朱亞輝



摘 要:針對(duì)區(qū)間二元語(yǔ)義多屬性群決策中的專家客觀賦權(quán)問(wèn)題,提出了一種區(qū)間二元語(yǔ)義群決策的雙向?qū)<覚?quán)重確定方法。首先設(shè)置專家初始權(quán)重,通過(guò)專家個(gè)體與群體決策矩陣的偏差距離計(jì)算專家的偏離權(quán)重,再通過(guò)專家的直覺(jué)模糊熵計(jì)算專家的模糊熵權(quán)重,結(jié)合偏離權(quán)重和模糊熵權(quán)重,經(jīng)過(guò)多次迭代后得到穩(wěn)定的專家雙向權(quán)重。該權(quán)重既反映了專家偏好信息與群體偏好信息的一致性,同時(shí)也反映了專家對(duì)決策問(wèn)題的了解程度。最后,實(shí)例驗(yàn)證了該算法的可行性與有效性。
關(guān)鍵詞:多屬性群決策;專家權(quán)重;區(qū)間二元語(yǔ)義信息;自適應(yīng)迭代算法
中圖分類號(hào):C934 文獻(xiàn)標(biāo)識(shí)碼:A
Abstract: A method of determining the bidirectional objective weight of expert based on interval two-tuple linguistic group decision making is proposed.On the basis of the subjective weight of expert,the deviation weight of expert is calculated by the differences between each individual expert decision matrix and group expert decision matrix,and fuzzy weight of expert is calculated by intuitionistic fuzzy entropy of each individual expert.In the end,the stable bidirectional objective weight of expert are achieved after several iterations.The weight reflects not only the consistency between the preference information and the group preference information,but also the degree of the expert's understanding of the decision problem.The feasibility and effectiveness of the proposed method are approved by an instance.
Key words: multi-attribute group decision-making;expert weight;interval two-tuple linguistic information;adaptive iterative algorithm
1 引 言
在多屬性群決策過(guò)程中,由于外部環(huán)境的復(fù)雜性、不確定性、人類認(rèn)識(shí)的局限性和決策者的主觀性等特征,決策者對(duì)事物的評(píng)價(jià)往往以自然語(yǔ)言的形式給出。因此,近年來(lái)關(guān)于語(yǔ)言型決策問(wèn)題的研究越來(lái)越廣泛。目前對(duì)于語(yǔ)言型決策問(wèn)題信息的處理最常用的是二元語(yǔ)義[1-9]與區(qū)間二元語(yǔ)義[10-17]這兩種模型。
在區(qū)間二元語(yǔ)義多屬性群決策問(wèn)題中,專家權(quán)重的合理與否對(duì)決策結(jié)果的準(zhǔn)確性至關(guān)重要。因此,確定合理的專家權(quán)重具有重要的理論和現(xiàn)實(shí)意義。文獻(xiàn)[10-14]針對(duì)屬性權(quán)重未知,專家權(quán)重已知的區(qū)間二元語(yǔ)義多屬性群決策提出相應(yīng)的方法,文獻(xiàn)[15-17]針對(duì)屬性權(quán)重已知,專家權(quán)重未知的區(qū)間二元語(yǔ)義多屬性群決策提出相應(yīng)的方法。其中,張娜[15]等人針對(duì)屬性權(quán)重和專家權(quán)重信息完全未知的情形下,采用區(qū)間二元語(yǔ)義的核和區(qū)間二元語(yǔ)義的半徑表征區(qū)間二元語(yǔ)義信息,再分別計(jì)算決策者的屬性值與核正理想方案和半徑正理想方案間的灰色關(guān)聯(lián)度,最后通過(guò)線性加權(quán)的形式得到專家權(quán)重。徐選華[16]研究了基于屬性多粒度的雙層權(quán)重大群體決策方法,針對(duì)專家權(quán)重的確定,首先將區(qū)間二元語(yǔ)義轉(zhuǎn)化為區(qū)間數(shù)的形式,再通過(guò)兩兩專家區(qū)間數(shù)矩陣的可能度衡量專家權(quán)重。弓曉敏[17]通過(guò)分析專家評(píng)估值與群決策均值間的偏離程度,確定專家權(quán)重。
現(xiàn)有的這些方法只是通過(guò)專家個(gè)體決策信息與群體決策信息(或者與理想方案)之間的差異性或者關(guān)聯(lián)程度衡量專家權(quán)重,不能反映專家對(duì)評(píng)價(jià)對(duì)象的實(shí)際了解程度。另外,在以往的研究中,專家權(quán)重的確定方法往往只是單次計(jì)算,沒(méi)有形成一個(gè)反饋網(wǎng)絡(luò)來(lái)得到穩(wěn)定解,可能出現(xiàn)偏差。因此,本文提出一種新的客觀確定專家權(quán)重的思路:一方面,通過(guò)計(jì)算專家個(gè)體偏好矩陣與群體偏好矩陣之間的偏離度,衡量專家個(gè)體決策相較群體決策的一致性;另一方面,通過(guò)計(jì)算專家個(gè)體偏好矩陣的直覺(jué)模糊熵,衡量專家對(duì)決策問(wèn)題的了解程度。最后,通過(guò)自適應(yīng)迭代過(guò)程得到穩(wěn)定的專家雙向權(quán)重。
2 基本概念和研究框架
2.1 基本概念
4 結(jié)束語(yǔ)
針對(duì)區(qū)間二元語(yǔ)義型多屬性群決策中專家權(quán)重確定問(wèn)題,在總結(jié)現(xiàn)有的專家賦權(quán)原則的基礎(chǔ)上,一方面從專家個(gè)體偏好矩陣與群體偏好矩陣之間的偏離程度反映專家的一致性意見(jiàn),另一方面通過(guò)計(jì)算專家的直覺(jué)模糊熵反映專家個(gè)體對(duì)決策問(wèn)題的了解程度。采用線性加權(quán)將這兩方面進(jìn)行集結(jié);最后通過(guò)多次迭代得到穩(wěn)定的專家客觀權(quán)重。通過(guò)算例驗(yàn)證了該方法是可行有效。
參考文獻(xiàn)
[1] 徐澤水.純語(yǔ)言多屬性群決策方法研究[J].控制與決策,2004,19(7):778—781.
[2] CABRERIZO F J,HERRERA E,PEDRYCZ W.A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts [J].European Journal of Operational Research,2013,230(3):624—633.
[3] 張?jiān)曝S,王勇.基于模糊語(yǔ)言信息的所屬性群決策方法及應(yīng)用[J].科技管理研究,2014,34(19):208—211.
[4] 彭勃,葉春明.基于不確定純語(yǔ)言混合調(diào)和平均算子的多屬性群決策方法[J].中國(guó)管理科學(xué),2015,32(2):131—138.
[5] YOU X Y,YOU J X,LIU H C.,et al.Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information [J].Expert Systems with Applications,2015,42(4):1906—1916.
[6] SOU W L.Method for uncertain linguistic multiple attribute group decision making based on extended VIKOR [J].Control and Decision,2013,28(9):1431—1435.
[7] HERRERA A F,MARTINEZ L.A 2-tuple fuzzy linguistic representation model for computing with words [J].IEEE Trans on Fuzzy Systems,2000,8(6):746—752.
[8] HERRERA A F,HERRERA E V,MARTINEZ L.A fusion approach for managing multi-granularity linguistic term set in decision making [J].Fuzzy Sets and Systems,2000,114(1):43—58.
[9] HERRERA A F,MARTINEZ L.A model based on 2-tuples linguistic for dealing with multi-granularity hierarchical linguistic contexts in multi-expert decision-making [J].IEEE Trans on Systems,Man and Cybernetics,Part B:Cybernetics,2001,32(2):227—234.
[10] 王曉,陳華友,劉兮.基于離差的區(qū)間二元語(yǔ)義多屬性群決策方法[J].管理學(xué)報(bào),2011,8(2):301—305.
[11] 吳群,王鳳,周禮剛,等.基于區(qū)間二元語(yǔ)義偏好關(guān)系一致性偏差的群決策方法[J].模糊系統(tǒng)與數(shù)學(xué),2017,31(5):55—67.
[12] 尤筱玥,尤建新.基于區(qū)間二元語(yǔ)義VIKOR的外包供應(yīng)商選擇模型[J].同濟(jì)大學(xué)學(xué)報(bào):自然科學(xué)版,2017,45(9):1407—1414.
[13] 劉兮,孟祥旺,陳華友.區(qū)間二元語(yǔ)義信息的C-OWGD算子在多屬性群決策中的應(yīng)用[J].合肥學(xué)院學(xué)報(bào),2017,34(5):1—11.
[14] 吳群,吳澎,周元元,等.TLCGPOWA 算子及其在多屬性群決策中的應(yīng)用[J].計(jì)算機(jī)工程與應(yīng)用,2017,53(3):47-53+63
[15] 張娜,方志耕,朱建軍.基于等信息量轉(zhuǎn)換的區(qū)間二元語(yǔ)義多屬性群決策方法[J].控制與決策,2015,30(3):403—409.
[16] 徐選華,孫倩.基于屬性多粒度的雙層權(quán)重大群體決策方法[J].控制與決策,2016,31(10):1909—1914.
[17] 弓曉敏,耿秀麗,孫紹榮.基于區(qū)間二元語(yǔ)義DEA的純語(yǔ)義多屬性群決策方法[J].統(tǒng)計(jì)與決策,2016,17:38—41.
[18] CHEN C T,TAI W S.Measuring the intellectual capita performance based on 2-tuple fuzzy linguistic information [J].Annual Meeting of Apdsi,2005,20:1—9.
[19] 趙萌,任嶸嶸,邱菀華.基于直覺(jué)模糊熵的專家權(quán)重確定方法及其驗(yàn)證[J].控制與決策,2015,30(7):1233—1238.
[20] LIU H,YOU J,YOU X.Evaluating the risk of healthcare failure modes using interval 2-tuple hybrid weighted distance measure [J].Computers & Industrial Engineering,2014,78:249—258.
[21] MONDAL T K,SAMANTA S K.Topology of interval-valued intuitionistic fuzzy sets [J].Fuzzy Sets & Systems,2001,119(3):483—494.
[22] 王毅,雷英杰.一種直覺(jué)模糊熵的構(gòu)造方法[J].控制與決策,2007,22(1):1390—1394.