈向水相中伸展,形成網絡結構,產生空間位阻、靜電排斥等作用抑制了微粒的聚集,而高分子量β-葡聚糖通過提高水相黏度分別表現出良好的乳化穩定性。

圖3 制備和穩定乳液的主要物化過程示意圖Fig.3 Illustration of main physico-chemical processes involved in making of emulsions
谷物β-葡聚糖作為一種水溶性膳食纖維,表現出廣泛的生物活性,如降血脂、降血糖、改善腸道健康等。
谷物β-葡聚糖增加腸道的黏性,結合膽汁酸,吸收多余的膽固醇和甘油三酯,從而減少膽固醇的肝腸循環,并促進其排出體外[48]。研究表明燕麥β-葡聚糖能顯著降低由高脂飲食引起的小鼠血清總甘油三酯和血清總膽固醇水平[49-50]。此外,Aoki等[51]通過高脂飲食喂養的小鼠表明β-葡聚糖能增加膽固醇7α-羥化酶基因的表達,加快膽固醇轉化成膽酸,體內膽固醇水平顯著下降。
β-葡聚糖分子互相交聯的網狀結構形成物理屏障阻礙食物和消化酶的接觸,在胃腸道中形成的黏液,延長胃的排空時間,減緩小腸收縮率,減少胰島素的釋放量,從而降低葡萄糖的吸收率,降低患II型糖尿病的風險[52-54]。Bi?rklund等[55]研究發現燕麥麩β-葡聚糖分子量越高,黏度越大,降低餐后血糖指數與胰島素水平效果越顯著。
β-葡聚糖作為一種可溶性膳食纖維不能被消化酶降解,進入腸道與腸粘膜,與腸道菌群作用,在大腸中被發酵產生乙酸、丙酸和丁酸等短鏈脂肪酸,腸道pH降低,病原菌生長繁殖能力下降,同時丁酸為大腸細胞的代謝提供能量[51,56-57]。β-葡聚糖作為新一代益生元,選擇性刺激結腸中某些細菌的生長活性,促進有益菌生長,抑制有害菌繁殖,改善腸道菌群結構和多樣性,刺激腸道蠕動,加速有毒物質排出體外[58-59]。Wang等[58]研究表明,高分子量β-葡聚糖的攝入改變腸道菌群組成,增加擬桿菌屬和降低厚壁菌屬數量,推測β-葡聚糖對腸道菌群的影響可能和分子量有關。燕麥β-葡聚糖能顯著抑制由高脂飲食引起的小鼠腸道菌群中乳桿菌屬和擬桿菌屬細菌多樣性的降低[49]。
目前,谷物β-葡聚糖主要應用在食品和化妝品領域。
β-葡聚糖有著增稠性、穩定性、乳化性和成膠性等良好物性[60]。研究顯示,冰淇淋中添加燕麥β-葡聚糖能提高其黏度、膨脹率和抗溶性,賦予產品潤滑和糯性口感,蛋糕中添加1%~5%燕麥纖維能增加成品體積,改善組織結構并賦予產品良好口感[61-62]。β-葡聚糖良好的耐熱性和高持水性,一定程度上阻礙了面包芯水分的擴散,阻礙了淀粉的重結晶化,淀粉老化速率下降,從而延長貨架期[63]。β-葡聚糖良好的持水性和凝膠性能使香腸富有彈性,多汁易咀嚼,有良好的色澤和風味[64]。牛奶和高分子量燕麥β-葡聚糖的結合制得一種低熱量和低膽固醇乳品,且β-葡聚糖和酪蛋白顆粒的結合改善了乳品外觀[65]。
β-葡聚糖可刺激免疫系統,激活巨噬細胞,產生促進傷口愈合的細胞因子,同時被免疫細胞膜上受體識別激活免疫活性細胞,促進纖維細胞合成膠原蛋白,促淡化疤痕,祛除皺紋,并對皮炎、濕疹和牛皮癬等皮膚病的情況均有改善[60,66]。Pillai等[67]發現燕麥β-葡聚糖通過細胞間隙滲透到皮膚表層和深層,提高細胞滋潤度,令皮膚富有彈性,是一種天然的保濕因子。Kanlayavattanakul等[68]在護膚膏中加入0.04%的β-葡聚糖,受試者28 d后皮膚狀況顯著改善,眼部皺紋變淺,前臂皮膚緊致。
谷物β-葡聚糖是膳食纖維的重要來源,表現出降血糖、降血脂、提高免疫活性及改善腸道健康等生物活性,在疾病預防和治療中有著的重要作用,與人類健康息息相關。本文比較了谷物β-葡聚糖不同提取方式和測定方法的優缺點,總結了其結構和溶液性質及生理活性,并概述了β-葡聚糖在食品和化妝品行業的應用。谷物β-葡聚糖的生理活性受其理化性質和結構特征影響,過去研究β-葡聚糖主要通過提高腸道黏度阻礙葡萄糖和膽固醇等的吸收預防糖尿病和肥胖等慢性疾病,在腸道中發酵產生短鏈脂肪酸改善腸道健康。不同結構特征的谷物β-葡聚糖在生理功能中所起的作用有待進一步研究,為進一步發揮β-葡聚糖的生理活性具有極大指導意義。
[1]Brownlee I A,Chater P I,Pearson J P,et al. Dietary fibre and weight loss:Where are we now?[J]. Food Hydrocolloids,2017,68:186-191.
[2]Spiller G A,Amen R J,Kritchevsky D. Dietary fiber in human nutrition[J]. C R C Critical Reviews in Food Technology,1983,7(1):39-70.
[3]狄志鴻,楊善巖,聶蓉蓉,等. 膳食纖維降糖作用及機理研究進展[J]. 食品研究與開發,2014,35(20):138-141.
[4]Barsanti L,Passarelli V,Evangelista V,et al. ChemInform abstract:Chemistry,physico-chemistry and applications linked to biological activities ofβ-glucans[J]. Natural Product Reports,2011,28(3):457.
[5]M?kel? N,Maina N H,Vikgren P,et al. Gelation of cerealβ-glucan at low concentrations[J]. Food Hydrocolloids,2017,73:60-66.
[6]Baldassano S,Accardi G,Vasto S. Beta-glucans and cancer:The influence of inflammation and gut peptide[J]. European Journal of Medicinal Chemistry,2017,142:486-492.
[7]Liu M,Zhang Y,Zhang H,et al. The anti-diabetic activity of oatβ-d-glucan in streptozotocin-nicotinamide induced diabetic mice[J]. International Journal of Biological Macromolecules,2016,91:1170-1176.
[8]Aoe S,Ichinose Y,Kohyama N,et al. Effects of high beta-glucan barley on visceral fat obesity in Japanese subjects:a randomized double blind study[J]. Nutrition,2017,42:1-6.
[9]O’Connor S,Chouinard-Castonguay S,Gagnon C,et al. Prebiotics in the management of components of the metabolic syndrome[J]. Maturitas,2017:11-18.
[10]Hussain P R,Rather S A,Suradkar P P. Structural characterization and evaluation of antioxidant,anticancer and hypoglycemic activity of radiation degraded oat(Avena sativa)β-glucan[J]. Radiation Physics & Chemistry,2017.
[11]Suchecka D,Baszczyk K,Harasym J,et al. Impact of purified oat 1-3,1-4-β-d-glucan of different molecular weight on alleviation of inflammation parameters during gastritis[J]. Journal of Functional Foods,2017,28:11-18.
[12]Ji L,Sun G,Li J,et al. Effect of dietaryβ-glucan on growth,survival and regulation of immune processes in rainbow trout(Oncorhynchus mykiss)infected byAeromonassalmonicida[J]. Fish Shellfish Immunol,2017,64:56-67.
[13]Rieder A,Knutsen S H,Ballance S.Invitrodigestion of beta-glucan rich cereal products results in extracts with physicochemical and rheological behavior like pure beta-glucan solutions-A basis for increased understanding ofinvivoeffects[J]. Food Hydrocolloids,2017,67:74-84.
[14]王恒良. 西藏青稞資源利用評價及其青稞提取物β-葡聚糖的生理功效研究[D]. 拉薩:西藏大學,2008.
[15]Shen R L,He J. Reaearch advances in fine structural of cerealβ-glucan[J]. Journal of Henan University of Technology(Natural Science Edition),2009,2:020.
[16]Tosh S M,Miller S S. Health Effects ofβ-Glucans Found in Cereals[M]. Reference Module in Food Science,2016:236-240.
[17]Li W,Cui S,Kakuda Y. Extraction,fractionation,structural and physical characterization of wheatβ-d-glucans[J]. Carbohydrate Polymers,2006,63(3):408-416.
[18]Grundy M M L,Quint J,Rieder A,et al. The impact of oat structure and beta-glucan oninvitrolipid digestion[J]. Journal of Functional Foods,2017,38(Pt A):378-388.
[19]申瑞玲,何俊,趙學偉. 谷物β-葡聚糖的提取方法、化學結構及功能性質研究進展[J]. 食品科學,2009,30(3):288-291.
[20]Knuckles B E,Mcm C. beta-Glucanase activity and molecular weight of beta-glucans in barley after various treatments[J]. Cereal Chemistry,1999,76(1):92-95.
[21]Izydorczyk M S,Macri L J,MacGregor A W. Structure and physicochemical properties of barley non-starch polysaccharides-I. Water-extractableβ-glucans and arabinoxylans[J]. Carbohydrate Polymers,1998,35(3-4):249-258.
[22]Mongeau R,Brooks S P J. Dietary fiber:determination[J]. Encyclopedia of Food & Health,2016:383-391.
[23]Hematian S A,Koocheki A,Elahi M. Ultrasound-assisted extraction ofβ-d-glucan from hull-less barley:Assessment of physicochemical and functional properties[J]. International Journal of Biological Macromolecules,2017,95:462-475.
[24]宋雪梅,韓舜愈,祝霞,等. 莜麥麩中β-葡聚糖的提取與純化[J]. 甘肅農大學報,2006,41(2):83-87.
[25]袁建,范哲,王艷,等. 小麥麩皮中β-葡聚糖的分離純化及組成研究[J]. 食品工業科技,2014,35(15):90-94.
[26]Izydorczyk M S,Dexter J E. Barleyβ-glucans and arabinoxylans:Molecular structure,physicochemical properties,and uses in food products-a Review[J]. Food Research International,2008,41(9):850-868.
[27]Izydorczyk M S,Macri L J,Macgregor A W. Structure and physicochemical properties of barley non-starch polysaccharides-I. Water-extractable beta-glucans and arabinoxylans[J]. Carbohydrate Polymers,1998,35(3-4):259-269.
[28]Shah A,Gani A,Masoodi F A,et al. Structural,rheological and nutraceutical potential ofβ-glucan from barley and oat[J]. Bioactive Carbohydrates and Dietary Fibre,2017,10:10-16.
[29]Lazaridou A,Biliaderis C G. Molecular aspects of cerealβ-glucan functionality:Physical properties,technological applications and physiological effects[J]. Journal of Cereal Science,2007,46(2):101-118.
[30]Dais P,Perlin A S. High-field,13 C-N.M.R. spectroscopy ofβ-d-glucans,amylopectin,and glycogen[J]. Carbohydrate Research,1982,100(1):103-116.
[31]Izydorczyk M S,Biliaderis C G,Macri L J,et al. Fractionation of Oat(1→3),(1→4)-β-D-Glucans and Characterisation of the Fractions[J]. Journal of Cereal Science,1998,27(3):321-325.
[32]Salgado M,Santos F,Rodríguez-Rojo S,et al. Development of barley and yeast b-glucan aerogels for drug delivery by supercritical fluids[J]. Journal of Co2 Utilization,2017,22:262.
[33]Moschakis T,Lazaridou A,Biliaderis C G. A micro-and macro-scale approach to probe the dynamics of sol-gel transition in cerealβ-glucan solutions varying in molecular characteristics[J]. Food Hydrocolloids,2014,42(8):81-91.
[34]Peterson D M,Qureshi A A. Genotypes and environment effects on tocols of barley and oats[J]. Cereal Chemistry,1993,70(2):157-162.
[35]Storsley J M,Izydorczyk M S,You S,et al. Structure and physicochemical properties ofβ-glucans and arabinoxylans isolated from hull-less barley[J]. Food Hydrocolloids,2003,17(6):831-844.
[36]Paula R D,Abdel-Aal E S M,Messia M C,et al. Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta[J]. Journal of Cereal Science,2017,75:124-131.
[37]Semedo M C,Karmali A,Fonseca L. A high throughput colorimetric assay ofβ-1,3-d-glucans by Congo red dye[J]. Journal of Microbiological Methods,2015,109:140-148.
[38]Mcclear B V,Glennie-Holmes M. Enzymic quantification of(13,14)-β-D-glucan in barley and malt[J]. Journal of the Institute of Brewing,2013,91(5):285-295.
[39]Mccleary B V,Mugford D C. Determination of beta-glucan in barley and oats by streamlined enzymatic method:summary of collaborative study[J]. Journal of Aoac International,1997,80(3):580-583.
[40]Lee S H,Jang G Y,Kim M Y,et al. Physicochemical andinvitrobinding properties of barley beta-glucan treated with hydrogen peroxide[J]. Food Chemistry,2016,192:729-735.
[41]Li W,Cui S W,Wang Q,et al. Studies of aggregation behaviours of cerealβ-glucans in dilute aqueous solutions by light scattering:Part I. Structure effects[J]. Food Hydrocolloids,2011,25(2):189-195.
[42]Wu J,Zhao L,Li J,et al. Aggregation and gelation of oatβ-glucan in aqueous solution probed by NMR relaxometry[J]. Carbohydr Polymers,2017,163:170-180.
[43]Repin N,Cui S W,Goff H D. Rheological behavior of dietary fibre in simulated small intestinal conditions[J]. Food Hydrocolloids,2018,76:216-225.
[44]Lazaridou A,Biliaderis C G,Micha-Screttas M,et al. A comparative study on structure-function relations of mixed-linkage(1→3),(1→4)linearβ-d-glucans[J]. Food Hydrocolloids,2004,18(5):837-855.
[45]Burkus,Z,Temelli,F. Stabilization of emulsions and foams using barleyβ-glucan.[J]. Food Research International,2000,33(1):27-33.
[46]Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers[J]. Food Hydrocolloids,2009,23(6):1473-1482.
[47]Kontogiorgos V,Biliaderis C G,Kiosseoglou V,et al. Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cerealβ-glucans of varying molecular size[J]. Food Hydrocolloids,2004,18(6):987-998.
[48]Tong L T,Zhong K,Liu L,et al. Effects of dietary hull-less barley beta-glucan on the cholesterol metabolism of hypercholesterolemic hamsters[J]. Food Chemistry,2015,169:344-349.
[49]陳杏云. 高脂飲食和燕麥β-葡聚糖對菌群人源化小鼠生理及腸道菌群的影響[D]. 咸陽:西北農林科技大學,2013.
[50]申瑞玲,王志瑞,董吉林,等. 燕麥β-葡聚糖對高脂血癥大鼠空腹和餐后脂代謝的影響[J]. 食品科學,2009,30(1):260-262.
[51]Aoki S,Iwai A,Kawata K,et al. Oral administration of the Aureobasidium pullulans-derivedβ-glucan effectively prevents the development of high fat diet-induced fatty liver in mice[J]. Scientific Reports,2015,5.
[52]Juvonen K R,Karhunen L J,Vuori E,et al. Structure modification of a milk protein-based model food affects postprandial intestinal peptide release and fullness in healthy young men[J]. British Journal of Nutrition,2011,106(12):1890-1898.
[53]Kay B A,Trigatti K,MacNeil M B,et al. Pudding products enriched with yellow mustard mucilage,fenugreek gum or flaxseed mucilage and matched for simulated intestinal viscosity significantly reduce postprandial peak glucose and insulin in adults at risk for type 2 diabetes[J]. Journal of Functional Foods,2017,37:603-611.
[54]Zhang J,Luo K,Zhang G. Impact of native form oatβ-glucan on starch digestion and postprandial glycemia[J]. Journal of Cereal Science,2017,73:84-90.
[55]Bi?rklund M,Van R A,Mensink R P,et al. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with beta-glucans from oats or barley:a randomised dose-controlled trial[J]. European Journal of Clinical Nutrition,2005,59(11):1272.
[56]Byrne B M,Dankert J. Volatile fatty acids and aerobic flora in the gastrointestinal tract of mice under various conditions[J]. Infection & Immunity,1979,23(3):559-563.
[57]James J L C,Carolyn J O,Ku Y.Invitrofermentation of various food fiber fractions[J]. Journal of Agricultural & Food Chemistry,1997,45(7):2463-2467.
[58]Gibson G R,Beatty E R,Wang X,et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin[J]. Gastroenterology,1995,108(4):975-982.
[59]Fujimura K E,Slusher N A,Cabana M D,et al. Role of the gut microbiota in defining human health[J]. Expert Review of Anti-infective Therapy,2010,8(4):435.
[60]Zhu F,Du B,Xu B. A critical review on production and industrial applications of beta-glucans[J]. Food Hydrocolloids,2016,52:275-288.
[61]佚名. 日本研制燕麥EX新食品[J]. 中外食品加工技術,2003(7):7-8.
[62]董吉林,鄭堅強,申瑞玲. 燕麥β-葡聚糖的黏性及其在冰淇淋中的應用[J]. 食品研究與開發,2007,28(7):193-196.
[63]魏決,羅雯.β-葡聚糖對改善面包品質的研究[J]. 食品科技,2010(11):174-178.
[64]Amini Sarteshnizi R,Hosseini H,Bondarianzadeh D,et al. Optimization of prebiotic sausage formulation:Effect of usingβ-glucan and resistant starch by D-optimal mixture design approach[J]. LWT-Food Science and Technology,2015,62(1):704-710.
[65]Sharafbafi N,Tosh S M,Alexander M,et al. Phase behaviour,rheological properties,and microstructure of oatβ-glucan-milk mixtures[J]. Food Hydrocolloids,2014,41:274-280.
[66]嚴明強,張紅兵.β-葡聚糖在化妝品中的應用[J]. 香料香精化妝品,2007(6):31-34.
[67]Pillai R,Redmond M,R?ding J. Anti-Wrinkle therapy:significant new findings in the non-invasive cosmetic treatment of skin wrinkles with beta-glucan[J]. International Journal of Cosmetic Science,2010,27(5):292-292.
[68]Kanlayavattanakul M,Lourith N. Carboxymethylglucan in cosmetics[J]. Thai Pharmaceutical and Health Science Journal,2009,33:378-382.