999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

FROM LEIBNIZ SUPERALGEBRAS TO LIE-YAMAGUTI SUPERALGEBRAS

2018-07-16 12:08:00TANGXinxinZHANGQingchengWANGChunyue
數(shù)學(xué)雜志 2018年4期

TANG Xin-xin,ZHANG Qing-cheng,WANG Chun-yue

(1.School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China)

(2.School of Media and Mathematics and Physics,Jilin Engineering Normal University,Changchun 130052,China)

Abstract:In this paper,we study the construction of Lie-Yamaguti superalgebras.By using left Leibniz superalgebras,we give the construction of left Leibniz superalgbebras,then give the construction of Lie-Yamaguti superalgebras from left Leibniz superalgebras.So we gain the construction of Lie-Yamaguti superalgebras,which generalizes the construction of Lie-Yamaguti algebras in the situation of superalgebras.

Keywords: Lie-Yamaguiti superlagebras;(left)Leibniz superlagebras;Akivis superalgebras;Lie supertriple systems;construction

1 Introduction

Lie algebras were studied for many years in mathematics and physics,such as in quantum field theory.As the noncommutative analogs of Lie algebras,Leibniz algebras were first introduced by Cuvier and Loday in[1]and[2].Researchers obtained many results about Leibniz algebras and we can find some of them in[3–6].There are two kinds of Leibniz algebras,left Leibniz algebras and right Leibniz algebras[7].For a given non-commutative algebra(A,·),if the left multiplication lx·y=x ·y,?x,y ∈ A is a derivation of A,then(A,·)is called a left Leibniz algebra[8].As non-associative algebras,left Leibniz algebras can construct Akivis algebras[9].Kinyon and Weinstein found that a left Leibniz algebra has a Lie-Yamaguti algebra structure by using an enveloping Lie algebra of Leibniz algebras.

Recently,Leibniz algebras are generalized to Leibniz superalgebras by Dzhumadil in[10].Then some important results were obtained such as[11]and[12].Like left Leibniz algebras and right Leibniz algebras,we can similarly obtain left Leibniz superalgebras and right Leibniz superalgebras.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.In this paper,we study the construction of left Leibniz superalgebras and Lie-Yamaguti superalgebras.

This paper is organized as follows.In Section 2,we recall the definition of Leibniz superalgebras and prove that every non-associative superalgebra has an Akivis superalgebra structure.Then we give examples and constructions of left Leibniz superalgebras.In Section 3,we define Lie-Yamaguti superalgebras and prove that every left Leibniz superalgebra has a Lie-Yamaguti superalgebra structure.

Throughout this paper,K denotes a field of characteristic zero;All vector spaces and algebras are over K;hg(A)denotes the set of homogeneous elements of the superalgebra A.

2 Leibniz Superalgebras

In this section,we introduce the definition of Leibniz superslgebras,and then give the constructions and examples of Leibniz superalgebras.

Definition 2.1[11](i)A(left)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A→A an even bilinear map such that

for all x,y,z∈hg(A).

(ii)A(right)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A →A an even bilinear map such that

for all x,y,z∈hg(A).

In this paper, “Leibniz superalgebras” means “l(fā)eft Leibniz superalgebras”.A super skew-symmetric Leibniz superalgebra is a Lie superalgebra.In this case,equations(2.1)and(2.2)become the Jacobi super-identity.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.

Definition 2.2 Let(A,·)be a superalgebra.

(i)The super-associator of A is an even trilinear map:A×A×A→A defined by

for all x,y,z∈hg(A).

(ii)The super-Jacobian of A is an even trilinear map:A×A×A→A defined by

Remark 2.3 A not necessarily associative superalgebra is called a non-associative superalgebra.That is to say,(x,y,z)≠0 for some x,y,z ∈ hg(A).

Definition 2.4[13]An Akivis superalgebra is a triple(A,?,[?,?,?]),in which A is a superspace,? :A×A → A an even bilinear map,[?,?,?]:A×A×A → A an even trilinear map such that

for all x,y,z∈hg(A).Equation(2.5)is called the Akivis super-identity.

Theorem 2.5 Every non-associative superalgebra(A,·)has an Akivis superalgebra(A,?,[?,?,?])structure with respect to the operation defined by

for all x,y,z∈hg(A).

Proof First,we proceed to verify that“?”is super skew-symmetric.

So we obtain equation(2.4).

Second,consider the Akivis super-identity.On one hand,

On the other hand,

That is

So we get equation(2.5).

An Akivis superalgebra derived from a given non-associative superalgebra A by Theorem 2.5 is said associated with A.We are interested in Akivis superalgebras associated with Leibniz superalgebras.

In terms of equation(2.3),equation(2.1)has the form

Because the operations of the Akivis superalgebra(A,?,[?,?,?])defined by the(left)Leibniz superalgebra(A,·)satisfy the super skew-symmetrization and equation(2.4),the Akivis super-identity(2.5)has the form

By equations(2.8)and(2.1),we have?(?1)|x||y|(y,x,z)=(x·y)·z?(x,y,z).So equaiton(2.9)becomes

Lemma 2.6 Let(A,·)be a Leibniz superalgebra,and consider on(A,·)the operation[x,y]:=x·y?(?1)|x||y|y·x for all x,y∈ hg(A).Then

(i)

(ii)

Proof(i)Equation(2.1)implies that

Likewise,interchanging x and y,we have

Then,consider

(ii)By calculating directly,we have

Lemma 2.7 Let(A,·)be a Leibniz superalgebra,(A,?,[?,?,?])be an Akivis superalgebra associated with Leibniz superalgebra(A,˙).Then

ProofWe get the result from equation(2.10).

An superalgebra(A,·)is called Lie-super-admissible if its commutator superalgebra(A,?)is a Lie superalgebra.We can obtain following lemma immediatly from Lemma 2.7.

Lemma 2.8 A Leibniz superalgebra(A,·)is Lie-super-admissible if and only if

for all x,y,z∈hg(A).

We now give an example of 3-dimensional Leibniz superalgebra and some methods to construct Leibniz superalgebras.We can find following definitions and similar constructions in[14].

Example 2.9 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.

Proposition 2.10 Let(A,?)be an associative superalgebra.Consider the linear map D:A→A which satis fies

Define an even bilinear map[?,?]D:A×A → A,such that

Then(A,[?,?]D)is a left Leibniz superalgebra.

Proof We only need to verify that(A,[?,?]D)is a left Leibniz superalgebra.Calculate directly,

and

So we get[x,[y,z]D]D=[[x,y]D,z]D+(?1)|x||y|[y,[x,z]D]D.Therefore(A,[?,?]D)is a left Leibniz superalgebra.

Definition 2.11[14]A superdialgebra is a triple(A,?,?),in which A is a superspace,?,?:A×A→A two bilinear maps such that

(1)x?(y?z)=(x?y)?z;

(2)x?(y?z)=(x?y)?z=x?(y?z);

(3)x?(y?z)=(x?y)?z=(x?y)?z for all x,y,z∈hg(A).

Proposition 2.12 Let(A,?,?),be a superdialgebra.Define an even bilinear map[?,?]:A × A → A such that[x,y]=(?1)|x||y|y ? x ? x ? y.Then(A,[?,?])is a left Leibniz superalgebra.

Proof Calculate directly,

and

So we get[x,[y,z]]=[[x,y],z]+(?1)|x||y|[y,[x,z]].Therefore(A,[?,?])is a left Leibniz superalgebra.

Definition 2.13[14]A dendriform superalgebra is a triple(A,<,>),in which A is a superspace,<,>:A×A→A two even bilinear maps such that

(1)(x<y)<z=x<(y<z)+x<(y>z);

(2)x>(y>z)=(x<y)>z+(x>y)>z;

(3)(x>y)<z=x>(y<z)for all x,y,z∈hg(A).

Proposition 2.14 Let(A,<,>)be a dendriform superalgebra.Define two even bilinear maps?,[?,?]:A×A → A such that x?y=x< y+y> x,[x,y]=(?1)|x||y|y?x?x?y.Then(A,[?,?])is a left Leibniz superalgebra.

ProofCalculate directly,

and

and

So we get

Therefore(A,[?,?])is a left Leibniz superalgebra.

Definition 2.15[14]A Rota-Baxter superalgebra is a triple(A,·,R),in which A is a superspace,(A,·)a superalgebra,R:A → A an even bilinear map satistying Rota-Baxter super-identity

for all x,y ∈ hg(A).R:A → A is called a Rota-Baxter super-operator of weight λ.If(A,·)is an associative superalgebra,then we call(A,·,R)associative Rota-Baxter superalgebra.

Proposition 2.16 Let(A,·,R)be an associative Rota-Baxter superalgebra with weight 0.Define two even bilinear maps?,[?,?]:A×A → A such that

Then(A,[?,?])is a left Leibniz superalgebra.

ProofCalculate directly,

and

and

By Rota Baxter super-identity,we can get

Therefore(A,[?,?])is a left Leibniz superalgebra.

3 Leibniz Superalgebras,Lie Supertriple Systems,Lie-Yamaguti Superalgebras

Definition 3.1 A Lie-Yamaguti superalgebra(LYSA)is a triple(A,[?,?],{?,?,?}),in which A is a superspace,[?,?]:A × A → A an even bilinear map and{?,?,?}:A×A×A→A an even trilinear map such that

(LYS01)|[x,y]|=|x|+|y|;

(LYS02)|{x,y,z}|=|x|+|y|+|z|;

(LYS1)d[x,y]+(?1)|x||y|[y,x]=0;

(LYS2){x,y,z}+(?1)|x||y|{y,x,z}=0;

(LYS5){x,y,[u,v]}=[{x,y,u},v]+(?1)|u|(|x|+|y|)[u,{x,y,v}];

(LYS6)

for all x,y,z,u,v,w∈hg(A),where?x,y,zdenotes the sum over cyclic permutation of x,y,z.

Definition 3.2[15]A Lie supertriple system is a pair(A,{?,?,?})such that

(1){x,y,z}=(?1)|x||y|{y,x,z};

(3)

for all x,y,z,u,v,w∈hg(A).

If[x,y]=0 for all x,y∈hg(A),then Lie-Yamaguti superalgebras become Lie supertriple systems.So Lie-Yamaguti superalgebras can be seen as general Lie supertriple systems.

Let lxdenote the left multiplication operator on(A,·)which given by lxy=x ·y for all x,y ∈ hg(A).Then equation(2.1)means that lxare super-derivations of(A,·).By Lemma 2.6(ii),we can get following proposition.

Proposition 3.3 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Then the operators lxare derivations of(A,?,[?,?,?])for all x ∈ A.

We can obtain a Lie-Yamaguti superalgebra structure from Leibniz superalgebra as following theorem.

Theorem 3.4 Every(left)Leibniz superalgebra(A,·)has a Lie-Yamaguti superalgebra structure(A,[?,?],{?,?,?})with respect to the operation defined by

ProofEquations(3.2),(2.1)and(2.8)imply

Moreover,we have

So we get

Thus equations(3.2),(3.3)and(3.4)are different expressions of the operation “{?,?,?}”.Now we proceed to verify equations(LYS1)–(LYS6).For(LYS1),

So we get(LYS1).For(LYS2),

So we get(LYS2).For(LYS3),(2.10)and(3.3)imply

So we get(LYS3)by transposition.For(LYS4),

So we get(LYS4).For(LYS5),

So we get(LYS5).For(LYS6),

So we get(LYS6).Therefore(A,[?,?],{?,?,?})is a Lie-Yamaguti superalgebra.

Remark 3.5 By Proposition 2.10,Proposition 2.12,Proposition 2.14 and Proposition 2.16,we can get left Leibniz superalgebras from associative superalgebras,superdialgebras,dendriform superalgebras and associative Rota-Baxter superalgebras.Then using Theorem 3.4,we will obtain corresponding Lie-Yamaguti superalgebras from above superalgebras[16].Then we give an 3-dimensional example of Lie-Yamaguti superalgebra by Theorem 3.4.

Example 3.6 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.By Theorem 2.8,when we define the binary operation and the ternary operation by(3.1)and(3.2),we get a Lie-Yamaguti superalgebra(A,[?,?],{?,?,?})with nonzero product

The following proposition is a direct conclusion of Theorem 3.4.

Proposition 3.7 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Define{x,y,z}=(?1)|x||y|[y,x,z]+[x,y,z]for all x,y,z ∈ hg(A),then(A,?,{?,?,?})is a Lie-Yamaguti superalgebra.

In Leibniz superlagebra(A,·)and its associate Akivis algebra(A,?,[?,?,?]),consider even ternaty operation

for all x,y,z∈hg(L).We have

and the Akivis super-identity(2.5)is written as

A superalgebra(A,(?,?,?))called a supertriple system if the even trilinear operation satis fies(3.6)and(3.7).By Theorem 2.5,any non-associative algebra has a supertriple system structure defined by(3.5),and we call it the associate supertriple system.

主站蜘蛛池模板: 色欲综合久久中文字幕网| 被公侵犯人妻少妇一区二区三区| 日韩精品亚洲精品第一页| 久久国产精品麻豆系列| 色AV色 综合网站| 国产99欧美精品久久精品久久| 国产精品刺激对白在线| 免费国产好深啊好涨好硬视频| 免费国产高清精品一区在线| 国产91在线|中文| 国内精自线i品一区202| 亚洲永久色| 欧美狠狠干| 成人在线观看不卡| 青草视频久久| 伊人久久大香线蕉影院| 国产青榴视频| 久草视频一区| 国产在线98福利播放视频免费| 欧美一区二区人人喊爽| 在线毛片网站| 精品伊人久久久大香线蕉欧美| 亚洲日韩精品综合在线一区二区| 亚洲第一视频网| 国产流白浆视频| 91精品久久久久久无码人妻| 亚洲激情99| 亚洲精品视频网| 麻豆精品视频在线原创| 无码丝袜人妻| 欧美无遮挡国产欧美另类| 国产丝袜精品| 啦啦啦网站在线观看a毛片| 在线观看国产黄色| 夜夜爽免费视频| 国产性爱网站| 国产午夜看片| 无码精品国产dvd在线观看9久| 亚洲乱强伦| 成人另类稀缺在线观看| 日本精品影院| 国产无码精品在线| 日本欧美中文字幕精品亚洲| 国产在线专区| 国产成人免费高清AⅤ| 国产精品三级av及在线观看| 狼友av永久网站免费观看| 伊人久久综在合线亚洲2019| 国产亚洲一区二区三区在线| 婷婷六月激情综合一区| 特级毛片8级毛片免费观看| 久久天天躁狠狠躁夜夜2020一| 免费在线一区| 天堂亚洲网| 久久国产乱子| 国产精品流白浆在线观看| 毛片免费在线视频| 亚洲天堂精品视频| 理论片一区| 91在线播放免费不卡无毒| 欧美日本视频在线观看| 永久在线精品免费视频观看| 99久久性生片| 激情视频综合网| 日韩AV无码一区| 国产成人一级| 1769国产精品免费视频| 亚洲精品自拍区在线观看| 国产精品30p| 亚洲天堂.com| 亚洲成人网在线观看| 亚洲午夜天堂| 亚洲精品午夜无码电影网| 全部毛片免费看| 国产原创自拍不卡第一页| 久久精品国产精品青草app| 亚洲最新在线| 伦伦影院精品一区| 免费无码又爽又黄又刺激网站| 亚洲精选无码久久久| 亚洲天堂首页| 午夜毛片免费观看视频 |