王志忠,梁秀娟,劉曉梅,李樹森,李 樹
(1.通遼市水利規劃設計研究院,內蒙古通遼028000;2.吉林大學地下水資源與環境教育部重點實驗室,吉林長春130021;3.吉林大學新能源與環境學院,吉林長春130021;4.通遼市水利工程建設質量與安全監督站,內蒙古通遼028000)
地下水作為水資源的重要組成部分,一直以來得到人們的廣泛利用。地下水水質的優劣影響著當地居民的生活質量、社會經濟發展及建設。對地下水水質進行科學地評價是地下水資源合理開發利用的基礎。目前,地下水水質評價方法主要有內梅羅綜合指數法、物元可拓法、模糊數學法、灰色聚類法、人工神經網絡法等[1]。模糊數學法針對區域內地下水水質的分布變化是漸變的過程,具有界線模糊的特點,引入隸屬度這一概念,因而在處理這類模糊性問題時效果比較理想[2]。物元可拓法考慮了水質的不確定性及模糊性,既能夠確定水質類別,又可以體現出評價指標對兩級級別的差異及同一級別內部的不同狀態[3]。模糊數學法和物元可拓法都考慮到地下水質的模糊性,故在地下水水質評價中應用較為廣泛。因此,本文采用模糊數學法和物元可拓法建立水質評價模型,對2015年九臺區地下水水質進行評價和分析,為九臺區的地下水資源開發利用提供依據。
九臺區位于吉林省中部,介于吉(林)長(春)兩市之間,是吉長兩市交通走廊地帶和吉長一體化經濟區西靠東移的重要“支撐點”和“接力站”。九臺區東及東北隔松花江與舒蘭、榆樹兩市相望,南及東南與雙陽區、永吉縣毗鄰,西與長春市寬城區為鄰,北與德惠市接壤。九臺區屬北寒溫帶半濕潤地區,大陸性季風氣候明顯,年平均降水量為596 mm[4]。
本文以九臺區2015年10個監測井地下水水質監測資料為數據,并根據當地水質情況選取了氯化物、硫酸鹽、溶解性總固體、總硬度、氨氮、總鐵、硝酸鹽氮、亞硝酸鹽氮、氟化物、高錳酸鹽指數等10個指標作為評價指標。
因子集:由n個影響水質的因素組成集合U={u1,u2,…,un}。
評價集:由m個評價等級組成的評集合V={v1,v2,…,vm}。
隸屬度函數采用降半梯形分布法進行計算,分別確定各指標所屬各水質級別的隸屬度函數,進而得到模糊關系評價矩陣
(1)
式中,rij為第i種評價指標對j級水質的隸屬度。
評價指標權重的確定直接影響地下水水質評價的準確性,一般采用污染物濃度超標加權法確定權重。


物元R:由事物N、特征C及事物關于該特征的量值V組成[6],R=(N,C,V)。則Rj為經典域物元集。
(2)
式中,Nj為所劃分的j個等級;Ci為不同的特征;Vjn的取值范圍為經典域。另有節域物元集
(3)
式中,p為待評價對象等級的全體,Vpn的取值范圍為節域。
待評價物元則為
(4)
式中,Vn為檢測所得的具體數據。
評價指標權重的確定直接影響地下水水質評價的準確性,一般采用污染物濃度超標加權法確定權重。
關聯函數為
(5)
式中,ρ(vi,Vji)為點vi與有限區間Vji的距離;ρ(vi,Vpi)為點vi與有限區間Vpi的距離。
點與有限區間距計算公式為

表1 2015年九臺區地下水水質數據 mg/L
(6)
式中,v為點值;V=(a,b)為有限區間;a、b分別為區間左端點及右端點的值。
計算綜合關聯度
(7)
式中,Kj(p0)為待評價單元j級別的綜合關聯度;ωi為i的權重系數。
等級的確定如下:
Kj(p0)=max{Kj(p0)}(j=1,2,…,m)
(8)

(9)
(10)

對九臺區2015年10個地下水水質樣本的9個評價指標進行地下水水質評價,水質數據見表1。
采用模糊數學模型和物元可拓模型計算得到各水樣的級別特征值,確定地下水水質級別,并進行對比,計算結果見表2。
本文分別采用模糊數學模型和物元可拓模型對九臺區地下水水質進行評價,并將兩種方法的結果進行對比,并與常用的評價方法——內梅羅綜合指數法的評價結果相比較。表2的對比結果顯示,模糊數學模型和物元可拓模型的評價結果一致性很高,可以達到70%,且兩種方法評價的水質級別均高于

表2 模糊綜合評價法計算結果
內梅羅綜合指數法。內梅羅綜合指數法在評價地下水水質時,過分突出個別評價因子的超標情況,導致水質評價結果較差。模糊數學模型和物元可拓模型采用污染物濃度超標加權法確定權重,在給予超標污染物適度重視的同時,降低異常值對評價結果的影響,因而評價結果更為準確、客觀。這兩種方法相對于內梅羅綜合指數法,更能體現相同級別地下水樣本間的區別。此外,兩種方法在判斷地下水水質級別時都采用級別特征值的算法,解決了最大隸屬度原則具有條件性的問題;同時使水質評價結果具有連續性,體現了同一水質級別地下水樣本的區別。模糊數學模型和物元可拓模型都是在充分考慮地下水質級別界限模糊性的基礎上,建立的水質評價模型,在采用相同權重計算方法時,兩者的評價結果相似度極高,且不同結果的差異很小。模糊數學模型在計算隸屬度時考慮了水質級別在兩個等級之間的隸屬性,而物元可拓模型在計算關聯度時考慮水質級別與五個等級之間的關聯程度,因而評價結果略有差異。從表2的結果中可以看出,九臺區水質較差,Ⅳ類水占整體的50%,影響九臺區地下水的主要污染因子為硫酸鹽、溶解性總固體,部分地區包含中氨氮。
(1)本文分別采用模糊數學法和物元可拓法建立水質評價模型,對2015年九臺區10個地下水水質樣本進行評價。評價結果顯示,九臺區地下水水質較差。影響九臺區地下水的主要污染因子為硫酸鹽、溶解性總固體,部分地區包含中氨氮。
(2)兩種評價方法與內梅羅綜合指數法對比,水質評結果好于內梅羅綜合指數法。模糊數學模型和物元可拓模型采用污染物濃度超標加權法確定權重,在給予超標污染物適度的重視的同時,降低異常值對評價結果的影響,因而評價的水質級別高于內梅羅綜合指數法。
(3)兩種方法相比較,評價結果一致性很高,可以達到70%,不同結果的差異較小。模糊數學模型和物元可拓模型均考慮了水質級別界限的模糊性,模糊數學模型在計算隸屬度時考慮了水質級別在兩個等級之間的隸屬性,物元可拓模型則是考慮水質級別于五個等級之間的關聯程度,因而結果略有差異。此外,兩種方法都采用級別特征值確定水質級別,解決了最大隸屬度原則具有條件性的問題,使水質評價結果具有連續性。