999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于LSTM-SPA的醫學領域問答技術研究

2019-02-08 13:02:24畢銘文左敏張青川
山東工業技術 2019年1期

畢銘文 左敏 張青川

摘 要:在線醫學智能問答系統作為傳統醫學服務系統的一個補充旨在對用戶通過自然語言進行的醫學方面的提問做出快速、簡介的反饋。本文提出了基于LSTM的癥狀位置的注意力模型。在醫療領域數據集MT-QA上的對比實驗顯示LSTM-SPA模型有優良的性能。

關鍵詞:語義分析;問答系統;長短時記憶網絡模型;基于位置的注意力機制

DOI:10.16640/j.cnki.37-1222/t.2019.01.226

1 引言

在線醫學詢問平臺在醫療服務領域得到越來越廣泛的關注,它為患者和醫生提供了一個社區的問答系統。患者描述他們的癥狀并提出問題,醫生以此來診斷疾病或者給予一些進一步就醫檢查的建議。但是由于平臺上的醫生大多利用業余時間參與問診工作,無法進行實時回復。患者仍然需要等待來自醫生的回復,而且這個等待時間是未知的。針對傳統的社區問答系統所面臨的上述問題,一個實時且高質量的醫學領域智能問答系統對于用戶來說是必要的。

2 相關工作

社區醫療問答系統所涉及的研究熱點包括以下兩個方面:

以用戶的癥狀描述為基礎,在數據庫中匹配與其相似度高的歷史病例。詞匯差距是由于使用不同的單詞導致用戶描述與表達相同含義的歷史描述不匹配。例如:一些用戶描述流感可能用“感冒了”,而其他人可能會用“咳嗽的厲害”代替。詞匯差距的存在導致利用傳統的信息索引方法很難根據用戶的描述去找到相似的歷史病例。

最近,LSTM已經被廣泛應用于問答任務中由于它的優良的性能。在基于LSTM的CQA模型中,用戶的描述和歷史描述中的每個單詞首先被一個隱含層向量表示。然后,所有的隱含層向量被合并成為句子代表。之后,最接近的歷史描述被從候選歷史描述池中選擇出來根據句子相似度。目前一個主要的挑戰是如何減弱句子中不相關內容對語義的干擾,[1]提出了三種內在關注的方法,在隱含層表示之前加入了注意力信息,達到了QA領域最新的表現。

本文將針對上述詞匯差距和句子向量化代表的問題展開深入探討。主要有以下兩個方面的研究。(1)將基于中文詞林的近義詞主詞替換的機制引入到目前最新進的詞嵌入模型來解決之前研究者所忽略的句子中單詞語義的理解;(2)對目前最先進的注意力機制進行優化。加入位置上下文的影響,增強對疾病典型癥狀的關注,構建基于位置感知的注意力模型。

3 LSTM-SPA模型描述

在這一章中,我們將介紹我們的LSTM-SPA 模型如何解決CQA任務。假設在歷史病例池中,從醫生得到相似答案回復的用戶癥狀描述如果多次出現,則該癥狀在該疾病中的表現是活躍的(我們稱之為典型癥狀),那么在用戶描述句中,該典型癥狀單詞將對其臨近單詞造成影響。也就是說,臨近單詞應該被給予更多的關注比起那些遠離單詞,因為它們代表著更多用戶的癥狀描述語義。基于這個假設,我們提出了LSTM-SPA模型來模擬一個用戶描述中的典型癥狀對句中各單詞的位置感知影響,分為以下三個步驟:

(1)通過相似度計算將歷史病例分組,具有高相似度診斷結果的歷史病例分為一組,也就是說位于同組的診斷結果或診斷建議基本一致。

(2)將每組病例中用戶描述利用傳統的注意力機制進行處理,得到用戶描述代表。

(3)經過統計,我們將得出每種診斷結果所對應的癥狀單詞列表。

需要重點說明的是我們提出了一個位置感知影響傳播策略,即在用戶描述句中,癥狀單詞對臨近單詞的影響程度隨距離而變化。然后根據在用戶描述句中出現的所有癥狀單詞傳播的累積影響,在隱含層中生成每個單詞的位置感知影響向量。這樣位置感知影響向量被整合到傳統注意力機制中,形成用戶對疾病癥狀描述的注意力語義代表。

4 實驗

4.1 實驗構建

數據集。我們進行的實驗使用的是我們獨立構建的數據MT-QA。MT-QA是一個面向醫學領域的問答對語料數據集,所有的問答對是從各大權威網站收集而來(例如:好大夫,尋醫問藥)。數據集被劃分為3部分:訓練集,開發集,測試集,并且統計的結果展示在表1:

4.2 LSTM-SPA 的影響

為了調查我們提出的BLSTM-SFPA 方法的效果。我們加入了一些沒有引用LSTM-SPA的標桿方法,即不引用注意力的均分權重的方法(例如,基于LSTM編碼解碼模型[2]和基于RNN的編碼解碼模型[3])和引入傳統注意力的方法[4]。實驗結果如表2所示。 我們的模型執行比其他方法更好。

我們觀察到LSTM編碼器 - 解碼器模型比RNN編碼器 - 解碼器具有更好的性能。LSTM具有更強的學習遠程時間依賴性數據的能力,因為這些問題與其答案句子中相應的關鍵信息之間存在相當長的時間滯后。并且我們注意到傳統的注意機制通過捕捉答案中的一部分信息詞匯,其性能略微優于均分權重的方法。然而它不能給予出現在用戶描述中的癥狀單詞以及他們周圍的上下文特別的關注,對于問答匹配來說,這會丟失很多有用的信息。在我們提出的SPA機制中,通過癥狀單詞的位置上下文影響的傳播,用戶描述中的癥狀單詞以及相鄰上下文的重要性會有一個明確的提高。此外,在我們的醫療問答對數據集上,我們能夠實現顯著的改善比起基礎模型。

5 結論

在這篇論文中,我們提出了一個基于LSTM的癥狀位置注意力模型(LSTM-SFP),該模型將癥狀單詞的位置上下文包含在用戶描述的注意力表示中;同時,通過將近義詞映射為主詞的近義詞主詞替換機制有效的為詞匯差距建立了橋梁。在MT-QA上的實驗結果展示了我們模型的優越性比起那些沒有考慮詞匯差距和位置信息的基準線模型。證明我們提出的SPA機制具有更高的性能比起那些傳統的注意力機制。在未來的研究中,我們想要在不同的任務中評估我們的模型并且試著去改善我們的模型。

參考文獻:

[1]Wang B,Liu K,Zhao J.Inner Attention based Recurrent Neural Networks for Answer Selection[C]//Meeting of the Association for Computational Linguistics,2016:1288-1297.

[2]Sutskever I,Vinyals O,Le Q V.Sequence to Sequence Learning with Neural Networks[J].2014(04):3104-3112.

[3]Cho K,Van Merrienboer B,Gulcehre C,et al.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J].Computer Science,2014.

[4]Wang D,Nyberg E.A Long Short-Term Memory Model for Answer Sentence Selection in Question Answering[C]// Meeting of the Association for Computational Linguistics and the,International?Joint Conference on Natural Language Processing.2015:707-712.

主站蜘蛛池模板: 67194亚洲无码| 2048国产精品原创综合在线| 影音先锋亚洲无码| 另类欧美日韩| 日韩欧美国产综合| 日韩区欧美区| 国产人在线成免费视频| 久久精品这里只有精99品| 3344在线观看无码| 国产第一页免费浮力影院| 成人一区在线| 日韩精品少妇无码受不了| 久久久精品国产亚洲AV日韩| 国产一区二区三区夜色| 久久黄色小视频| 成人小视频网| 亚洲动漫h| 蜜芽国产尤物av尤物在线看| 亚洲资源站av无码网址| 精品三级在线| 国产农村妇女精品一二区| 99re在线观看视频| 亚洲另类色| 日a本亚洲中文在线观看| 热九九精品| 欧美一级99在线观看国产| 欧美亚洲欧美| 国产高清无码麻豆精品| 亚洲国产中文精品va在线播放 | 综合久久久久久久综合网| 国产啪在线| 亚洲无线一二三四区男男| 欧美另类精品一区二区三区| 亚洲va欧美ⅴa国产va影院| 亚洲av日韩av制服丝袜| 红杏AV在线无码| 亚洲成人网在线播放| 欧美无遮挡国产欧美另类| 日韩第八页| 国产综合网站| 国产精品免费久久久久影院无码| 曰韩免费无码AV一区二区| 欧美一区二区啪啪| 91视频日本| 欧美日韩精品一区二区视频| 91国内视频在线观看| 狠狠久久综合伊人不卡| 51国产偷自视频区视频手机观看| 在线欧美国产| 午夜精品一区二区蜜桃| 在线国产综合一区二区三区| 91成人在线观看视频| 手机永久AV在线播放| 日韩毛片免费视频| 久久窝窝国产精品午夜看片| 亚洲性视频网站| 香蕉网久久| 欧美日本在线| 国产欧美日韩资源在线观看| 欧美不卡视频在线观看| a天堂视频在线| 亚洲无码一区在线观看| 亚洲激情99| 日韩精品无码免费一区二区三区 | 久久超级碰| 激情网址在线观看| 久久香蕉国产线看观看亚洲片| 精品国产免费观看| 亚洲三级片在线看| 久久精品人妻中文系列| 国产女人综合久久精品视| 成人免费午间影院在线观看| 午夜国产精品视频黄| 欧美乱妇高清无乱码免费| 色偷偷一区| 国产精选自拍| 欧美黑人欧美精品刺激| 国产swag在线观看| 国产免费怡红院视频| 国产丝袜啪啪| 玩两个丰满老熟女久久网| 99re视频在线|