999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

雅浦海溝沉積有機碳垂向分布及其指示意義

2018-09-25 01:19:06劉誠剛孫承君陳建芳潘建明韓正兵
中國環境科學 2018年9期

吳 彬,李 棟*,趙 軍,劉誠剛,孫承君,陳建芳,潘建明,韓正兵,胡 佶

?

雅浦海溝沉積有機碳垂向分布及其指示意義

吳 彬1,2,李 棟1,2*,趙 軍1,2,劉誠剛1,2,孫承君3,陳建芳1,2,潘建明1,2,韓正兵1,2,胡 佶1,2

(1.國家海洋局第二海洋研究所海洋生態與環境實驗室,浙江 杭州 310012;2.國家海洋局海洋生態系統與生物地球化學重點實驗室,浙江 杭州 310012;3.國家海洋局第一海洋研究所海洋生態中心,山東 青島 266237)

利用蛟龍號載人深潛器采集了西太平洋雅浦海溝沉積柱樣,分析了總有機碳(TOC)、δ13C、粒度和比表面積(SSA)等參數,結合端元混合模型、降解模型及主成分分析(PCA),探討不同來源有機碳(OC)垂向分布及其影響因素,估算了TOC降解速率、累積速率及通量.結果表明,雅浦海溝TOC%均值為(0.31%±0.10%),與淺海環境相當.由于外源OC主要賦存于粉砂等大粒徑顆粒物以及微生物的分解作用,TOC%與粉砂%正相關,與SSA值及粘土比例負相關.微生物來源OC是TOC的主要貢獻者(52%±21%),其次為海源(37%±19%)和陸源(11%±4%)OC,3種來源OC含量均隨深度增加而降低.PCA結果指出,微生物來源與外源OC相對貢獻間不耦合,表明海底地下水輸送的OC可能是海溝微生物的重要營養源.主導沉積物中TOC垂向分布的難降解OC降解速率約為0.0012a-1,略高于普通大洋環境,但較淺海環境更低.雅浦海溝TOC累積速率為1.8×10-5gC/(cm2·a),沉降通量為2.2×109gC/a.

雅浦海溝;沉積有機碳;垂向分布;來源;降解

大洋中水深超過6000m的海溝等超深淵帶,面積僅占海洋總面積的1%,但其深度變化范圍覆蓋海洋總深度的45%,在地質、化學和生物等方面具有獨特特征,在海洋碳循環中扮演重要角色[1-5].海溝內部的V形構造及其引起的漏斗效應,使海溝易于收集周圍海底平原經海底濁流和海洋生物泵等途徑輸運來的有機碳(OC),成為大洋OC的捕獲器[6-8].海溝沉積物中積累的有機質又為該環境中底棲生物提供了理想棲息環境和可觀食物,使得海溝成為活躍的微生物反應器[7,9-12].同時,由于兩側板塊的相向聚合運動使得海溝內部沉積OC可以在地質時間尺度上被裹挾進入熔融地幔,從而將地表OC輸入地球深處,使得海溝成為地球巖石圈潛在終極碳匯[13-14].然而,由于超深淵帶中極端高壓和低溫環境及其所帶來的儀器操作和樣品采集等技術挑戰,已有的研究多限于海溝沉積OC含量空間分布及與底棲生物相互影響等方面[1,7-8,15-18],針對海溝中沉積OC生物地球化學循環的研究鮮見報道[7-8,17,19-20].

雅浦海溝緊鄰雅浦群島和帕勞群島,北起馬里亞納海溝南端,南到帕勞海溝北端,發育有典型俯沖構造侵蝕[21].相較馬里亞納等海溝,同為世界級海溝的雅浦海溝在有機生物地球化學方面的研究未見報道.本研究利用蛟龍號載人深潛器在雅浦海溝內采集無擾動沉積柱狀樣,通過對沉積物中總有機碳(TOC)、總氮(TN)、碳穩定同位素(δ13C)、粒度組成和比表面積(SSA)等地球化學參數的測定,利用基于蒙特卡洛(Monte-Carlo,MC)模擬的三端元混合模型和主成分分析(PCA),探討沉積物中海源、陸源和微生物來源OC含量的垂向變化及其可能影響因素.使用多G降解模型和質量累積模型估算海溝中沉積OC的降解速率、累積速率及通量,以獲取對雅浦海溝等超深淵環境中碳的生物地球化學循環的深入認識.

1 材料與方法

于2017年6月9日,利用向陽紅10號海洋科研調查船及蛟龍號載人深潛器,在雅浦海溝6501m水深處使用PushCore取樣器采集了DIVE150站位的無擾動柱狀沉積物(長23cm,137.597°E,8.051°N)(采樣站位如圖1所示).沉積物樣品在船上按照1~2cm間隔進行切割,裝入封口袋并在-20℃條件下保存至岸上實驗室分析.

將沉積物裝入具有固定體積和質量的立方體容器中,測定沉積物濕密度,隨后凍干測定干密度和含水率.取未研磨凍干沉積物,加入過量雙氧水除去顆粒物中OC,使用六偏磷酸鈉分散劑浸泡分散,在上機測試前超聲分散30s后使用馬爾文Mastersizer3000激光粒度儀進行粒度測定.取未研磨凍干沉積物,于350℃條件下加熱除去有機質,隨后使用貝士德3H-2000PS1型比表面自動分析儀,采用靜態容量法來測定SSA.取適量研磨均勻凍干沉積物,使用鹽酸熏蒸除去無機碳酸鹽,60℃條件下加熱烘干除去水分和鹽酸,使用Thermo Flash EA 1112HT氮/碳元素分析儀以及DELTA V Advantage穩定同位素比質譜儀對樣品中TOC%(標準偏差小于0.08%)、TN%(標準偏差小于0.07%)和δ13C(精度優于±0.2‰)進行測定.

圖1 柱狀沉積物采樣站位

本研究使用基于δ13C和TOC/TN摩爾比(C/N比)的三端元混合模型,分析海溝沉積物中陸源、海洋浮游植物和微生物(包括微生物活體細胞、死亡后碎屑以及改造后的外源OC)3種來源OC對沉積物TOC的相對貢獻,具體方法參照文獻[22].模型公式如下:

13C海源×海源+13C陸源×陸源+13C微生物×微生物=13C樣品(1)

C/N海源×海源+C/N陸源×陸源+C/N微生物×微生物=C/N樣品(2)

海源+陸源+微生物=1 (3)

式中:13C樣品和C/N樣品分別代表所測樣品的13C值和C/N比,海源、陸源和微生物分別代表海洋、陸地和微生物來源OC的百分比貢獻(%),其他符號代表相應來源的端元值.同時,為了盡量減少固定端元值對模型計算帶來的誤差,使用MC模擬方法來校正端元值的變化對不同來源OC比例計算的可能影響[23-26].該方法假定某種來源OC的13C或者C/N比端元值在給定范圍內的變化符合正態分布,在此區間內按正態分布隨機取值,然后選取部分或全部進行計算,計算過程所選端元值要同時滿足公式(1)~(3),計算結果(海源、陸源和微生物)同樣符合正態分布[27-28].使用該方法可以得到3種組分對沉積TOC相對貢獻的平均值、標準偏差、中值、最大值和最小值[29-30].多次重復運行同一樣品所得平均值相對標準偏差小于0.03%,表明該方法具有較高統計學穩定性.端元模型所使用端元值δ13C海源、δ13C陸源、和δ13C微生物分別設定為-20.0‰±1.0‰[29,31]、-25.6‰± 1.0‰[32]和-20.0‰±1.0‰[33-36],C/N海源、C/N陸源和C/ N微生物設定為6.5±0.3[29]、14.6±0.8[29]和3.7±0.2[37-38].其中,本研究假設沉積物柱樣微生物群落以異養微生物為主,其碳源為易降解海源OC,根據微生物δ13C值取決于其碳源的原理[33-36],本研究未對微生物來源和海源OC的δ13C值進行區分,并主要依據C/N比值對海源和微生物來源OC進行區分.采樣視頻資料顯示目標研究區域沒有冷泉或者熱液口發育,沉積物δ13C值高于-22.7‰,且熒光定量PCR結果表明化能合成微生物(例如氨氧化細菌和古菌)僅占總微生物豐度的極少部分(未發表數據).同時,在富氧、沉積速率較低以及有機質充足的海底表層沉積物中,異養代謝微生物在群落結構中的貢獻較高[39-41].因而該方法可在一定程度上用來計算微生物來源OC的相對貢獻.

本研究中使用多G降解模型對沉積物中TOC降解過程進行擬合[42],模型方程:

C=+0·(1-)·e(-k1·t)+0··e(-k2·t)(4)

式中:0表征柱狀沉積物表層TOC含量,表征沉積物剖面無窮深處TOC含量的恒定值,C表征沉積物沉降時間(a)后對應深度沉積物中TOC含量,1(a-1)和2(a-1)分別代表易降解和難降解兩部分TOC組分的降解速率,(0<<1)表示難降解組分所占百分比,(cm)表示沉積物深度,s(cm/a)代表沉積速率,=/s.

2 結果

2.1 TOC、TN、δ13C、SSA和粒度組成

如圖2所示,TOC和TN的含量變化范圍分別為0.17%~0.46%(平均值0.31%±0.10%)和0.04%~ 0.08%(平均值0.06%±0.01%).δ13C為-22.70‰~ -20.13‰,平均-21.07‰±0.87‰.C/N比為4.4~8.2(平均值5.9±0.9).SSA平均值為(50.8±4.3)m2/g,在44.8~58.2m2/g范圍內變化.單位SSA的TOC載荷(TOC/SSA)變化范圍為0.03~0.10mgC/m2(平均值(0.06±0.03)mgC/m2).沉積物粒度組成以粉砂(4~63μm)為主(43.1%~55.2%,均值49.4%±4.0%),粘土(<4μm)次之(48.8%~28.7%,均值38.6%±5.9%),砂(>63μm)僅占6.3%~22.5%(11.9%±4.1%).各參數均呈現出由上向下的降低趨勢,并最終趨于穩定.

2.2 三端元混合模型和MC模擬

利用基于MC模擬的三端元混合模型對海溝不同來源OC百分比和含量的定量計算結果如圖3所示.DIVE150站位沉積物中海源、陸源和微生物來源OC在TOC中相對貢獻分別為37%±19%(變化范圍8%~59%)、11%±4%(變化范圍6%~24%)和52%± 21%(變化范圍16%~86%).沉積物中海源、陸源和微生物來源OC含量分別為0.13%±0.09% (0.01%~ 0.27%)、0.04%±0.02% (0.01%~0.11%)和0.14%± 0.03%(0.07%~0.19%).陸源垂向變化不明顯,海源在7.5cm以淺波動變化,7.5cm以深顯著降低至穩定值,而微生物在6.5cm以淺無明顯變化,以深則顯著升高到80%以上.沉積物中海源和陸源OC含量分別與其百分比例具有相似垂向分布,微生物來源OC含量呈逐漸降低的變化趨勢.整體而言,8.5cm以淺沉積物以海源OC貢獻為主,而8.5cm以深以微生物來源OC為主.

圖3 基于MC模擬計算所得柱狀沉積物中海源、陸源和微生物來源OC的百分比(a)以及含量(b)的垂向分布

2.3 PCA分析

對DIVE150站位沉積物中19個參數進行PCA分析,結果表明前2個主成分的累積貢獻率為87%.其中,主成分1和2分別解釋了數據集總變異的75%和12%(圖4).主成分1在顆粒物粒級及其相關參數上具有顯著區分度,而主成分2則主要在OC來源上存在不同負荷,正負荷表征陸源和海源等外源物質輸入,而負值則表征沉積物中微生物來源OC貢獻.

圖4 基于主成分分析所得沉積柱狀樣中不同參數的負荷分布

2.4 降解模型

表1 世界不同海域沉積柱狀樣中TOC的降解參數比較

注:為難降解OC所占比例,1(a-1)為易降解OC的降解速率,2(a-1)為難降解OC降解速率,-表示未計算.

由于雅浦海溝緊鄰馬里亞納海溝南端,兩者均位于西太平洋暖池和熱帶環流海區,具有相似的初級生產力和沉降通量,因此,本研究使用與馬里亞納海溝南部區域相似水深處(6037m)的沉積速率(約為0.02cm/a)[7,17],對雅浦海溝沉積TOC降解速率進行估算.計算結果如表1所示.沉積物中TOC剖面符合指數型降解分布,與多G降解模型方程擬合度較高(2=0.93),沉積物中易降解OC降解速率1為5.4a-1,難降解OC降解速率2為0.0012a-1,且難降解OC的降解過程對TOC的垂向分布影響顯著.

3 討論

3.1 雅浦海溝沉積OC的組成及其影響因素

海溝等超深淵環境是深海沉積OC的潛在捕獲器.DIVE150站位柱樣0~4cm沉積物中TOC含量穩定在0.44%以上,與鄰近的馬里亞納海溝相當(~0.45%)[7],但明顯低于日本海溝(~1.0%)[9]、中美洲海溝(2.0%~4.0%)[51]和卡里亞科海溝(~3.0%)[52].與陸地距離的遠近和真光層初級生產力的差異是造成該趨勢的主要原因.雅浦海溝緊鄰馬里亞納海溝,同處于西太平洋暖池和熱帶環流海區,具有相似的初級生產力(分別為82gC/(m2·a)和59gC/(m2·a))和顆粒OC沉降通量(分別為(0.56±0.29)gC/(m2·a)和(0.55±0.20)gC/ (m2·a))[53-54],且均位于西太平洋深水環流通道中[40],因而具有相似水動力環境并導致了相似TOC含量.而日本海溝、中美洲海溝以及卡里亞科海溝由于鄰近陸地并處于上升流區域,真光層水體初級生產力較高(例如日本海溝193gC/(m2·a)和卡里亞科海溝190gC/(m2·a)),導致較高的顆粒OC沉降通量(日本海溝(3.05±0.91)gC/(m2·a)、卡里亞科海溝(0.77± 0.46)gC/(m2·a))和沉積物TOC含量[40,51-52].此外,與具有較高初級生產力的我國東海內陸架海域(200m以淺,0.2%~0.6%)[30]、黃海(140m以淺,0.1%~1.1%)[55]和南極半島東北海域(2000~3000m,0.4%~0.6%)[56]等淺海海洋環境同樣具有可比性,并顯著高于普通開闊大洋海底沉積物(5000m,0.1%~0.3%)[11,57],表明海溝V型構造對海底沉積OC的物理匯聚作用顯著.

沉積物粒度組成和微生物活動對海溝沉積物中TOC垂向分布具有顯著影響.由PCA分析結果可知(圖4),沉積物粒徑大小及相關參數是影響沉積有機質垂向分布的主要因素.沉積物TOC含量與中值粒徑大小,特別是粉砂粒級%(4~63μm)正相關,而與SSA大小以及粘土粒級%(<4μm)負相關(圖5).這與在陸架邊緣海等海洋環境中所得中值粒徑越低、粘土粒級越多、SSA越高會導致TOC含量越高的規律相反[30,58].該現象可能是由海溝沉積物含水率、水動力環境、外源OC輸入以及微生物活動等多因素共同造成的.如圖4所示,含水率、外源OC百分比例和含量、TOC和TN含量、中值粒徑以及粉砂比例均分布在負荷分布圖的第一象限,表明受沉積物壓實效應影響,沉積物含水率自上而下逐漸降低(從80%降低至60%),雖然海溝沉積物上覆水水體流速整體較低(cm/s量級),但依然會對表層沉積物造成一定程度的沖刷,導致沉積物粒徑自上向下的降低(圖2f).相比粒徑更小的微生物來源顆粒物,富含OC的新鮮外源有機質可能更多的賦存于粒徑更大的粉砂粒級顆粒物上(4~63μm).同時,海溝沉積物上覆水來源于南極繞極深層水[40],溶解氧濃度較高(~5.1mg/L)且溶氧滲透深度較大[7],使得海溝等深海沉積物中好氧礦化成為有機質分解的唯一重要路徑[7,40,59-60],因而在活躍微生物新陳代謝作用影響下,外源OC含量迅速降低,而微生物則顯著升高.同時,微生物和SSA、粘土比例等參數均位于負荷分布圖的第3象限,表明微生物在SSA高的粘土粒級顆粒物表面更活躍,這與已有的研究結果相同,即SSA越大越利于OC的附著以及被微生物吸收利用[61-63].因而形成了海溝環境中粒徑與TOC含量等參數間獨特的關系和分布特征.

原位微生物來源OC相對貢獻與外源OC輸入相對貢獻間的去耦合(圖4),以及8.5cm以下微生物來源OC的顯著貢獻(>50%),在一定程度上表明除了經顆粒物自然沉降或海底濁流等過程輸運來的陸地和海洋初級生產來源OC外,還有經其他途徑輸運而來的OC供給來維持海溝沉積物小生境中微生物的生命活動.作為連通地球內部和表層的窗口和通道,超深淵帶中碳庫可能受到深部生物圈和海底地下水物質輸送的調控[64-73].例如,洋殼上層沉積物及巖層是地球上容量最大的連續含水層系統,其中存在著受潮汐驅動的可貫穿幾百米厚沉積物層的海底地下水流動(流速達到10cm/d),這些發生于沉積物間隙中的水體流動,能夠促進大洋底層水體與海底地下水之間利用沉積物內部的裂隙和其他可滲透性的通道,進行溶解態和顆粒態的物質交換(如O2、NO3-、溶解態和顆粒態OC等),從而更新海溝沉積物中碳等營養物質,并對沉積物中微生物生物量以及有機質的降解產生影響[39,73-76].圖4中微生物與粘土比例的顯著正相關(=0.82)即表明小粒徑顆粒物及其附著的OC對微生物生命活動的重要作用.雅浦海溝沉積物較高的含水率和松軟質地,更為其中物質交換提供了基礎.另外,作為地球上最大的微生物碳儲庫,地球總生物量的50%~ 66%存在于深部生物圈中,其中海底沉積物又是地球上最為廣袤的微生物孵化器和棲息地[39].本研究沉積物中顯著微生物來源OC相對貢獻與該結論相一致.

圖5 沉積柱狀樣中值粒徑、粉砂、粘土比例與TOC間的相關性

3.2 雅浦海溝沉積TOC的降解與埋藏

沉積OC的組成特征會決定沉積物中再礦化過程損失掉的OC的來源.本研究對沉積物中TOC/ SSA比值與δ13C·TOC/SSA比值進行線性擬合(圖6),根據擬合方程的斜率判斷再礦化過程損失的OC的來源特征[77-78].從圖6可以看出,隨著沉積OC再礦化過程(TOC/SSA比值由表層到底層逐漸降低)的進行,沉積物中被微生物降解和利用的OC的δ13C值約為-19.5‰,表明海溝沉積物中海源OC被優先降解.可能原因是沉積物總碳庫中易降解的小分子海源OC貢獻(37%±19%)較高,而難降解大分子陸源OC百分比例相對較低(陸源=11%±4%),具有低C/N比的微生物會更傾向于分解利用含氮量高的海源有機質.雖然有研究表明,在距離陸地較近的海溝中,陸源有機質能夠作為一種特殊食物來源促進海溝中高效、專性分解陸源高等植物來源有機質生物的發育,例如馬里亞納海溝中專門攝食陸源木質碎屑的可可螺科腹足類和片腳類等動物[17,79-83].同時,發生于海洋環境中的激發效應同樣也會促進海底沉積物中陸源有機質的快速降解[84-86].但本研究中,可能由于沉積物中陸源OC貢獻以及微生物多樣性較低(未發表數據),且缺少能夠專性降解陸源OC的微生物,因而導致陸源OC被較好的保存(圖3).

圖6 沉積柱狀樣中δ13C·TOC/SSA與TOC/SSA之間的相關性

沉積速率以及沉降顆粒物的物質組成對海溝沉積OC的降解和埋藏具有重要影響.多G降解模型結果表明,雅浦海溝與馬里亞納海溝同等深度沉積物中難降解OC所占比例相似,降解速率較為一致(表1).雅浦海溝和馬里亞納海溝沉積OC的降解速率顯著高于太平洋-南大洋洋脊、東北太平洋、西赤道太平洋等6000m以淺的普通開闊大洋的降解速率,同時,又較陸架邊緣海以及近岸海灣等淺海環境更低(表1).沉積速率可以通過對沉積物中孔隙度、溶解氧滲透深度、微生物群落組成和沉積OC礦化路徑等方式的調控,影響沉積OC降解速率[41,49].雖然一般情況下海底沉積物沉積速率與水深成反比[41,87],但由于海溝地形的匯聚作用,使得海溝中顆粒物沉積速率顯著的高于周邊海底平原(表1).與海底平原相比,較高的沉積速率和隨水深降低的水體流速導致了海溝沉積物中高含水率(~72%)和高溶解氧滲透深度(馬里亞納海溝6037m水深處沉積物5cm深度溶解氧濃度依然高達~170μmol/L)[7].同時,海溝中較海底平原更高的TOC含量和微生物豐度[7],更為沉積物中以好氧呼吸為主要代謝途徑的微生物活動提供了有力保證[39,60,88],因而導致了海溝沉積OC具有較普通開闊大洋更高的降解速率.與陸架邊緣海等淺海環境相比,雖然兩者沉積物中海源OC均有重要貢獻,但邊緣海環境中更高的初級生產力(例如東海161gC/(m2·a))導致其沉積物中易降解海源OC絕對含量顯著高于海溝(東海內陸架約為0.4%,而雅浦海溝約為0.13%±0.09%)[30,89-91],因而可降解的潛力更高.同時,陸架淺水區中強烈的水動力條件和沉積物再懸浮[78,92],以及更高的微生物豐度(比海溝高3個數量級)[7,93-95],更使得陸架邊緣海成為沉積OC的焚化爐[78,96],因而其沉積OC降解速率顯著高于海溝.

利用雅浦海溝沉積物干、濕密度、TOC含量以及沉積物沉積速率等參數,并結合質量累積模型[17,41],估算了雅浦海溝中沉積OC的累積速率、埋藏效率和埋藏通量.結果表明,雅浦海溝表層沉積物中OC的累積速率約為1.8×10-5gC/(cm2·a),與Jamieson[40]、Lutz等[97]模型計算的雅浦海溝顆粒OC沉降速率處于同一量級(約為5.6×10-5gC/ (cm2·a)),并與鄰近馬里亞納海溝南部區域沉積OC累積速率(0.35×10-5gC/(cm2·a)~1.5×10-5gC/(cm2·a))基本相當[17],約為全球陸架邊緣海顆粒OC累積速率平均值的4.3%(4.2×10-4gC/(cm2·a))[98]以及大洋(>1000m)顆粒OC累積速率平均值的18%(1.0× 10-4gC/(cm2·a))[99].結合雅浦海溝海域面積(1.21× 104km2)[40]計算可得雅浦海溝顆粒OC沉降通量約為2.2×109gC/a.同時,由于雅浦海溝初級生產力和面積均顯著低于全球其他海溝[40],因而其他海溝將具有更可觀的顆粒OC沉降速率和通量,表明超深淵帶對深海大洋顆粒OC具有顯著的匯聚作用.

4 結論

4.1 雅浦海溝TOC含量與鄰近馬里亞納海溝相當,但顯著低于日本海溝和中美洲海溝等海溝.漏斗效應導致雅浦海溝表層沉積OC含量顯著高于開闊大洋,并與陸架邊緣海等淺海環境具有可比性.

4.2 沉積物粒度組成和微生物活動對海溝沉積OC垂向分布影響顯著.海溝沉積物TOC%與中值粒徑大小,特別是粉砂%具有較強正相關關系,而與SSA大小以及粘土粒級%呈現顯著負相關.

4.3 微生物來源OC是海溝沉積OC主要來源,其次為海洋浮游植物來源和陸地來源OC.原位微生物來源OC相對貢獻與外源OC輸入相對貢獻間的去耦合,以及8.5cm以下微生物來源OC的顯著貢獻(>50%),在一定程度上表明海底地下水的流動及其輸運而來的OC對維持海溝沉積物小生境中微生物的生命活動具有重要影響.

4.4 海源OC是雅浦海溝沉積物中微生物優先利用的營養來源.雅浦海溝沉積TOC降解速率高于普通開闊大洋,又較陸架邊緣海以及近岸海灣等淺海環境更低.

[1] Jamieson A J, Fujii T, Solan M, et al. First findings of decapod crustacea in the hadal zone [J]. Deep Sea Research Part I Oceanographic Research Papers, 2009,56(4):641-647.

[2] Jamieson A J, Fujii T. Trench connection [J]. Biology Letters, 2011,7(5):641-643.

[3] Canganella F, Kato C. Deep-Ocean Ecosystems [M]. United States: John Wiley and Sons, 2014,doi:10.1002/9780470015902.a0003.

[4] Gallo N D, Cameron J, Hardy K, et al. Submersible- and lander- observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities [J]. Deep Sea Research Part I Oceanographic Research Papers, 2015,99:119-133.

[5] Leduc D, Rowden A A, Glud R N, et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: Possible effects of differences in organic matter supply [J]. Deep Sea Research Part I Oceanographic Research Papers, 2015,116:264-275.

[6] Danovaro R, Croce N D, Dell’Anno A, et al. A depocenter of organic matter at 7800m depth in the SE Pacific Ocean [J]. Deep Sea Research Part I Oceanographic Research Papers, 2003,50(12):1411-1420.

[7] Glud R N, Wenzh?fer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth [J]. Nature Geoscience, 2013,6(4):284-288.

[8] Oguri K, Kawamura K, Sakaguchi A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake [J]. Scientific Reports, 2013,3(1915):1915.

[9] Brassell S C, Comet P A, Eglinton G, et al. The origin and fate of lipids in the Japan Trench [J]. Physics and Chemistry of the Earth, 1980, 12:375-392.

[10] Brassell S C E G, Maxwell J R. Preliminary lipid analyses of two quaternary sediments from the middle America trench, southern mexico transect [J]. Initial Reposts Deep Sea Drilling Project, 1981, 66:557-580.

[11] 張海生,于培松,倪建宇,等.赤道太平洋沉積有機質物性、源性的地球化學及其沉積環境對比研究[J]. 海洋學報, 2008,30(6):60-68.

[12] Nunoura T, Takaki Y, Hirai M, et al. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(11):E1230.

[13] Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: the ecology of the deepest places on Earth [J]. Trends in Ecology and Evolution, 2010,25(3):190-197.

[14] ?í?ková H, Bina C R. Geodynamics of trench advance: Insights from a Philippine-Sea-style geometry [J]. Earth and Planetary Science Letters, 2015,430:408-415.

[15] Gage J D. Food inputs, utilization, carbon flow and energetics. In: Tyler P A (Ed), Ecosystems of the Deep Oceans, Ecosystems of the World [M]. Amsterdam: Elsevier, 2003:313-380.

[16] Itou M, Matsumura I, Noriki S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994Sanriku-Oki earthquake [J]. Deep Sea Research Part I Oceanographic Research Papers, 2000,47(10):1987-1998.

[17] Luo M, Gieskes J, Chen L, et al. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches [J]. Marine Geology, 2017,386(2):486-498.

[18] Jamieson, Alan J. Ecology of Deep Oceans: Hadal Trenches [M]. United States: John Wiley and Sons, 2011,doi:10.1002/9780470015902. a0023606.

[19] Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry Geophysics Geosystems, 2010,11(1):414-431.

[20] 李 棟,趙 軍,劉誠剛,等.超深淵生境特征及生物地球化學過程研究進展[J]. 地球科學, 2018,doi:10.3799/dqkx.2018.196.

[21] Kobayashi K. Origin of the Palau and Yap trench-arc systems [J]. Geophysical Journal International, 2004,157(3):1303-1315.

[22] 潘慧慧,姚 鵬,趙 彬,等.基于水淘選分級的長江口最大渾濁帶附近顆粒有機碳的來源、分布和保存[J]. 海洋學報, 2015,37(4):1-15.

[23] Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations [J]. Science of the Total Environment, 2011,s(412-413):232-238.

[24] Carreira R S, Wagener A L R, Readman J W, et al. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach [J]. Marine Chemistry, 2002,79(3/4):207-227.

[25] Hu L, Guo Z, Feng J, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China [J]. Marine Chemistry, 2009,113(3/4):197-211.

[26] Hu B, Li J, Zhao J, et al. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: Implications for monsoon and upwelling [J]. Marine Chemistry, 2014,162(6): 60-70.

[27] Vonk J E, S Nchezgarc A L, Semiletov I, et al. Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea [J]. Biogeosciences Discussions, 2010,7(4):3153-3166.

[28] Karlsson E S, Charkin A, Dudarev O, et al. Carbon isotopes and lipid biomarker investigation of sources, transport and degradation of terrestrial organic matter in the Buor-Khaya Bay, SE Laptev Sea [J]. Biogeosciences Discussions, 2011,8(8):3463-3496.

[29] Li X, Bianchi T S, Allison M A, et al. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea [J]. Marine Chemistry, 2012,s(145-147):37-52.

[30] Li D, Yao P, Bianchi T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam [J]. Journal of Marine Systems, 2014, 139(139):409-419.

[31] Tesi T, Miserocchi S, Go I M A, et al. Source, transport and fate of terrestrial organic carbon on the western Mediterranean Sea, Gulf of Lions, France [J]. Marine Chemistry, 2007,105(1/2):101-117.

[32] Xing L, Zhang H, Yuan Z, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf [J]. Continental Shelf Research, 2011,31(10):1106-1115.

[33] Taipale S J, Peltomaa E, Hiltunen M, et al. Inferring phytoplankton, terrestrial plant and bacteria bulk δ13C values from compound specific analyses of lipids and fatty acids [J]. Plos One, 2015,10(7):e0133974.

[34] Abraham W R, Hesse C, Pelz O. Ratios of Carbon Isotopes in Microbial Lipids as, an Indicator of Substrate Usage [J]. Applied and Environmental Microbiology, 1998,64(11):4202-4209.

[35] Blair N, Leu A, Mu?oz E, et al. Carbon isotopic fractionation in heterotrophic microbial metabolism [J]. Applied and Environmental Microbiology, 1985,50(4):996-1001.

[36] Coffin R B, Velinsky D J, Devereux R, et al. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria [J]. Applied and Environmental Microbiology, 1990,56(7):2012-2020.

[37] Lee S, Fuhrman J A. Relationships between Biovolume and Biomass of Naturally Derived Marine Bacterioplankton [J]. Applied and Environmental Microbiology, 1987,53(6):1298-1303.

[38] Go?i A, Hedges J I. Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation [J]. Geochimica Et Cosmochimica Acta, 1995,59(14):2965-2981.

[39] 方家松,張 利.探索深部生物圈[J]. 中國科學:地球科學, 2011, 6:9-18.

[40] Jamieson A. The hadal zone: life in the deepest oceans [M]. England: Cambridge University Press, 2015.

[41] Tromp J. Normal-mode splitting observations from the great 1994Bolivia and Kuril Islands earthquakes: constraints on the structure of the mantle and inner core [J]. GSA Today, 1995,5:137.

[42] Li D, Yao P, Bianchi T S, et al. Historical reconstruction of organic carbon inputs to the East China Sea inner-shelf: Implications for anthropogenic activities and regional climate variability [J]. Holocene, 2015,25(12):1869-1881.

[43] 李 棟.長江口—東海內陸架沉積有機碳的生物地球化學過程及生態環境演變歷史的重建[D]. 青島:中國海洋大學, 2015.

[44] Reimers C E, Suess E. Late Quaternary Fluctuations in the Cycling of Organic matter off Central Peru: A Proto-Kerogen Record [M]. United States:Springer, 1983.

[45] Zimmerman A R, Canuel E A. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition [J]. Marine Chemistry, 2000,69(1):117- 137.

[46] Andersen B L, Broffitt B. Carbon cycling in coastal sediments: 1. A quantitative estimate of the remineralization of organic carbon in the sediments of Buzzards Bay, MA [J]. Geochimica Et Cosmochimica Acta, 1988,52(6):1531-1543.

[47] Henrichs S M, Farrington J W. Peru upwelling region sediments near 15°S. 1. Remineralization and accumulation of organic matter [J]. Limnology and Oceanography, 1984,29(1):1-19.

[48] Reimers C E, Suess E. The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean [J]. Marine Chemistry, 1983,13(2):141-168.

[49] Murray J W, Kuivila K M. Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments [J]. Deep Sea Research Part I Oceanographic Research Papers, 1990,37(1):59-80.

[50] Grundmanis V, Murray J W. Aerobic respiration in pelagic marine sediments [J]. Geochimica Et Cosmochimica Acta, 1982,46(6):1101- 1120.

[51] Paull C K, Dillon W P. Gas Hydrates Along the Peru and Middle America Trench Systems [M]. American Geophysical Union, 2013, 124:257-271.

[52] Wakeham S G, Ertel J R. Diagenesis of organic matter in suspended particles and sediments in the Cariaco Trench [J]. Organic Geochemistry, 1988,13(4-6):815-822.

[53] Longhurst A, Sathyendranath S, Platt T, et al. An estimate of global primary production in the ocean from satellite radiometer data [J]. Population Environment and Development, 1995,17(6):1245-1271.

[54] Lutz M J, Ken C, Dunbar R B, et al. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean [J]. Journal of Geophysical Research Oceans, 2007,112:C10011.

[55] Wu B, Liu S M, Ren J L. Dissolution kinetics of biogenic silica and tentative silicon balance in the Yellow Sea [J]. Limnology and Oceanography, 2017,62,doi:10.1002/lno.10514.

[56] 韓喜彬,趙 軍,初鳳友,等.南極半島東北海域表層沉積有機質來源及其沉積環境[J]. 海洋學報, 2015,37(8):26-38.

[57] 曾 湘.深海沉積物中細菌對有機碳源的反應:細菌群落和酶活的變化 [D].廈門:國家海洋局第三海洋研究所, 2005.

[58] 藍先洪,蜜蓓蓓,李日輝,等.渤海東部和黃海北部沉積物中重金屬分布特征[J]. 中國環境科學, 2014,34(10):2660-2668.

[59] Reeburgh W S. Rates of biogeochemical processes in anoxic sediments [J]. Annual Review of Earth and Planetary Sciences, 1983, 11(1):269-298.

[60] 朱茂旭,史曉寧,楊桂朋,等.海洋沉積物中有機質早期成巖礦化路徑及其相對貢獻[J]. 地球科學進展, 2011,26(4):355-364.

[61] Beazley M J. The significance of organic carbon and sediment surface area to the benthic biogeochemistry of the slope and deep water environments of the northern Gulf of Mexico [D]. United States:Texas A and M University, 2004.

[62] Hargrave, Barry T. Aerobic decomposition of and detritus as a function of particle surface area and organic sediment content [J]. Limnology and Oceanography, 1972,17(4):583-586.

[63] Deflaun M F, Mayer L M. Relationships between bacteria and grain surfaces in intertidal sediments [J]. Limnology and Oceanography, 1983,28(5):873-881.

[64] Blankenship-Williams L E, Levin L A. Living Deep: A Synopsis of Hadal Trench Ecology [J]. Marine Technology Society Journal, 2009, 43(5):137-143.

[65] Ichino M C, Clark M R, Drazen J C, et al. The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor [J]. Deep Sea Research Part I Oceanographic Research Papers, 2015, 100:21-33.

[66] 黨宏月,宋林生,李鐵剛,等.海底深部生物圈微生物的研究進展[J]. 地球科學進展, 2005,20(12):1306-1313.

[67] Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean [J]. Nature Reviews Microbiology, 2010,8(8):593-599.

[68] 焦念志.海洋固碳與儲碳——并論微型生物在其中的重要作用[J]. 中國科學:地球科學, 2012,42(10):1473-1486.

[69] Fang J, Barcelona M J, Nogi Y, et al. Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000m [J]. Deep-Sea Research Part I, 2015,47(6):1173-1182.

[70] D’Hondt S, Inagaki F, Ferdelman T, et al. Exploring Subseafloor Life with the Integrated Ocean Drilling Program [J]. Scientific Drilling, 2007,5(5):4-12.

[71] 謝樹成,殷鴻福.地球生物學前沿:進展與問題[J]. 中國科學:地球科學, 2014,6:1072-1086.

[72] 焦念志,駱庭偉,張 瑤,等.海洋微型生物碳泵—從微型生物生態過程到碳循環機制效應[J]. 廈門大學學報(自然版), 2011,50(2): 387-401.

[73] 汪品先.從海洋內部研究海洋[J]. 地球科學進展, 2013,28(5):517- 520.

[74] Rathburn A E, Levin L A, Tryon M, et al. Geological and biological heterogeneity of the Aleutian margin (1965-4822m) [J]. Progress in Oceanography, 2009,80(1/2):22-50.

[75] Krause D C, White W C, Piper D J W, et al. Turbidity currents and cable breaks in the western New Britain Trench [J]. Geological Society of America Bulletin, 1970,81(7):2153-2160.

[76] D'hondt S.大洋鉆探對洋底以下生命的探索[J]. 地球科學進展, 2003,18(5):759-763.

[77] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment [J]. Annual Review of Marine Science, 2012,4(1): 401.

[78] Yao P, Zhao B, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014,91:1-11.

[79] Lemche H, Hansen B, Madsen F, et al. Hadal life as analysed from photographs [J]. Videnskabelige Meddelelser Fra Dansk Naturhistorik Forening, 1976,139:263-336.

[80] George R Y, Higgins R P. Eutrophic hadal benthic community in the Puerto Rico Trench [J]. Ambio Special Report, 1979,6:51-58.

[81] Baird B H, White D C. Biomass and community structure of the abyssal microbiota determined from the ester-linked phospholipids recovered from Venezuela Basin and Puerto Rico Trench sediments [J]. Marine geology, 1985,68(1-4):217.

[82] Smith C R, Demopoulos A W J. The deep Pacific ocean floor [J]. Ecosystems of the World, 2003,28:179-218.

[83] Kobayashi H, Hatada Y, Tsubouchi T, et al. The hadal amphipod hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor [J]. Plos One, 2012,7(8):e42727.

[84] Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(49):19473-19481.

[85] Bianchi T S, Thornton D C O, Yvon-Lewis S A, et al. Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system [J]. Geophysical Research Letters, 2015,42(13): 5460-5467.

[86] Ward N D, Bianchi T S, Sawakuchi H O, et al. The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River [J]. Journal of Geophysical Research Biogeosciences, 2016,121(6):doi.10.1002/2016JG003342.

[87] Burwicz E B, Rüpke L, Wallmann. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation [J]. Geochimica et Cosmochimica Acta 75(16):4562-4576.

[88] Wenzh Fer F, Oguri K, Middelboe M, et al. Benthic carbon mineralization in hadal trenches: assessment by in situ O 2microprofile measurements [J]. Deep Sea Research Part I Oceanographic Research Papers, 2016,116:276-286.

[89] 林 晶,吳 瑩,張 經,等.長江有機碳通量的季節變化及三峽工程對其影響[J]. 中國環境科學, 2007,27(2):246-249.

[90] 趙晨英,藏家業,劉 軍,等.黃渤海氮磷營養鹽的分布、收支與生態環境效應[J]. 中國環境科學, 2016,36(7):2115-2127.

[91] 高 嵩,韓秀榮,王 婷.滸苔綠潮與南黃海近岸海域水質的關系[J]. 中國環境科學, 2014,34(1):213-218.

[92] Xu B, Bianchi T S, Allison M A, et al. Using multi-radiotracer techniques to better understand sedimentary dynamics of reworked muds in the Changjiang River estuary and inner shelf of East China Sea [J]. Marine Geology, 2015,370(2):76-86.

[93] Zhang Y, Wang X, Zhen Y, et al. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea [J]. Frontiers in Microbiology, 2017,8:2133, doi:10.3389/fmico.2017.02133.

[94] 張 玉,賀 惠,米鐵柱,等.東海海域表層沉積物中硫酸鹽還原菌分布特征研究[J]. 中國環境科學, 2016,36(12):3750-3758.

[95] 李佳霖,白 潔,高會旺,等.長江口海域夏季沉積物反硝化細菌數量及反硝化作用[J]. 中國環境科學, 2009,29(7):756-761.

[96] Aller R C, Blair N E. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: A sedimentary incinerator [J]. Continental Shelf Research, 2006,26(17):2241-2259.

[97] Lutz M J, Caldeira K, Dunbar R B, et al. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean [J]. Journal of Geophysical Research Oceans, 2007,112:C10011.2007.

[98] Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance [J]. American Journal of Science, 1982,282(4):451-473.

[99] Sarmiento J L, Gruber N. Ocean Biogeochemical Dynamics-Calcium Carbonate Cycle [M]. United States:Princeton University Press, 2006.

致謝:感謝向陽紅10號海洋科研調查船全體船員、國家海洋局第二海洋研究所鹿博、于培松、朱秋紅及郭曉澤在調查采樣和樣品分析上給予的幫助!

Vertical distribution of sedimentary organic carbon in the Yap Trench and its implications.

WU Bin1,2, LI Dong1,2*, ZHAO Jun1,2, LIU Cheng-gang1,2, SUN Cheng-jun3, CHEN Jian-fang1,2, PAN Jian-ming1,2, HAN Zheng-Bing1,2, HU Ji1,2

(1.Laboratory of Marine Ecosystem and Environment, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012,China;2.Key laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, China;3.Marine Ecology Center, First Institute of Oceanography, State Oceanic Administration, Qingdao 266237, China)., 2018,38(9):3502~3511

Sediment core from the Yap Trench located in the west Pacific Ocean was collected by manned deep-sea research submersible. Geochemical parameter analyses (e.g. total organic carbon (TOC), δ13C, grain size composition and specific surface area (SSA)), combined with an end-member mixing model, a degradation model and principal component analysis (PCA) were conducted in order to 1) study the vertical distribution of the organic carbon (OC) and corresponding affecting factors, 2) assess the degradation and accumulation rate and the flux of the sedimentary OC in the Yap Trench. The mean TOC content of the Yap Trench was (0.31%±0.10%) and was comparable with those of the neritic sediments. Probably due to enrichment of the allochthonous organic matter in the large grain-sized particles (e.g. silt) and intense decomposition of OC by microorganisms, the TOC content was positively related with silt% and negatively related with SSA and clay%. The microorganism-derived OC was the dominant proportion of the sedimentary TOC (52%±21%), followed by the marine (37%±19%) and terrestrial (11%±4%) OC. The OC contents of those three sources all decreased downward. Based on PCA, decoupling between the microorganism-derived and the allochthonous OC indicated that the OC delivered by the submarine groundwater was probably an important nutritional supply for the microorganisms in the trench. The degradation rate of the refractory OC which dominated the vertical profile of TOC was around 0.0012a-1, slightly higher than that of the normal deep ocean but lower than the neritic environment. The accumulation rate and settling flux of TOC in the Yap Trench were around 1.8×10-5gC/(cm2·a) and2.2×109gC/a.

Yap Trench;sedimentary organic carbon;vertical distribution;source;degradation

X55

A

1000-6923(2018)09-3502-10

吳 彬(1986-),女,河北省秦皇島人,博士后,主要從事海洋沉積物中生源要素的生物地球化學過程研究.發表論文4篇.

2018-02-07

國家自然科學基金青年科學基金項目(41606090);國家重點基礎研究發展計劃(973計劃)項目(2015CB755904);國家海洋局第二海洋研究所基本科研業務費專項(JG1516)

* 責任作者, 助理研究員, lidong@sio.org.cn

主站蜘蛛池模板: 99成人在线观看| 亚洲国产日韩一区| 成人在线视频一区| 国模视频一区二区| 中文天堂在线视频| 国产欧美日韩18| 精品无码日韩国产不卡av | 亚洲国产成熟视频在线多多 | 日韩欧美国产另类| 久青草网站| 99r在线精品视频在线播放| 国产成人欧美| 狠狠色香婷婷久久亚洲精品| 亚洲综合第一页| www.99在线观看| 不卡无码h在线观看| 国产资源免费观看| 天天爽免费视频| 四虎亚洲国产成人久久精品| 在线网站18禁| 免费中文字幕一级毛片| 毛片大全免费观看| 国产a v无码专区亚洲av| www.亚洲一区二区三区| 国产免费久久精品99re丫丫一| 久久精品人人做人人爽电影蜜月| 一区二区三区四区在线| 暴力调教一区二区三区| 亚洲天天更新| 欧美.成人.综合在线| 国产三级精品三级在线观看| 日本一本在线视频| 国产真实二区一区在线亚洲| 亚洲欧洲日韩综合色天使| 99热这里只有精品在线观看| 大学生久久香蕉国产线观看| 高潮毛片免费观看| 精品一区二区三区自慰喷水| 精品久久高清| 亚洲成A人V欧美综合天堂| 九色视频线上播放| 在线视频一区二区三区不卡| 欧美午夜精品| 99久久亚洲精品影院| 久热中文字幕在线| www.国产福利| 国产精品自在自线免费观看| 日本欧美视频在线观看| 2019国产在线| 国产区成人精品视频| 国产区免费精品视频| 欧美日韩精品综合在线一区| 欧美日韩国产成人高清视频| 欧美日韩国产在线播放| 国产精品永久在线| 国产成人综合亚洲网址| 永久成人无码激情视频免费| 亚洲欧美激情小说另类| 午夜性刺激在线观看免费| 色九九视频| 精品少妇人妻av无码久久| 毛片在线播放网址| 国产熟女一级毛片| 原味小视频在线www国产| 无码有码中文字幕| 日本亚洲欧美在线| 91在线视频福利| 免费在线成人网| 高h视频在线| 伊人久久久大香线蕉综合直播| 中文字幕丝袜一区二区| 国产噜噜噜| 激情无码视频在线看| 国产乱人伦精品一区二区| 色综合日本| 国产精品女熟高潮视频| 伊人五月丁香综合AⅤ| 欧美亚洲国产视频| 欧美一区二区丝袜高跟鞋| 一本色道久久88亚洲综合| 久久99久久无码毛片一区二区| 色综合手机在线|