999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

HYPOTHESIS TESTING IN LINEAR MODELS WITH MARKOV TYPE ERRORS

2018-07-16 12:08:14YANHuiHUHongchang
數學雜志 2018年4期

YAN Hui,HU Hong-chang

(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

Abstract:In this paper,we study the hypothesis testing for the homogeneity of the Markov chain of the errors in linear models.By using the quasi-maximum likelihood estimates(QMLEs)of some unknown parameter and the methods of martingale-difference,the limiting distribution for likelihood ratio test statistics is obtained.

Keywords:linear model;Markov chain;homogeneity;hypothesis testing;martingale

1 Introduction

The theory and application of linear models with Markov type dependent errors recently attracted increasing research attention.In the case that the errors form a homogeneous Markov chain,one can see Maller[1],Pere[2],Fuller[3]and form a non-homogeneous Markov chain,see Azrak and Mélard[4],Carsoule and Franses[5],Dahlhaus[6],Kwoun and Yajima[7].It is well-known that compared with a homogeneous Markov chain,the limit behavior of a non-homogeneous Markov chain is much more complicated to handle.To simplify the models,we consider the hypothesis testing for the homogeneity of the process of errors in the following linear model

where xt∈ Rdare deterministic regressor vectors,β is a d-dimensional unknown parameter,and{εt}is a Markov chain with recursive formula as follows

where θ∈ R is an unknown parameter,φt(θ)is a real valued function on a compact set Θ which contains the true value θ0as an inner point,and the ηtare i.i.d.mean zero random variables(rvs)with finite variance σ2(also to be estimated).

It is obvious that the errors{εt}is a non-homogeneous Markov chain when the coefficient φt(θ)depends on t.This paper discusses the hypothesis testing for the homogeneity of Markov chain{εt}based on the quasi-maximum likelihood estimates(QMLEs)of the unknown parameters.Limiting distribution for likelihood ratio test statistics of hypotheses is obtained by the techniques of martingale-difference.

2 Preliminaries and Statement of Result

The log-likelihood of y2,y3,···,ynconditional on y1is defined by[1]

We maximize(2.1)to obtain QML estimators denoted by?βn,?θnand?σ2n(when they exsit).Then the corresponding estimators,satisfy[1]

Write the“true”model as

By(2.5)

We need the following conditions

(A2)There is a constant α>0 such that

for any t∈ {1,2,···,n}and θ∈ Θ.

Remark 2.1 Condition(A1)is often imposed in order to obtain the existence of the estimators in some linear models with Markov type errors,see e.g.Muller[1],Hu[8],Xu and Hu[9].

And[8,9]used condition(A2),Kwound and Yajima[7]used the first condition in(A2).Silvapulle[10],Tong et.al.[11]used the condition similar to(A3),when they discussed the asymptotic properties of the estimators in some linear and partial linear models.

Define(d+1)-vectorG=(β,θ),and

where

From eq.(5.29)in Hu[8],we have

where

In this paper,we consider the hypothesis

where the function ρ(θ)<1,θ∈ Θ and ρ(θ0) ≠0,ρ′(θ)is bounded on Θ.

The main result in this paper is the following theorem.

Theorem2.1 Assume(A1)–(A3).Suppose H0:φt(θ)= ρ(θ)holds.Then as n → ∞,whereis chi-square rv with m degrees of freedom.

3 Lemmas

Lemma 3.1Assume(A1)–(A3).Thenand,the QML estimators of β,θ and σ2in model(1.1)–(1.2)exist.And as n → ∞,

Proof See Theorem 3.1 and Theorem 3.2 in Hu[8].

Lemma 3.2 Assume(A2)and(A3).Then

Proof

From Lemma 4.1 in Xu and Hu[9],we haveThen

By recursive method,

Similarly,

Therefore,from(3.2),(3.4)and(3.5),

where c0is the bound of

4 Proof of Theorem

Using(2.2),(2.8)and(2.4),

By(2.8),

Then,from(2.4),

By(5.23)and(5.24)in Hu[8],as n→∞,|T2|=op(1),|T3|=op(1).Thus

From(2.7),

Using(4.1),(4.3),(4.4)and Taylor expansion,

Thus,

Now we give an approximation for.In fact,from eq.(5.28)in Hu[8],

Φn,Dn,Snsame as in(2.14)and(2.11).Then

which means

In view of Lemma 3.2,the law of large numbers holds for the sequenceNote thatthen

From(4.11)and(2.14),

Thus,from(4.8),(4.13),(4.14)and Lemma 3.2,straightforward calculus yields

We now finish the proof of Theorem 2.1.From(2.4)and(2.8),

By(2.2),(2.8)and(4.16),

In view of eq.(4.14)and Lemma 3.1,Lemma 3.2,

and

Then to prove that

we need only to show that

then,to obtain(4.21),it will suffice to verify the Lindeberg condition for the sequence

In fact,since

?n(θ0,σ0)=O(n)as n → ∞,then for every ε>0,we have

Now,we obtain(4.21)due to the central limit theorem for martingale difference array(Theorem 8.1 in Pollard[12]).Then we prove(4.18)from(4.20).

主站蜘蛛池模板: 亚洲欧美成人影院| 久热re国产手机在线观看| 亚洲国产欧美目韩成人综合| 日韩欧美国产三级| 欧美日韩另类在线| 久久综合丝袜日本网| 欧美人在线一区二区三区| 亚洲中文久久精品无玛| 亚洲精品成人7777在线观看| 国产91久久久久久| 欧美国产三级| 欧美激情网址| 免费高清a毛片| 狼友视频国产精品首页| 亚洲aaa视频| 亚洲成人网在线观看| 日本中文字幕久久网站| 国产一级在线观看www色| 色综合中文字幕| 极品av一区二区| v天堂中文在线| 国产成人福利在线视老湿机| 国产成人麻豆精品| 久久精品丝袜| 国产精品自在在线午夜| 日韩免费毛片| 亚洲国产综合精品中文第一| 亚洲色无码专线精品观看| 91高清在线视频| 91欧美亚洲国产五月天| 久久精品免费国产大片| 91啪在线| 小说区 亚洲 自拍 另类| 狠狠亚洲婷婷综合色香| 国产高清毛片| 亚洲欧洲综合| 亚洲精品卡2卡3卡4卡5卡区| 欧美日韩国产在线人| 91麻豆精品视频| 无码久看视频| 少妇高潮惨叫久久久久久| 亚洲视频在线观看免费视频| 国产麻豆永久视频| 欧美97色| AⅤ色综合久久天堂AV色综合| 国产视频你懂得| 国产97视频在线观看| 免费精品一区二区h| 91国内视频在线观看| 国产一区二区人大臿蕉香蕉| 国产亚洲视频免费播放| 国产精品99久久久| 亚洲日韩精品无码专区97| 免费高清a毛片| 免费欧美一级| 伊人成人在线视频| 99热线精品大全在线观看| 欧美成人国产| 人妻一本久道久久综合久久鬼色| 99久久国产自偷自偷免费一区| 丰满少妇αⅴ无码区| 欧洲亚洲一区| 无码日韩精品91超碰| 人人妻人人澡人人爽欧美一区| 无码av免费不卡在线观看| 国产你懂得| 亚洲中文字幕久久无码精品A| 在线综合亚洲欧美网站| 少妇被粗大的猛烈进出免费视频| 久久综合色播五月男人的天堂| 久久黄色小视频| 国外欧美一区另类中文字幕| 蜜桃视频一区二区| 制服丝袜 91视频| 欧美一级在线播放| 免费观看无遮挡www的小视频| 在线精品欧美日韩| 日韩国产高清无码| 国产91在线|中文| 欧美国产成人在线| 九色91在线视频| 国产在线麻豆波多野结衣|