謝 坤,羅 元,馮弋洋,吳 凡,王貴云,張克強,沈仕洲,王 風
改進灰色模式識別模型評價洱海雨季灌排溝渠水質
謝 坤1,3,羅 元1,2,3,馮弋洋1,2,3,吳 凡1,3,王貴云1,張克強1,3,沈仕洲1,3,王 風1,3※
(1. 農業農村部環境保護科研監測所,天津 300191;2. 云南農業大學資源與環境學院,昆明 650201;3. 農業農村部大理農業環境科學觀測實驗站,大理 671004)
為揭示洱海流域農田生產與農村生活單元交替分布對灌排溝渠水質的綜合影響及污染物貢獻率,選取流域典型灌排溝渠不同斷面進行連續取樣觀測,在分析化學需氧量(chemical oxygen demand,COD)、總氮(total nitrogen,TN)、總磷(total phosphorus,TP)及銨態氮(ammonium nitrogen,NH4+-N)濃度變化特征基礎上,采用“中心化”灰色模式識別模型和綜合平均污染指數對溝渠農田入口-農田出口-村落出口-農田出口-村落出口-農田出口斷面水質進行綜合評價。結果表明:溝渠斷面TP和總可溶磷(total dissolved phosphate,TDP)濃度沿水流方向持續增加,TN和硝態氮(nitrate nitrogen,NO3--N)濃度先增加隨后穩定,溝渠農田出口段NH4+-N和COD濃度分別削減13.43%~57.88%和2.88%~19.33%,而流經村落段濃度相應增加?;疑J阶R別模型分析發現沿水流方向溝渠斷面水質類別分別為Ⅲ類、Ⅱ類、Ⅳ類、Ⅳ類、Ⅴ類和Ⅴ類,綜合平均污染指數法表明溝渠中TN和COD是水體主要污染因子,而NO3--N是水體TN的最主要形態。該研究可揭示洱海流域氮磷污染來源與貢獻,為明確面源污染防治的主要污染因子提供科技支撐。
氮;磷;洱海流域;農業面源污染;灌排溝渠;灰色模式識別模型;綜合平均污染指數
水體富營養化已成為中國最嚴重的水污染問題之一[1],湖泊和河流等地表水體生態環境受到嚴重破壞[2]。洱海作為云貴高原第二大淡水湖泊[3],在整個洱海流域農田灌溉、水產養殖、氣候調節和城市用水[4]等方面起著至關重要的作用。隨著流域農業、旅游等多功能效益的綜合開發利用和城鎮化發展,農業生產和農村生活排水中氮、磷含量快速增加,導致洱海水體向富營養化發展,水質不斷下降[5]。目前洱海總體水質已渡過中營養化向富營養化轉變階段[6],正處于早期富營養化[7],且近20 a來洱海生態系統健康狀態呈逐漸惡化趨勢[8]。造成洱海富營養化的主要因素為農業面源污染[9],而流域農田耕地N、P流失和農村排污已成為農業面源污染主要來源[10],約占污染總量的70%[11]。近年來,學者們從土地利用、種植類型、季節變化及時間尺度變化上對洱海流域農業面源污染變化特征進行了深入研究[12-15],發現流域土地利用類型組成與入湖河流氮、磷相關,流域旱季入湖河流水質對土地利用響應關系強于雨季,雨旱季水質相應指標分別為總磷(total phosphorus,TP)和銨態氮(ammonium nitrogen,NH4+-N),且不同種植類型影響下流域入湖河流氮、磷差異較大,同時在前期研究基礎上以流域灌排溝渠為載體對流域農業面源污染變化特征進行了探討[16-18]。
洱海流域現存有大量灌排溝渠,用來滿足農業生產區農田地表水灌排以及村莊排水需求。流域雨季降雨量較大,且農業耕作活動主要集中于雨季,降雨沖刷農田地表形成徑流將肥料和土壤殘留N、P等營養物質帶入溝渠水體中,同時集中降雨影響著村莊廢水對溝渠的排放[19],流域灌排溝渠成為了連接農業排水、村莊生活廢水與洱海的重要通道,以及農業面源污染變化特征的主要監測源之一。研究洱海流域灌排溝渠對明確流域農業面源污染導致的氮、磷流失特征具有重要意義。目前,對流域灌排溝渠研究主要集中在通過溝渠氮、磷流失特征反映土地利用、種植類型下氮、磷污染流失變化特征[16-18],但結合水質評價模型進行溝渠雨季氮磷流失的研究鮮有報道。
水質評價中指標與水條件之間的復雜關系為水質評價結果[20]帶來了灰度性。灰度是指從指標系統中獲得的信息不完全。也就是說,樣本在時間和空間上都是不連續的,因此指標的集中是不完善的,也是不連續的。此外,氮和磷是用于實地監測的主要指標,缺乏關于其他指標的資料。為了解決水質評價中灰色問題,在灰色系統理論的基礎上,采用灰色聚類分析[21]、灰色關聯分析[22]和改進的灰色系統模型[23]對水質進行評價,其中灰色關聯分析較多應用在水質評價中。灰色關聯水質評價方法在評價中對水質分級界限區分存在不確定性,因分級臨界值附近的實測濃度的微小變化可能導致評價結果級別歸屬的改變,且存在確定水質級別中評價值趨于均化,以及同一水質級別的不同樣本污染程度的高低難以精確比較的問題[22],灰色模式識別模型在傳統灰色關聯評價的基礎上引入了加權關聯差異度的概念,采用模糊識別的思想得出最優權系數-灰色從屬度,然后利用綜合指數法得到水質綜合指數[24]。改進的灰色模式識別模型充分考慮了以區間形式存在的水質評價標準,相比通過臨界值直接判斷水質級別歸屬更加客觀。本文在已經開展的流域雨季日變化和短期尺度污染變化特征基礎上[16],通過對流域農區典型灌排溝渠進行雨季長期監測,基于綜合平均污染指數對農業面源污染中污染物進行污染排序,明確主要污染物貢獻率。以改進灰色模式識別模型為基礎,現有農區溝渠水質監測數據為依據,探討水質評價模型在洱海灌排溝渠水質綜合分析評價方面的應用可能,以期為流域農業面源污染防治提供參考。
研究的生產/生活交替分布景觀區特征如圖1所示,區域地形與氣候特征溝渠植物等信息見文獻[16],不同單元溝渠類型、特征及匯水面積見表1。監測區農田土壤類型主要為潴育型水稻土(俗稱雞糞土),土壤肥沃[25],種植作物主要為露地蔬菜,輪作模式為大蔥、白菜、青筍和芹菜等蔬菜品種交替種植。露地蔬菜1 a種植3季,基肥期移栽時以有機肥或者農家肥作為底肥施入,單季作物基肥施肥量在800~1 600 kg/hm2之間,蔬菜生長期內通常不同追肥1~2次,施肥方式為表層撒施和單株穴施,追肥以復合肥為主,不同蔬菜作物每次追施中以N、P計折純分別為112~150和52~76 kg/hm2。

圖1 研究區域和取樣位點布置圖

表1 溝渠采樣位置、特征及覆蓋匯水面積
水質監測及分析數據來源于流域典型灌排溝渠2018年6-10月水質指標的實測數據,按照《水質-采樣技術指導》(HJ 494-2009)和《地表水和污水監測技術規范》(HJ/T 91-2002)進行水樣布點采集,研究區域農灌溝渠全長共布設6個采樣斷面,將溝渠流經的農田和村莊劃分為5個單元,其中村莊段采樣點3個,農田段采樣點3個,分別作為5個單元入水和出水。采樣頻率為1次/周,如遇下雨則相應增加取樣頻率,采樣時間在14:00—16:00之間,總共取樣24批次。用250 L聚乙烯瓶在溝渠水深1/2處進行取樣,水樣于低溫保溫箱中儲存,24 h內進行實驗室指標測定。水質指標選取溶解氧(dissolved oxygen, DO)、化學需氧量(chemical oxygen demand,COD)、總氮(total nitrogen,TN)、TP及NH4+-N。DO濃度每次采樣時通過便攜式溶氧儀(YSI 550A,美國賽萊默(Yylem)公司)進行現場測定,TN濃度采用堿性過硫酸鉀紫外分光光度法測定,NH4+-N濃度采用納氏試劑紫外分光光度法測定,TP采用鉬銻抗紫外分光光度法測定,COD濃度采用密封催化消解—酸性重鉻酸鹽滴定法測定[26]。
綜合平均污染指數法可以獲得灌排溝渠水質污染因子綜合權重,以此可確定溝渠水質中主要污染因子及其污染權重,便于針對性分析水質污染狀況[27]。計算公式如下

式中P為評價因子的綜合指數;P為斷面項污染因子的污染指數;C為斷面項污染因子的實測值;C0為項污染因子評價標準的算術平均值,通過地表水環境質量標準(CB3838—2002)計算;W()為斷面項污染物的權重值,同時為斷面項污染物貢獻率%,W()越大表明該污染因子的貢獻率越大,=1,2,…,。
傳統的灰色模式識別模型對水質進行評價分為5個步驟[24]:1)確定比較數列和參考數列,通常將所有斷面監測值表示為參考數列,水質分級標準濃度數列為比較數列;2)數據無量綱化處理;3)利用基本灰色關聯分析模型計算出參考數列與比較數列的關聯系數;4)通過監測斷面水體污染指標關聯系數與指標權重求得水質關聯度,按數值從大到小排列得出灰色關聯序列;5)通過水質關聯度求得隸屬度,進而算出灰色綜合指數(grey composite index, GC),以及對應水質類別。
1.4.1 數據無量綱化的優化
以往在灰色關聯分析中對無量綱化處理多用“分段線性變換”方法[28]。對于COD、TN濃度越大,污染程度越嚴重的指標,采用式(2)和式(3)進行歸一化


對于像DO一樣濃度越大,污染程度越輕的指標,采用式(4)和式(5)進行歸一化



李炳軍等[29]采用“中心化”改進方法進行數據的量綱歸一處理,相比于“分段線性變換”的方法,使計算結果的差異性體現的更加明顯,同時具有明確的物理意義。為準確表征農田灌排溝渠地表水水質類別的灰色性,本文構建的灰色模式識別模型引入“中心化”無量綱概念,其計算公式如下:


式中σ()為x(0)()的樣本均方差,σ()為x(0)()的樣本均方差。
1.4.2 絕對差的新定義
由于評價標準并非1個數值,而是1個區間。因此,采用基于點到區間距離的關聯系數公式,絕對差[22]為

溝渠N、P和COD濃度指標沿斷面動態特征見圖2。

注:圖中TN、TP、COD、TDP和PP分別為總氮、總磷、化學需氧量、可溶性總磷和顆粒態磷。下同。
溝渠水質TN和NO3--N濃度表現為從斷面1到斷面4快速增加,從斷面4到斷面6緩慢增長,NO3--N濃度占TN的55.82%~88.20%。溝渠水質TP和TDP濃度從斷面1到斷面6同步穩定增長各段面TDP濃度對TP貢獻占55.50%~71.00%。PP濃度存在出田濃度增加和出村濃度降低的特征。溝渠水體中NH4+-N與COD均具有出農田濃度降低和出村莊濃度增加的特征,水體NH4+-N和COD濃度分別為0.32~0.77 mg/L和63.38~116.93 mg/L,NH4+-N變化相對平穩,農田段溝渠對水體中NH4+-N與COD起到了一定的削減作用,NH4+-N和COD濃度分別削減13.43%~57.88%和2.88%~19.33%,且村莊排放仍是溝渠水體NH4+-N與COD重要來源。
據2018年6-10月洱海流域典型灌排溝渠水質COD、TN、TP、NH4+-N和DO監測數據,利用式(1)綜合平均污染指數法求得各污染因子的權重及污染貢獻率見表2。溝渠不同斷面水體污染物污染貢獻率排序為TN>COD>TP>DO>NH4+-N,在所有斷面中TN和COD均是農灌溝渠最重要污染物,其在水質中污染貢獻率分別為29.44%~66.39%和18.68%~40.11%。TN污染貢獻率隨溝渠流向增加并成為主導的趨勢,COD污染貢獻率隨溝渠流向降低,NH4+-N污染貢獻率特征與COD相似。

表2 水質污染物貢獻率
2.3.1 原始數據的無量綱化處理
為方便后期計算,依據式(6)和式(7),對溝渠各監測斷面水質污染物實際測量均值濃度和地表水環境質量標準限值進行處理,參考數列和比較數列見表3。

表3 溝渠斷面及地表水質量標準中各指標無量綱化結果
2.3.2 評價等級的確定及水質綜合評價
以農灌溝渠監測斷面1為例,式(8)對比較數列及參考數列進行絕對差Δ()計算;根據式(1)計算評價指標權重;根據模型計算斷面水質關聯度、隸屬度和灰色綜合指數,結果見表4。從表4中數據得出,溝渠監測斷面1水質GC=2.53,采用GC對水質狀況進行評價時,GC最大值為5,最小值為1,當各指標均達到Ⅰ類水要求時,GC=1;當所有指標都超過或等于Ⅴ類水要求時,GC=5[24],即溝渠斷面1水質與地表水Ⅲ類水質類別相符。
按上述計算過程分別對其他5個斷面進行水質分析,得出所有溝渠段面關聯度分析結果及水質對應等級,見表5。洱海流域雨季典型灌排溝渠沿水流方向水質類別變化明顯,各取樣斷面水質灰色識別模式綜合指數分別為2.53、2.01、3.98、4.06、4.99和4.93,同時6個監測相對應的水質類別為Ⅲ、Ⅱ、Ⅳ、Ⅳ、Ⅴ、Ⅴ,溝渠最終出水質類別處于較高水平,水體受污染程度嚴重。

表4 溝渠斷面1水質評價結果

表5 基于不同方法的溝渠斷面水質評價結果比較
為驗證改進評價方法可行性及實用性,同時采用傳統灰色關聯評價[28]、單因子評價、綜合污染指數評價和內梅羅污染指數評價[30]對溝渠水質進行評價。通過表5可知,改進評價方法與單因子評價結果相差最大,溝渠6個斷面水質單因子評價結果均為劣Ⅴ類;與傳統灰色關聯評價結果相比,改進方法對不同斷面評價結果同其較為接近,但斷面2到斷面4(Ⅱ、Ⅳ和Ⅳ)水質評價結果與傳統灰色關聯(Ⅲ、Ⅴ和Ⅴ)相比,均提高一個等級;同綜合污染指數和內梅羅污染指數評價結果相比,3種評價方法水質污染指數變化趨勢基本一致。
通過圖2中溝渠N、P和COD的雨季動態變化特征可知,同溝渠水質日變化等短期內變化規律基本一致[16],說明雨季溝渠水質污染源特征變化較小,污染物類型較穩定。研究區農田主要農作物為常綠蔬菜,且為露天種植,與溫室種植相比,露天種植完全依靠自然(陽光、溫度和降水)進行蔬菜生產,生產率和利潤相對低[31],為提高蔬菜產量,種植中后期大量高頻率追施化肥,因此造成大量N、P殘留在土壤中,甚至大量殘留至后茬作物,加劇土壤N、P流失風險。研究區域蔬菜種植年限較長,隨著農田種植年限的不斷增加,土壤N的積累量會越來越多以NO3--N為主,TN和NH4+-N含量也會相應提高[18]。除化肥外,農田蔬菜作物收獲后,作物秸稈多留在土壤中,未進行合理回收以及科學還田,農田大量殘留作物秸稈也成為蔬菜種植系統N、P的高潛在來源[32]。有研究表明,農田土壤中N、P流失受降雨強度、植被覆蓋度和土壤含水率影響較大[33-34],同時研究區內農田種植多無覆膜處理,相比于農田露地種植,土壤表面覆膜種植可以減少N、P流失[35],且蔬菜種植復種率較高[36],生長周期較短,頻繁耕種導致土壤容重降低,使得雨季土壤侵蝕現象相比于其他種植類型更為嚴重[37-38]。結合溝渠農田段和村莊段水體中NH4+-N與COD動態變化規律可知,村莊是其主要來源。主要是村莊污水收集管網完善度較差,污水收集率較低,使得NH4+-N和COD含量較高的村莊廢水排入溝渠中。
通過表2可知,在所有污染物中TN和COD是水質主要影響因數。因在洱海流域現有農田種植模式下大量N殘留在土壤中,這一現象的主要原因可能在于研究區農田蔬菜種植均以氮肥施用為主,施用過量大,施肥次數較多,造成土壤中大量肥料殘留,經流域雨季大量降雨沖刷形成的地表徑流以及淋溶側滲作用將土壤中N、P等污染物從土壤輸送進入溝渠水體中[39],同時含N量較高的村莊生活糞污廢水排入溝渠水體中,使得沿溝渠方向水體TN濃度逐漸增大,污染貢獻率沿溝渠流向也隨之增強。由于村莊污水管網存在錯接、漏接、破損和滲漏等問題,特別是在雨季暴雨期,大量村莊匯集雨水混入污水管網[18],導致較高COD濃度生活污水溢流或滲漏進入溝渠,成為溝渠水體中COD最主要來源。農田段自然生態溝渠依靠溝渠中植物攔截吸收、底泥吸附及微生物分解[40]對水體中COD也起到一定消納作用,這一過程在一定程度上減緩水體中COD濃度增長,相應降低了農田段溝渠水體污染貢獻率。
由表5可知,單因子評價法在水質評價中有效性較差且評價結果片面,綜合考慮各項指標,改進方法結果更加全面、客觀。采用改進評價方法與傳統灰色關聯評價相比,克服了傳統灰色關聯評價中對水質類別評價分辨率較低問題,使得水質評價結果更加接近水質真實情況;改進評價方法相對綜合污染指數和內梅羅污染指數這2種方法上,在確保水質詳細變化的基礎上有著直觀的水質類別表現[30],通過計算以相應的表水質類別和灰色綜合指數相結合對溝渠水質污染程度進行評價,直觀和精確地表現出農業生產生活對水質變化的影響,同時改進評價方法通過新定義的絕對差克服了評價結果的絕對化[22],體現了水質變化中的相對性。
通過表5可知,沿溝渠水流方向水質類別最大出現在斷面5和斷面6(Ⅴ類)最小則出現在斷面2(Ⅱ類),水質GC指數在2.01~4.99之間變化,最大ΔGC=2.99,溝渠出水斷面(Ⅴ類)相比于進水斷面(Ⅲ類)水質類別降低,且增加幅度較大,主要在于研究區溝渠沿程農田N、P流失和村莊排污對溝渠水體影響。在溝渠中斷面1到斷面3相鄰斷面之間水質類別發生明顯變化,變化幅度最大為斷面2到斷面3,由Ⅱ類水質上升為Ⅳ類水質,水質降低2個等級,ΔGC=1.97為相鄰斷面之間最大,說明在斷面2到斷面3之間外源污染物相對輸入量相比于其他相鄰斷面之間大的多,其中TN和COD分別增長48.12%和42.01%,同時斷面4到斷面5村莊段溝渠水質類別由Ⅳ類降低為Ⅴ類,主要由于村莊排污管道的老化破損以使得生活污水存在“跑、冒、滴、漏”現象,加之生活污水直接傾倒入溝,使得水質污染情況增加,加之溝渠流速較緩,溝渠水質含氧降低,使得N、P以及COD無法消納[41],水質逐漸變差;農田段溝渠水質類別斷面2相比斷面1從Ⅲ類提升為Ⅱ類,兩斷面之間溝渠坡度較大,有利于溝渠徑流通暢,易形成有氧條件,利于生態溝渠對NH4+-N以及COD消納[42],且水質類別前期COD起主導,COD的削減有利于水質類別的提升;斷面3和斷面4水質類別同為Ⅳ類,斷面5和斷面6水質類別同為Ⅴ類,但斷面之間GC值卻存在差異,通過斷面之間GC數值大小比對可知斷面3和斷面4水質類別雖同為Ⅳ類,但斷面4比斷面3污染程度高,GC差值為0.08,可能因為斷面之間農田以大蔥和大蒜等高需肥量作物種植為主,同理斷面6與斷面5之間GC差值為?0.07,說明斷面6出水相比于斷面5有一定改善。
1)沿水流方向溝渠斷面水質總氮(total nitrogen,TN)和NO3--N濃度先快速增加后緩慢變化,總磷(total phosphorus,TP)和可溶性總磷(total dissolved phosphorus,TDP)濃度呈現持續快速增加態勢。NH4+-N和化學需氧量(chemical oxygen demand,COD)濃度呈現農田段溝渠濃度降低和村莊段溝渠濃度增加的特征。流域蔬菜種植區氮磷主要以NO3--N和可溶性總磷(total dissolved phosphorus,TDP)形態進入溝渠水體中。
2)綜合平均污染指數分析顯示溝渠不同斷面水體污染物污染貢獻率排序為TN>COD>TP>DO>NH4+-N,水體中TN和COD是污染貢獻率主要來源污染物,TN貢獻率隨溝渠流向增加并成為主導的趨勢,COD污染貢獻率隨溝渠流向降低。
3)運用“中心化”灰色模式識別模型對洱海流域典型灌排溝渠水質進行評價,表明溝渠沿水流方向水質類型在Ⅱ~Ⅴ之間,水流方向水質灰色綜合指數在2.01~4.99之間變化,受沿程農田與村莊排污影響溝渠水質污染程度逐漸加深。
[1]Zhang W, Jin X, Liu D, et al. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river: Fuyang River in northern China[J]. Journal of Environmental Sciences, 2017, 55: 41-48.
[2]Qin B Q, Gao G, Zhu G W, et al. Lake eutrophication and its ecosystem response[J]. Chinese Science Bulletin, 2013, 58(9): 961-970.
[3]Lin Q, Liu E, Zhang E, et al. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China[J]. Catena, 2016, 145: 193-203.
[4]王哲,謝杰,方達,等. 洱海北部2種典型種植制度下農田氮污染負荷研究[J]. 生態與農村環境學報,2013,29(5):625-629.
Wang Zhe, Xie Jie, Fang Da, et al. Nitrogen pollution load in farmlands under two typical farming systems in the north of Lake Erhai region[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 625-629. (in Chinese with English abstract)
[5]Wang R, Dearing J A, Langdon P G, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7429): 419-422.
[6]Liu W, Wang S, Zhang L, et al. Phosphorus release characteristics of sediments in Erhai Lake and their impact on water quality[J]. Environmental Earth Sciences, 2015, 74(5): 3753-3766.
[7]Wang S, Zhang L, Ni L, et al. Ecological degeneration of the Erhai Lake and prevention measures[J]. Environmental Earth Sciences, 2015, 74(5): 3839-3847.
[8]高蓉,韓煥豪,崔遠來,等. 降雨量對洱海流域稻季氮磷濕沉降通量及濃度的影響[J]. 農業工程學報,2018,34(22):191-198.
Gao Rong, Han Huanhao, Cui Yuanlai, et al. Effect of precipitation on wet deposition flux and content of nitrogen and phosphorus in Erhai lake basin in rice season[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 191-198. (in Chinese with English abstract)
[9]Zhang L, Wang S, Wu Z. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake, China[J]. Estuarine, Coastal and Shelf Science, 2014, 149: 178-186.
[10]Xu Quanli, Yang Kun, Wang Guilin, et al. Agent-based modeling and simulations of land-use and land-cover change according to ant colony optimization: A case study of the Erhai Lake Basin, China[J]. Natural Hazards, 2015, 75(1): 95-118.
[11]盧中輝,余斌,張輝,等. 洱海流域農業面源污染與水環境變化的關聯分析[J]. 華中師范大學學報:自然科學版,2017,51(2):215-223.
Lu Zhonghui, Yu Bin, Zhang Hui, et al. Correlation analysis of agricultural non-point source pollution and water environment change in Erhai Lake watershed[J]. Journal of Central China Normal University: Natural Sciences, 2017, 51(2): 215-223. (in Chinese with English abstract)
[12]唐佳,李德品,姜旭. 洱海北部典型小流域農業氮磷流失特征的初步研究[J]. 大理學院學報,2014,13(6):60-63.
Tang Jia, Li Depin, Jiang Xu. Primary study on characteristics of nitrogen and phosphorus losses in the typical small watershed of the northern area of Erhai Lake[J]. Journal of Dali University, 2014, 13(6): 60-63. (in Chinese with English abstract)
[13]Li W, Liu H, Zhai L, et al. Evaluation of concentration- discharge dynamics and nitrogen export on anthropogenic inputs and stormflow across alternative time-scales[J]. Ecological Indicators, 2019, 98: 879-887.
[14]Tong X X, Cui Y L, Chen M Y, et al. Simulation on change law of runoff, sediment and non-point source nitrogen and phosphorus discharge under different land uses based on SWAT model: A case study of er hai lake small watershed[C]//IOP Conference Series: Earth and Environmental Science. Guilin, China: IOP Publishing, 2018, 153(6): 062062.
[15]項頌,龐燕,儲昭升,等. 入湖河流水質對土地利用時空格局的響應研究:以洱海北部流域為例[J]. 環境科學,2016,37(8):2947-2956.
Xiang Song, Pang Yan, Chu Zhaosheng, et al. Response of Inflow water quality to land use pattern in northern watershed of Lake Erhai[J]. Environmental Science, 2016, 37(8): 2947-2956. (in Chinese with English abstract)
[16]謝坤,吳凡,羅元,等. 洱海農田生產/生活景觀區交替分布及晝夜節律對豐水期溝渠水質影響[J]. 農業環境科學學報,2018,37(11):2427-2433.
Xie Kun, Wu Fan, Luo Yuan, et al. Alternating distribution of farmland and inhabited landscapes in Erhai Lake and the influence of circadian rhythm on the water quality of a ditch during flood[J]. Journal of Agro-Environment Science, 2018, 37(11): 2427-2433. (in Chinese with English abstract)
[17]陳安強,雷寶坤,劉宏斌,等. 洱海近岸不同種植類型農田溝渠徑流氮磷流失特征[J]. 生態與農村環境學報,2017,33(8):697-705.
Chen Anqiang, Lei Baokun, Liu Hongbin, et al. Characteristics of N and P losses from ditch runoff in farmlands different in planting patterns offshore of Lake Erhai[J]. Journal of Ecology and Rural Environment, 2017, 33(8): 697-705. (in Chinese with English abstract)
[18]金春玲,高思佳,葉碧碧,等. 洱海西部雨季地表徑流氮磷污染特征及受土地利用類型的影響[J]. 環境科學研究,2018,31(11):1891-1899.
Jin Chunling, Gao Sijia, Ye Bibi, et al. Nitrogen and phosphorus pollution characteristics of surface runoff and the impacts of land use on runoff water quality in rainy season in the western Erhai Lake Basin[J]. Research of Environmental Sciences, 2018, 31(11): 1891-1899. (in Chinese with English abstract)
[19]何宗健,蔡靜靜,倪兆奎,等. 洱海不同途徑氮來源季節性特征及對水體氮貢獻[J]. 環境科學學報,2018,38(5):1939-1948.
He Zongjian, Cai Jingjing, Ni Zhaokui, et al. Seasonal characteristics of nitrogen sources from different ways and its contribution to water nitrogen in Lake Erhai[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1939-1948. (in Chinese with English abstract)
[20]薛蓮,金衛斌,艾天成,等. 湖北四湖流域農田排水溝渠水質評價[J]. 長江流域資源與環境,2010,19(S1):79-84.
Xue Lian, Jin Weibin, Ai Tiancheng, et al. Water quality evaluation of agriculture drainage ditches in four lake region of Hubei province[J]. Resources and Environment in the Yangtze Basin, 2010, 19(S1): 79-84. (in Chinese with English abstract)
[21]Chen J, Zhao S, Weng Y. Research on river water quality assessment of eastern route of south-to-north water transfers based on grey cluster evaluation model[C]//2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). IEEE, 2009: 882-887.
[22]申劍,史淑娟,周揚,等. 基于改進灰色關聯分析法的丹江口流域地表水環境質量評價[J]. 中國環境監測,2014,30(5):41-46.
Shen Jian, Shi Shujuan, Zhou Yang, et al. Surface water environmental quality assessment of Danjiangkou Valley based on improved grey correlation analysis[J]. Environmental Monitoring in China, 2014, 30(5): 41-46. (in Chinese with English abstract)
[23]Yang T, Liu J, Chen Q. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China[J]. Ecological Modelling, 2013, 268: 37-47.
[24]田偉東,賈克力,史小紅,等. 2005-2014年烏梁素海湖泊水質變化特征[J]. 湖泊科學,2016,28(6):1226-1234.
Tian Weidong, Jia Keli, Shi Xiaohong, et al. Water quality variation in Lake Wuliangsuhai, 2005-2014[J]. Journal of Lake Sciences, 2016, 28(6): 1226-1234. (in Chinese with English abstract)
[25]陳興位,閆輝,倪明,等. 長期施用有機肥對洱海流域蔬菜地生產力的影響[J]. 西南農業學報,2014,27(4):1577-1581.
Chen Xingwei, Yan Hui, Ni Ming, et al. Effect of long-term applying organic matter on vegetable field productivity in Erhai Lake basin[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1577-1581. (in Chinese with English abstract)
[26]國家環境保護總局. 水和廢水監測分析方法[M]. 四版. 北京:中國環境科學出版社,2002:701-705.
[27]Ban X, Yu C, Pan B, et al. Application of the CWQII method and a 2D water quality model to assess diversion schemes for East Lake (Donghu), Wuhan, China[J]. Lake and Reservoir Management, 2014, 30(4): 358-370.
[28]陳玲,張晟,夏世斌,等. 灰色關聯度分析方法在水質評價中的應用:以常州市北市河為例[J]. 環境科學與管理,2012,37(2):162-166.
Chen Ling, Zhang Sheng, Xia Shibin, et al. Application of gray relational analysis method in water quality evaluation-a case study of Beishi river in Changzhou city[J]. Environmental Science and Management, 2012, 37(2): 162-166. (in Chinese with English abstract)
[29]李炳軍,朱春陽,周杰. 原始數據無量綱化處理對灰色關聯序的影響[J]. 河南農業大學學報,2002(2):199-202.
Li Bingjun, Zhu Chunyang, Zhou Jie. Effects of non-dimensional quantities of original data on grey incidence order[J]. Journal of Henan Agricultural University, 2002(2): 199-202. (in Chinese with English abstract)
[30]李名升,張建輝,梁念,等. 常用水環境質量評價方法分析與比較[J]. 地理科學進展,2012,31(5):617-624.
Li Mingsheng, Zhang Jianhui, Liang Nian, et al. Comparisons of some common methods for water environmental quality assessment[J]. Progress in Geography, 2012, 31(5): 617-624. (in Chinese with English abstract)
[31]Yan Z, Liu P, Li Y, et al. Phosphorus in China’s intensive vegetable production systems: Over fertilization, soil enrichment, and environmental implications[J]. Journal of Environmental Quality, 2013, 42(4): 982-989.
[32]Agostini F, Tei F, Silgram M, et al. Decreasing nitrate leaching in vegetable crops with better N management[M]//Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Dordrecht: Springer, 2010: 147-200.
[33]Zhang G H, Liu G B, Wang G L, et al. Effects of vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles[J]. Pedosphere, 2011, 21(5): 676-684.
[34]Liu R, Wang J, Shi J, et al. Runoff characteristics and nutrient loss mechanism from plain farmland under simulated rainfall conditions[J]. Science of the Total Environment, 2014, 468: 1069-1077.
[35]Shan L, He Y, Chen J, et al. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China[J]. Agricultural Water Management, 2015, 159: 255-263.
[36]Dodd R J, McDowell R W, Condron L M. Is tillage an effective method to decrease phosphorus loss from phosphorus enriched pastoral soils?[J]. Soil and Tillage Research, 2014, 135: 1-8.
[37]單立楠. 不同施肥模式下菜地氨素面源污染特征及生態攔截控制研究[D]. 杭州:浙江大學,2015.
Shan Linan. Nitrogen Non-point Source Pollution of Vegetable Field Under Different Fertilizer Treatments and Its Ecological Intercept Control[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)
[38]寇永珍,林陶,夏品華. 貴州草海濕地農田溝渠水質污染特征及其治理研究[J]. 廣東農業科學,2015,42(14):120-125.
Kou Yongzhen, Lin Tao, Xia Pinhua. Pollution characteristics and treatment of water in farmland ditch of Caohai Wetland, Guizhou Province[J]. Guangdong Agricultural Sciences, 2015, 42(14): 120-125. (in Chinese with English abstract)
[39]單立楠,丁能飛,王洪才,等. 蔬菜地面源污染生態攔截系統與效果[J]. 農業工程學報,2013,29(20):168-178.
Shan Linan, Ding Nengfei, Wang Hongcai, et al. Effect of ecological interception system in reducing non-point source pollution from vegetable fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 168-178. (in Chinese with English abstract)
[40]Kumwimba M N, Dzakpasu M, Zhu B, et al. Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species[J]. Water, Air, & Soil Pollution, 2016, 227(11): 405.
[41]Moeder M, Carranza-Diaz O, López-Angulo G, et al. Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: A case study in Sinaloa (Mexico)[J]. Science of the Total Environment, 2017, 598: 1106-1115.
[42]Wang T, Zhu B, Zhou M. Ecological ditch system for nutrient removal of rural domestic sewage in the hilly area of the central Sichuan Basin, China[J]. Journal of Hydrology, 2019, 570: 839-849.
Water quality evaluation of Erhai drainage ditch based on improved grey-mode identification model
Xie Kun1,3, Luo Yuan1,2,3, Feng Yiyang1,2,3, Wu Fan1,3, Wang Guiyun1, Zhang Keqiang1,3, Shen Shizhou1,3, Wang Feng1,3※
(1.,300191,; 2.,,650201,; 3.,,671004,)
this study investigated the comprehensive impacts of alternate distribution of farmland production and rural living units on the water quality of irrigation and drainage channels and the contribution rate of pollutants in the Erhai Basin. Different sections of typical irrigation and drainage ditches in the farmland of the Erhai Basin were selected for continuous sampling observation. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), NH4+-N, NO3--N, total dissolved phosphorus (TDP), and particle phosphorus (PP) concentrations of runoff in different sections of the ditch were measured for water quality evaluation. The “centralization” method was used as dimensionless treatment method of data in the gray pattern recognition model. At the same time, the correlation coefficient formula based on the point-to-interval distance was introduced into the model, and the absolute difference in the model calculation was newly defined as intervals. The comprehensive average pollution index was used to calculate the proportion and weight of pollutant pollution in the runoff water quality of the ditch, and it combined the 2 models to objectively and accurately comprehensively evaluate the changes in the water quality categories of different sections of the typical irrigation and drainage ditch in the farmland. The results showed that the TP and TDP concentrations in the runoff from different sections of the typical irrigation and drainage ditch in the farming area of the watershed were continuous increased along the direction of the ditch flow. The TN and NO3--N concentrations in the runoff form different sections of the ditch showed a pattern of increasing first and then stabilizing. The NH4+-N and COD concentrations in the runoff from the monitoring section of different farmland outlet sections in a typical irrigation and drainage ditch were reduced by 13.43%-57.88% and 2.88%-19.33%. The concentration in the runoff from irrigation and drainage ditches flowing through the monitoring sections of different village sections was increased. The water quality of runoff from the different sections of the ditch along the direction of the water flow were classified as III, II, IV, IV, V and V. The calculation of water quality pollutants of the ditch by the comprehensive average pollution index method showed that TN and COD in the ditch of the basin were the main factors causing water pollution. The NO3--N was a main form of TN in water body. This study can reveal the sources and contributions of nitrogen and phosphorus pollution in the Erhai Basin. By comparing 4 water quality evaluation methods of traditional gray correlation evaluation method, single factor evaluation method, comprehensive pollution index method and Nemerow pollution index method, we foud that improved water quality evaluation methods could objectively and accurately evaluate water quality. The improved water quality evaluation method is suitable for water quality evaluation of farmland irrigation and drainage ditches, and provides technological support for clarifying the main pollution factors of non-point source pollution control.
nitrogen; phosphorus; Erhai Basin; agricultural non-point source pollution; drainage ditch; Gray-mode identification model; comprehensive mean pollution index
謝 坤,羅 元,馮弋洋,吳 凡,王貴云,張克強,沈仕洲,王 風. 改進灰色模式識別模型評價洱海雨季灌排溝渠水質[J]. 農業工程學報,2019,35(23):234-241.doi:10.11975/j.issn.1002-6819.2019.23.029 http://www.tcsae.org
Xie Kun, Luo Yuan, Feng Yiyang, Wu Fan, Wang Guiyun, Zhang Keqiang, Shen Shizhou, Wang Feng. Water quality evaluation of Erhai drainage ditch based on improved grey-mode identification model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 234-241. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.029 http://www.tcsae.org
2019-02-19
2019-09-10
國家重點研發計劃項目(2017YFD0800103);948項目(2016-X53);農業部財政項目(22110402001006);云南省農業環境污染控制與修復工程實驗室開放基金資助(2017HC015)
謝 坤,主要從事農業面源污染防治研究。Email:1839793331@qq.com
王 風,副研究員,從事農業面源污染防治研究。Email:wangfeng_530@163.com
10.11975/j.issn.1002-6819.2019.23.029
TE991.2; X52
A
1002-6819(2019)-23-0234-08