張偉斌 荊國杰
摘要:膠質母細胞瘤(GBM)是膠質瘤中惡性程度最高的腦部腫瘤,其死亡率和復發率較高。目前GBM發生發展機制尚不明確,無特效治療手段。常見的治療方法有手術切除、放療及化療等,但其預后差,因此尋找GBM相關信號通路可為了解其發病機制、靶向治療提供指引。目前,研究發現p53途徑、MAPK途徑、PI3K/AKT途徑以及Notch途徑是參與GBM的重要通路;除此之外,還有其他的信號通路也陸續被發現。本文通過對p53信號通路、MAPK信號通路、PI3K/AKT信號通路、Notch信號通路以及其他信號通路在GBM中的作用進行綜述,旨在為臨床治療GBM提供參考。
關鍵詞:膠質母細胞瘤;信號通路;分子靶向
中圖分類號:R739.41? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標識碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2019.23.009
文章編號:1006-1959(2019)23-0033-06
Study on Glioblastoma Signaling Pathway
ZHANG Wei-bin1,JING Guo-jie2
(1.Graduate School of Guangdong Medical University,Zhanjiang 524000,Guangdong,China;
2.Department of Neurosurgery,Huizhou First People's Hospital,Guangdong Medical University,Huizhou 516000,
Guangdong,China)
Abstract:Glioblastoma (GBM) is the most malignant brain tumor in glioma, with a high mortality and recurrence rate. At present, the mechanism of development of GBM is still unclear, and there is no specific treatment. Common treatment methods include surgical resection, radiotherapy and chemotherapy, but its prognosis is poor. Therefore, finding a signal pathway related to GBM can provide guidance for understanding its pathogenesis and targeted therapy. At present, the study found that the p53 pathway, MAPK pathway, PI3K/AKT pathway and Notch pathway are important pathways involved in GBM; in addition, other signaling pathways have been discovered. This article reviews the role of p53 signaling pathway, MAPK signaling pathway, PI3K/AKT signaling pathway, Notch signaling pathway and other signaling pathways in GBM, aiming to provide reference for clinical treatment of GBM.
Key words:Glioblastoma;Signaling pathway;Molecular targeting
膠質母細胞瘤(glioblastoma,GBM)是一種源自星形膠質細胞的惡性腦腫瘤,在WHO 2016中樞神經系統腫瘤分類中屬于惡性程度最高的Ⅳ級腦腫瘤,是最常見的原發性惡性中樞神經系統腫瘤,其發病率約3.2/10萬[1-3]。GBM多發于大腦半球,以額葉最多見,其呈彌漫性、浸潤性生長,具有自身的血液供應,生長迅速,容易侵入正常的腦組織,手術不易完全切除,且術后易原位復發。GBM的臨床表現主要包括顱內壓增高、神經功能及認知功能障礙和癲癇發作三大類。目前,GBM的主要治療方法是手術切除后聯合放化療,盡管采用綜合治療方案,GBM的死亡率和復發率非常高[4,5]。GBM在異質性腫瘤中的發生機制和發展機制主要涉及遺傳學、蛋白質組學、免疫學等方面。根據分子機制研究的結果,新的治療藥物和手段已經出現在臨床試驗中,如自體樹突狀細胞疫苗和溶瘤病毒療法[6,7]。由于GBM的潛在生物學機制尚不明確、預后差,因此發現GBM的異常信號傳導途徑和關鍵分子將有助于了解其發病機制及靶向治療。本文主要通過對p53信號通路、MAPK信號通路、PI3K/AKT信號通路、Notch信號通路以及其他信號通路在GBM的研究作一綜述,旨在為GBM的基礎及臨床研究提供一定的指引和總結。
1 p53信號通路
p53是由抑癌基因TP53編碼的蛋白,主要分布在細胞和核內,正常功能是監視細胞周期中的DNA損傷以及修復、甚至使不能修復的異常細胞凋亡,從而防止癌變細胞產生以及增殖[8]。在GBM中,p53主要處于低表達狀態,通過影響細胞凋亡、細胞周期以及血管生成和轉移的信號途徑而發揮其腫瘤抑制作用,其中p21、Gadd45和Reprimo是p53靶向調控細胞周期的分子[9-11];Fas、Bax以及半胱天冬酶6是p53靶向調控細胞凋亡的分子[12];低氧誘導因子(HIF)和NADPH氧化酶4(NOX4)是p53靶向調控血管生成和轉移的分子[13,14]。有研究表明[15],p53的突變與GBM的進展有關,當p53失活后,GBM更易侵襲,且癌細胞增殖更加明顯。另有研究發現[16],p53突變失活后,GBM細胞系對化療藥物更易產生耐藥性。
p53還能調控長鏈非編碼RNA(long non-coding RNA,lncRNA)。Voce DJ等[17]通過研究替莫唑胺治療GBM的機制,結果表明p53通過結合轉移相關肺腺癌轉錄本1(MALAT1)編碼區近端抑制了MALAT1的生成,進而增強了化療藥物的治療效果。除了細胞周期蛋白依賴性激酶抑制劑2A(CDKN2A)/ARF、MDM2(一種原癌基因)和MDM4(p53調控因子)已被證明在GBM可以負調控p53[18],目前研究還發現許多新的上游因子可影響p53信號通路,進而導致GBM的發生發展。Lin Y等[19]研究表明,天冬酰胺基內肽酶可以水解滅活p53,促進GBM的進程。Brook L等[20]研究表明,HR(Hairless)通過增強p53依賴的反式激活,促進GBM細胞凋亡。Zhu H等[21]研究發現,在GBM的腦膠質瘤干細胞中配對盒子3(paired box 3,PAX3)高表達,而且高表達的PAX3的腫瘤中有更多的p53突變,進一步提示PAX3可能與p53基因的啟動子特異性結合,并在轉錄上抑制p53的表達,影響腦膠質瘤干細胞分化、增殖和遷移。另有研究表明[22],干擾Septin 9和Septin 2后可能通過p53/p21軸和MEK/ERK激活而影響GBM增殖生長。
由于高通量技術的完善,越來越多的研究表明非編碼的RNA是調控腫瘤生物學過程的重要調控因子,如微RNAs(microRNAs,miRNA)和lncRNA。有研究發現[23,24],GBM中miRNA和lncRNA可調控p53通路,在GBM中miR-124、miR-125b的水平是下調的,它們可以靶向p53信號通路上的抑制因子,降低GBM的細胞增殖和細胞周期進展。Chen Y等[25]研究發現,在GBM中砷抗性蛋白2(核RNA帽結合復合物的一個組成部分)可能通過抑制miR-6798-3p而促進p53和p21上調。除了miRNA外,目前還發現兩種lncRNA,分別是H19和尿路上皮癌相關1(urothelial cancer associated 1,UCA1),其分別通過與miR-140和miR-182相互作用調節GBM進程,其中miR-140和miR-182能夠促進蛋白磷酸酶1調節亞基13(對TP53水平上調的因子)而使細胞增殖減少和細胞凋亡增加,而H19和UCA1降低了這些miRNA的表達和活性,因此在GBM中具有p53依賴的致癌活性[26,27]。有研究通過對p53信號通路的MDM2抑制劑AMG232進行研究,結果表明AMG232對GBM的抗腫瘤活性及其對p53信號的影響都有顯著表現[28,29]。由以上的研究可知,p53信號通路是GBM發生和進展中的關鍵途徑,對其上下游因子的研究探索可能為GBM治療提供更多的可能性。
2 MAPK信號通路
絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)是絲氨酸-蘇氨酸激酶,其在細胞增殖,細胞粘附,血管生成,侵入和轉移中發揮重要作用[30]。MAPKs由三個主要亞家族組成:Ras/MAPK,c-Jun氨基末端激酶(JNK)和p38激酶[31],其中Ras/MAPK信號通路的激活是通過腫瘤中的一系列生物級聯反應參與細胞增殖和分化[32,33]。目前主流認為MAPK信號通路的激活是GBM發生所必需的[34],MAPK信號傳導途徑在GBM中與細胞增殖、血管生成和侵襲有關。如Ras/MAPK通路有助于GBM中血管內皮生長因子表達的上調和血管生成的誘導[35];同源異型盒C6通過MAPK途徑促進GBM轉移和增殖[36];另有研究表明[37],MAPK1/JNK/基質金屬肽酶7途徑則是抑制了GBM的進展;此外,有多項研究發現[32,33,38],靶向p38 MAPK通路的激活可以促進GBM細胞的凋亡。這可能是由于MAPK通路下游的因子復雜,影響的下游因子不同,才導致了不同的GBM表型,但目前大多數MAPK通路的激活與GBM的惡性表型是呈正相關關系。
3 PI3K/AKT信號通路
磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)是一種胞內磷脂酰肌醇激酶,其具有絲氨酸/蘇氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性,PI3K家族的成員是參與多種細胞過程的脂質激酶,包括增殖、分化、遷移和代謝[39]。AKT是一種絲氨酸/蘇氨酸特異性蛋白激酶,在多種細胞生長過程中發揮關鍵作用,如葡萄糖代謝、凋亡、細胞增殖、轉錄和細胞遷移[40]。在正常情況下,PI3K/AKT可以靶向mTOR信號通路調控蛋白的合成、靶向血管內皮生長因子(VEGF)信號通路和叉頭蛋白轉錄因子3A(FOXO3a)信號通路參與細胞增殖、血管生成以及DNA修復,除此之外還會作用于細胞周期相關蛋白以及凋亡蛋白影響細胞的增殖和存活[41-44]。眾所周知,PI3K/AKT信號失調與多種腫瘤有關。而在GBM中也有相關研究發現白細胞介素-17A可通過PI3K/AKT信號通路促進細胞的遷移和侵襲[45];LIM和SH3蛋白1在GBM中是促癌因子,以PI3K/AKT依賴性機制調節GBM細胞增殖和化學敏感性[46];miR-1231和miR-124-3p作為腫瘤抑制因子可以調控PI3K/AKT信號通路抑制GBM細胞生長以及血管形成[47,48];miR-203參與PI3K/AKT途徑控制GBM細胞的DNA修復[49];賴氨酸乙?;D移酶6A是一種染色質調節劑,? 可促進組蛋白修飾和癌變,其表達被發現于GBM生存相關,并被證實能增強PI3K/AKT信號傳導以? 及腫瘤的發生[50]。關于針對PI3K/AKT信號通路? 的Buparlisib是新一代的PI3K的抑制劑,其穩定 性高和副作用低,目前已經進入了臨床Ⅰ期[51]??傊琍I3K/AKT在GBM的發生和發展中起重要作用,而且該信號途徑可能成為GBM引人注目的治療靶標。
4 Notch信號通路
Notch信號通路是存在于大多數生物體中且非常保守的細胞信號傳導系統,其在調節干細胞增殖分化和細胞凋亡等過程中起到非常關鍵作用[52]。Notch級聯由Notch和Notch配體以及將Notch信號傳遞至細胞核的細胞內蛋白質組成;在哺乳動物細胞中,Notch充當細胞質受體,有四種同源蛋白被稱為Notch1、Notch2、Notch3和Notch4,它們可以結合兩個配體家族:Delta型(DLL1-3和DLL4)和鋸齒狀(Jagged1和Jagged2)[53]。已有相關研究發現[54],Notch信號通路在腫瘤干細胞的自我更新、胚胎分化以及發育方面起到決定細胞命運的調節功能作用,其與腫瘤干細胞分化成內皮細胞、免疫細胞等多種生物學特性有密切關系。Notch信號在許多癌癥中失調,包括結直腸癌、肝癌、前列腺癌[55],目前也有許多報道提示在GBM中發現Notch信號通路的異常激活。另有研究發現[56],Notch信號通路中的Notch1、Notch4、DLL1、DLL4和Jagged1相對于正常腦細胞而言,其在GBM細胞中為高表達。Notch1可以與NF-κB(p65)結合,促進GBM細胞增殖和凋亡減少,還可靶向Hes1影響GBM干細胞的生長、分化和侵襲性,并且能調節趨化因子系統(CXC基序趨化因子配體12/CXC基序趨化因子受體4),從而促進神經膠質瘤干細胞的侵襲、自我更新和生長[57]。MiR-181a靶向結合Notch2會導致GBM干細胞的形成受到抑制[58]。N-乙酰半胱氨酸被發現通過Itch依賴的溶酶體途徑促進Notch2降解,進而阻止GBM細胞的增殖、遷移和侵襲,并可能誘導其凋亡[59]。而Notch3主要是參與GBM細胞干性的調節[60]。關于Notch4在GBM中的作用,一項免疫組織化觀察到DLL4和Notch4主要分布在血管內皮上,而比較少分布在腫瘤細胞上,且結果分析表明DLL4和Notch4的表達量呈正相關[61],這提示DLL4-Notch4信號通路可能參與GBM的血管生成。從以上研究可以看出,Notch信號通路主要是參與GBM干細胞調控,同時可能影響血管生成促進GBM生長、侵襲。而最近報道有一種納米生物共軛物被設計出來,其具備穿越血腦屏障的特點,可以阻斷層粘連蛋白411的表達進而抑制層粘連蛋白411能夠使Notch信號通路失活,對GBM生長有一定的抑制作用[62]。
5其他通路
除了上述通路外,還有許多信號通路在GBM中被發現處于異常失調,如調控GBM干細胞增殖分化的SHH(sonic hedgehog)/腦膠質瘤相關基因1(GLI1)信號通路以及酪氨酸激酶(JAK)-轉錄激活因子3(STAT3)信號通路[63,64];刺激GBM的血管生成的apelin/apelin受體信號通路,c-MYC信號通路以及HIF-1α信號通路[65-67];介導GBM化學抗性的miR-26a/AP-2α/Nanog信號傳導軸、透明質酸酶(HA)-CD44信號通路以及Wnt/β-catenin信號通路[68-70];促進GBM進展和侵襲以及上皮-間質轉化的miR-7-5p/三葉因子3(TFF3)信號通路、轉化生長因子β1(TGF-β1)/Smad信號通路以及ras同源家族成員A(RhoA)和Rac家族小GTPase 1(Rac1)的信號通路[71-73]。除此之外,值得注意的是黏著斑(focal adhesion)途徑,它參與細胞形狀、黏附以及運動,與惡性腫瘤的侵襲擴散密切相關[74]。在GBM中,黏著斑激酶(FAK)為高表達[75],研究發現[76,77],FAK是上述RAS/MAPK信號通路和PI3K/AKT信號通路的上游調控因子,提示其是靶向黏著斑信號途徑的關鍵分子,即能同時作用RAS/MAPK信號通路以及PI3K/AKT信號通路,這說明設計直接靶向FAK的藥物可能會取得相比單獨作用RAS/MAPK信號通路或者PI3K/AKT信號通路的藥物更好的療效。
6總結
GBM是成人中惡性程度最高的中樞神經系統腫瘤之一,即使采用最全面的治療方法,包括外科手術切除、放療和化療,也會導致嚴重的不良預后,盡管近年來新藥物和新治療手段為GBM的治療帶來了希望,如免疫治療、電場治療等,但其總體預后仍然較差。由于關于調控細胞生長、分化以及影響細胞代謝的一系列信號通路在GBM中發生了異常激活,因此從GBM相關信號通路中詳盡探討并研究出可行的治療標靶是可行的也是很有必要的。目前已經有相關靶向抑制GBM異常激活的信號通路的藥物開發和研究,如p53信號通路的MDM2抑制劑AMG232、針對PI3K/AKT信號通路抑制劑Buparlisib等。由此可見,在GBM異常失調的各種信號傳導途徑中,都有可能發展為藥物靶點,未來研發的藥物通過靶向GBM信號通路中的核心分子或者聯合靶向多個關鍵信號通路可能會取得明顯的治療效果。
參考文獻:
[1]Wen PY,Huse JT.2016 World Health Organization Classification of Central Nervous System Tumors[J].Continuum,2017,23(6):1531-1547.
[2]Patel NP,Lyon KA,Huang JH.The effect of race on the prognosis of the glioblastoma patient:a brief review[J].Neurological research,2019,41(11):967-971.
[3]Alexander BM,Cloughesy TF.Adult Glioblastoma[J].Journal of clinical oncology:official journal of the American Society of Clinical Oncology,2017,35(21):2402-2409.
[4]Alifieris C,Trafalis DT.Glioblastoma multiforme:Pathogenesis and treatment[J].Pharmacology&Therapeutics,2015(152):63-82.
[5]Franceschi E,Minichillo S,Brandes AA.Pharmacotherapy of Glioblastoma:Established Treatments and Emerging Concepts[J].CNS Drugs,2017,31(8):675-684.
[6]Geletneky K,Hajda J,Angelova AL,et al.Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial[J].Mol Ther,2017,25(12):2620-2634.
[7]Liau LM,Ashkan K,Tran DD,et al.Correction to: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma[J].J Transl Med,2018,29,16(1):179.
[8]Levine AJ.p53,the cellular gatekeeper for growth and division[J].Cell,1997,88(3):323-331.
[9]Karimian A,Ahmadi Y,Yousefi B.Multiple functions of p21 in cell cycle,apoptosis and transcriptional regulation after DNA damage[J].DNA Repair(Amst),2016(42):63-71.
[10]Han N,Yuan F,Xian P,et al.GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer[J].Onco Targets Ther,2019(12):7591-7599.
[11]Ohki R,Nemoto J,Murasawa H,et al.Reprimo,a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase[J].J Biol Chem,2000,275(30):22627-22630.
[12]Chen J.The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression[J].Cold Spring Harb Perspect Med,2016,6(3):a26104.
[13]Amelio I,Melino G.The p53 family and the hypoxia-inducible factors(HIFs):determinants of cancer progression[J].Trends Biochem Sci,2015,40(8):425-434.
[14]Zhan R,Xu K,Pan J,et al.Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis[J].Biochem Biophys Res Commun,2017, 490(3):700-706.
[15]Biasoli D,Sobrinho MF,Da FA,et al.Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy[J].Oncogenesis,2014,3(10):e123.
[16]Park CM,Park MJ,Kwak HJ,et al.Induction of p53-mediated apoptosis and recovery of chemosensitivity through p53 transduction in human glioblastoma cells by cisplatin[J].Int J Oncol,2006,28(1):119-125.
[17]Voce DJ,Bernal GM,Wu L,et al.Temozolomide Treatment Induces lncRNA MALAT1 in an NF-kappaB and p53 Codependent Manner in Glioblastoma[J].Cancer Research,2019,79(10):2536-2548.
[18]Zhang Y,Dube C,Gibert MJ,et al.The p53 Pathway in Glioblastoma[J].Cancers(Basel),2018,10(9):297.
[33]Wang R,Deng D,Shao N,et al.Evodiamine activates cellular apoptosis through suppressing PI3K/AKT and activating MAPK in glioma[J].Onco Targets Ther,2018(11):1183-1192.
[34]Vitucci M,Karpinich NO,Bash RE,et al.Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis[J].Neuro Oncol,2013,15(10):1317-1329.
[35]Ngo MT,Harley B.Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel[J].Biomaterials,2019(198):122-134.
[36]Yang P,Kang W,Pan Y,et al.Overexpression of HOXC6 promotes cell proliferation and migration via MAPK signaling and predicts a poor prognosis in glioblastoma[J].Cancer Manag Res,2019(11):8167-8179.
[37]Mu N,Gu J,Liu N,et al.PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways[J].Theranostics,2018,8(6):1527-1539.
[38]Li Q,Miao Z,Wang R,et al.Hesperetin Induces Apoptosis in Human Glioblastoma Cells via p38 MAPK Activation[J].Nutr Cancer,2019:1-8.
[39]Jean S,Kiger AA.Classes of phosphoinositide 3-kinases at a glance[J].J Cell Sci,2014,127(Pt 5):923-928.
[40]Revathidevi S,Munirajan AK.Akt in cancer:Mediator and more[J].Semin Cancer Biol,2019.
[41]Borrie S C,Brems H,Legius E,et al.Cognitive Dysfunctions in Intellectual Disabilities:The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways[J].Annu Rev Genomics Hum Genet,2017(18):115-142.
[42]Zhang ZZ,Qin XH,Zhang J.MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway[J].Am J Physiol Endocrinol Metab,2019,316(6):E1050-E1060.
[43]Seo YS,Kang OH,Kong R,et al.Polygalacin D induces apoptosis and cell cycle arrest via the PI3K/Akt pathway in non-small cell lung cancer[J].Oncol Rep,2018,39(4):1702-1710.
[44]Chen YR,Liu MT,Chang YT,et al.Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells[J].J Virol,2008,82(16):8124-8137.
[45]Zheng Q,Diao S,Wang Q,et al.IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signaling pathway[J].J Cell Mol Med,2019,23(1):357-369.
[46]Zhong C,Chen Y,Tao B,et al.LIM and SH3 protein 1 regulates cell growth and chemosensitivity of human glioblastoma via the PI3K/AKT pathway[J].BMC Cancer,2018,18(1):722.
[47]Zhang J,Zhang J,Qiu W,et al.MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma[J].J Neurooncol,2018,139(3):547-562.
[48]Zhang G,Chen L,Khan AA,et al.miRNA-124-3p/neuropilin-1(NRP-1)axis plays an important role in mediating glioblastoma growth and angiogenesis[J].Int J Cancer,2018,143(3):635-644.
[49]Chang JH,Hwang YH,Lee DJ,et al.MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells[J].Int J Radiat Oncol Biol Phys,2016,94(2):412-420.
[50]Lv D,Jia F,Hou Y,et al.Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling through TRIM24 Binding[J].Cancer Res,2017,77(22):6190-6201.
[51]Ando Y,Inada-Inoue M,Mitsuma A,et al.Phase I dose-escalation study of buparlisib(BKM120),an oral pan-class I PI3K inhibitor,in Japanese patients with advanced solid tumors[J].Cancer Sci,2014,105(3):347-353.
[52]Siebel C,Lendahl U.Notch Signaling in Development,Tissue Homeostasis,and Disease[J].Physiol Rev,2017,97(4):1235-1294.
[53]Nowell CS,Radtke F.Notch as a tumour suppressor[J].Nat Rev Cancer,2017,17(3):145-159.
[54]Espinoza I,Miele L.Notch inhibitors for cancer treatment[J].Pharmacology&Therapeutics,2013,139(2):95-110.
[55]Aster JC,Pear WS,Blacklow SC.The Varied Roles of Notch in Cancer[J].Annu Rev Pathol,2017(12):245-275.
[56]El Hindy N,Keyvani K,Pagenstecher A,et al.Implications of Dll4-Notch signaling activation in primary glioblastomamultiforme[J].Neuro Oncol,2013,15(10):1366-1378.
[57]Cenciarelli C,Marei HE,Zonfrillo M,et al.The interference of Notch1 target Hes1 affects cell growth,differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets[J].Oncotarget,2017,8(11):17873-17886.
[58]Huang SX,Zhao ZY,Weng GH,et al.Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme[J].Biochem Biophys Res Commun,2017,486(4):1129-1136.
[59]Deng J,Liu AD,Hou GQ,et al.N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling[J].J Exp Clin Cancer Res,2019,38(1):2.
[60]Ulasov IV,Mijanovic O,Savchuk S,et al.TMZ regulates GBM stemness via MMP14-DLL4-Notch3 pathway[J].Int J Cancer,2019.
[61]El HN,Keyvani K,Pagenstecher A,et al.Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme[J].Neuro Oncol,2013,15(10):1366-1378.
[62]Sun T,Patil R,Galstyan A,et al.Blockade of a Laminin-411-Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk[J].Cancer Res,2019,79(6):1239-1251.
[63]Han B,Wang R,Chen Y,et al.QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway[J].Cell Oncol(Dordr),2019.
[64]Fan Y,Xue W,Schachner M,et al.Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor[J].Cancers(Basel),2018,11(1):22.
[65]Mastrella G,Hou M,Li M,et al.Targeting APLN/APLNR Improves Antiangiogenic Efficiency and Blunts Proinvasive Side Effects of VEGFA/VEGFR2 Blockade in Glioblastoma[J].Cancer Res,2019,79(9):2298-2313.
[66]Maugeri G,D'Amico AG,Rasa DM,et al.Caffeine Effect on HIFs/VEGF Pathway in Human Glioblastoma Cells Exposed to Hypoxia[J].Anticancer Agents Med Chem,2018,18(10):1432-1439.
[67]Wang T,Chen W,Wu J.H2-P,a honokiol derivative,exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma[J].J Cell Biochem,2018,119(4):3142-3148.
[68]Huang W,Zhong Z,Luo C,et al.The miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma[J].Theranostics,2019,9(19):5497-5516.
[69]Luo W,Yan D,Song Z,et al.miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/beta-catenin signaling via targeting SOX2[J].Life Sci,2019(226):98-106.
[70]Hartheimer JS,Park S,Rao SS,et al.Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy[J].Cancer Microenviron,2019,12(1):47-56.
[71]Jiang Y,Zhou J,Hou D,et al.Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-beta1/Smad signaling pathway[J].J Pathol,2019,249(1):26-38.
[72]Ma H,Li T,Tao Z,et al.NKCC1 promotes EMT-like process in GBM via RhoA and Rac1 signaling pathways[J].J Cell Physiol,2019,234(2):1630-1642.
[73]Shukla A,Gupta P,Singh R,et al.Glycolytic inhibitor 2-Deoxy-d-Glucose activates migration and invasion in glioblastoma cells through modulation of the miR-7-5p/TFF3 signaling pathway[J].Biochem Biophys Res Commun,2018,499(4):829-835.
[74]Paluch EK,Aspalter IM,Sixt M.Focal Adhesion-Independent Cell Migration[J].Annu Rev Cell Dev Biol,2016,32(1):469-490.
[75]Natarajan M,Hecker TP,Gladson CL.FAK signaling in anaplastic astrocytoma and glioblastoma tumors[J].Cancer J,2003,9(2):126-133.
[76]Chen HH,Chen CW,Chang YY,et al.Preliminary crystallographic characterization of the Grb2 SH2 domain in complex with a FAK-derived phosphotyrosyl peptide[J].Acta Crystallogr Sect F Struct Biol Cryst Commun,2010,66(Pt 2):195-197.
[77]Liu BY,He XY,Xu C,et al.Peptide and Aptamer Decorated Delivery System for Targeting Delivery of Cas9/sgRNA Plasmid To Mediate Antitumor Genome Editing[J].ACS Appl Mater Interfaces,2019,11(27):23870-23879.
收稿日期:2019-10-31;修回日期:2019-11-9
編輯/杜帆