周小理,杜麗娜,蔣晴怡,周一鳴
?
超高壓處理改善苦蕎淀粉理化性質及益生菌群落
周小理,杜麗娜,蔣晴怡,周一鳴※
(上海應用技術大學香料香精技術與工程學院,上海 201418)
為研究超高壓(ultra-high pressure,HHP)處理對苦蕎淀粉理化性質及功能性的影響,該文以6個不同壓力處理后的苦蕎淀粉為材料,利用掃描電鏡、X射線衍射儀等分析了其淀粉顆粒大小、晶體結構、溶解度、透光率、凍融穩定性等特性,并通過建立體外模型模擬人體消化以及腸道發酵過程,利用氣相色譜質譜聯用技術和平板計數法,對小鼠糞便發酵液短鏈脂肪酸(short chain fatty acid、SCFAs)含量及主要菌群進行了測定。試驗結果表明:超高壓處理后苦蕎淀粉顆粒出現凹陷與粘連狀態,并逐漸失去原有形態,但其結晶類型仍為典型的A型,其結晶度在200 MPa時達到最大值41.8%;溶解度和膨脹度均隨著壓力的增加呈先減小后增大的趨勢,并且其透光率會下降,其中在200 MPa時,溶解度和膨脹度都達到了最低0.83%和171%,而凍融穩定性會有一定的改善。此外,超高壓處理后苦蕎淀粉使腸道中雙歧桿菌、乳酸桿菌的數量顯著增加(<0.05),而大腸桿菌、腸球菌的生長受到顯著抑制(<0.05)。同時,腸道內的pH值顯著下降(<0.05)SCFAs中乙酸、丙酸、丁酸顯著增加(<0.05),綜上所述,超高壓處理后苦蕎可作為一種良好的天然改善腸道菌群的食物來源。
淀粉;發酵;高壓作用;苦蕎淀粉;體外發酵;SCFAs
苦蕎作為一種重要的農作物,具有較高的營養及藥用價值,其中所富含的蛋白質(10%~18%)、淀粉(60%~70%)、纖維素(10%~16%)、脂肪(2%)以及黃酮類化合物、B族維生素、礦物質等營養素[1-9]是其他農作物無法比擬的。尤其是苦蕎中含有7%~10%的抗性淀粉[10],可降低腸道內pH值改善腸道微生態[11],具有潛在益生作用。為此,國際谷物科技學會(international association for cereal science and technology,ICC)已將苦蕎作為一種新的潛在的頗具開發前景的功能性食品配料。此外,苦蕎具有降血脂、降血糖,降低心血管疾病風險的功效[12],Hang等[13]用苦蕎全粉飼喂老齡大鼠發現,苦蕎全粉能夠促進大鼠腸道需氧菌和乳酸桿菌的數量的顯著增加(0.05),而使大腸桿菌和致病菌的數量小幅度減少;并且正常飼料和苦蕎全粉飼喂組大鼠腸道中都能檢出嗜酸乳桿菌、唾液乳酸桿菌、嬰兒雙歧桿菌,而植物乳桿菌、雙歧桿菌中的某些種只能在苦蕎飼喂組大鼠腸道內容物中才能被檢出。
熱處理是食品加工過程中最常用的方法,不僅可以鈍化微生物,而且可以破壞酶。然而,某些極端條件下的熱加工處理會誘導若干化學和物理變化,從而破壞食品的感官性質以及會降低某些生物活性化合物的含量及生物可利用性[14-15]。鑒于此,在食品生產中就需要有溫和的非熱加工技術,例如:HHP、輻射、脈沖電場、超聲波以及振蕩磁場等,這些技術不僅可以獲得具有保持新鮮特色的高品質的食品,而且可以提供功能得到改善的食品[16]。其中,隨著HHP等物理處理技術在食品工業的使用越來越廣泛,有關HHP對食品中營養成分的影響成為近年來食品領域的研究熱點之一。與小分子營養成分相比,大分子營養成分在物理處理中的變化更為復雜,對食品(尤其是對于富含淀粉和蛋白質的谷物食品)的品質會產生重要的影響。
蕎麥淀粉近年來受到國內外研究者的較多關注,國外關于苦蕎淀粉的研究已經系統化,對苦蕎淀粉的生產、分析測定及其生理功能均做了廣泛研究[17]。特別是對于苦蕎淀粉可降低血清中膽固醇和甘油三酸酯水平等[18]這些方面已有了相對成熟的研究和進展。但是對于苦蕎淀粉對人腸道菌群影響的研究相對較少。國內關于苦蕎淀粉的研究尚還處于初級階段,對苦蕎淀粉的生產、分析和測定有一定的研究,但對于苦蕎淀粉在體內的發酵和吸收研究較少,涉及到體外發酵試驗內容也不成熟。為此,本文通過建立體外模型模擬人體消化以及腸道發酵過程,研究HHP處理對苦蕎淀粉理化性質以及小鼠腸道菌群的影響,從而為擴大苦蕎產業化開發和高值化的綜合利用提供科學依據。
苦蕎粉,山西雁門清高食品責任有限公司;苦蕎淀粉,實驗室自提。
主要試劑:豬膽粉、豬膽鹽、L-半胱氨酸鹽、低聚果糖、維生素K1、氯化鐵血紅素、刃天青(均為分析純)購自上海寶曼生物科技有限公司;MRS瓊脂培養基、BBL瓊脂培養基、伊紅美藍瓊脂培養基、腸球菌培養基購自青島海博生物科技有限公司;氫氧化鈉、鹽酸、硫酸等常規試劑(均為分析純)等購自國藥集團(上海)化學試劑有限公司。
主要儀器設備:超高壓裝置(5L HPP 600 MPa)包頭科發高壓科技有限責任公司;X射線衍射儀(XRD-6000型)、氣相色譜質譜儀(TQ8040)日本島津公司;掃描電子顯微鏡(JSM-6390型)日本電子株式會社;冷凍干燥機(FD-80型)北京博醫康實驗儀器有限公司;超凈工作臺(SW-CJ-IBU)蘇凈集團技術有限公司;厭氧培養箱(YQX-Ⅱ型)上海龍躍儀器設備有限公司;X射線衍射儀(XRD-6000型)、氣相色譜質譜儀(TQ8040)日本島津公司;精密恒溫培養箱(BPH-9082型)上海一恒科學儀器有限公司;pH計(FE20型)梅特勒-托利多儀器(上海)有限公司。
1.2.1 苦蕎淀粉的制備
參照周小理等[16]的方法,制備苦蕎淀粉。
蕎麥、乙醇60 ℃水浴8 h,4 000 r/min,離心10 min得到沉淀物和水,調節pH值為10后浸提10 min再經過4 000 r/min,離心10 min保留下層沉淀脫水、干燥得到蕎麥淀粉。
1.2.2 苦蕎淀粉超高壓處理
將苦蕎淀粉置于塑封袋中,放進超高壓裝置,分別在常壓、100、200、300、400、500 MPa下處理,保壓15 min后,將樣品取出60 ℃烘干,粉碎研磨。處理后真空密封,放入干燥箱,備用。
1.2.3 苦蕎淀粉顆粒形態的測定
參照張玉榮等[19]的方法,對苦蕎淀粉顆粒形態進行測定,放大倍數為1 500倍。
1.2.4 X射線衍射淀粉晶體
參照陳福泉等[20]的方法,對苦蕎蛋白結晶度進行測定。
1.2.5 苦蕎淀粉溶解度和膨脹度的測定
參考He等[21-22]的方法,分別對苦蕎淀粉溶解度和膨脹度進行測定。
1.2.6 苦蕎淀粉凍融穩定性和凝沉穩定性的測定
參考蒲華寅等[23]的方法,分別對苦蕎淀粉凍融穩定性和凝沉穩定性進行測定。
1.2.7 苦蕎淀粉透光率的測定
參考劉文婷等[24]的方法,分別對苦蕎淀粉透光率進行測定。
1.2.8 體外模型模擬人體消化過程
參照Fouhse等[25-26]的方法,建立體外模擬人體消化模型。
1.2.9 體外模型模擬腸道發酵過程
參照Ho等[27]的方法,建立體外模擬腸道發酵模型。采用逼迫法無菌收集小鼠糞便,取樣當天換無菌墊料,減少外界微生物對樣品的污染。將每只小鼠糞便分別放入滅菌環氧樹脂管,立即用預還原的磷酸鹽緩沖液( 0.1mol/L, pH值7.0)按照 1:9比例稀釋。取10 mL 糞便稀釋液加入預還原基礎培養基中,樣品分為5個處理組,分別為陰性對照組(control check, CK)、低聚果糖組(陽性對照組,fructo-oligosaccharides,FOS)、常壓組、200 MPa組、500 MPa組。將樣品加入混勻后在 37℃厭氧工作站中發酵,并在發酵的第0、8 、16 、32 h取樣檢測腸道菌群數量、pH值和短鏈脂肪酸。
1.2.10 苦蕎淀粉對腸道菌群的影響
采用平板涂布法進行菌落計數,選擇10-4、10-5、10-63個稀釋梯度進行試驗。稀釋液為1 mol/L 磷酸鹽緩沖溶液(phosphate buffer saline, PBS)(pH值為7.00)。取發酵液100L均勻涂布于不同的選擇培養基上。每個稀釋梯度做2個平行空白。

表1 細菌培養基種類及其培養條件
1.2.11 短鏈脂肪酸及發酵液pH的測定
參照Gammacurta等[28]的方法,對短鏈脂肪酸及發酵液pH值進行測定。
1.2.12 數據分析
每組試驗重復3次,采用Excel軟件對試驗數據進行處理,并采用SPSS20.0對數據進行因子方差分析及Duncan’s多重檢驗(<0.05),試驗結果以均值±標準差表示。
2.1.1 超高壓處理對苦蕎淀粉顆粒形態的影響
由圖1可知,HHP處理對于苦蕎淀粉的顆粒形態有明顯的影響,且隨著壓力的增加變化更為明顯,其中,在常壓下(如圖1a),苦蕎淀粉的顆粒多為卵圓形或多邊形,表面光滑,而經過HHP處理15 min后,當壓力條件在(100~300 MPa)時(如圖1b~1d),苦蕎淀粉表面開始出現輕微裂紋,且表面較為粗糙;當壓力達到400 MPa時(如圖1e),部分淀粉顆粒已明顯糊化、變形,且互相粘連,失去原有形態;當壓力達到500 MPa時(如圖1f),粘連和凹陷情況更加明顯,幾乎看不到完整的淀粉顆粒。這可能是由于淀粉顆粒在HHP處理時,水分子受到壓力進入淀粉顆粒內部無定型區域以氫鍵形式優先與水分子結合,無定型區域的吸水溶脹導致淀粉顆粒變大[29-30]。而且HHP處理會使支鏈淀粉和支鏈淀粉之間產生強烈的相互作用,導致光滑的淀粉表明產生空腔、裂縫和空洞。

圖1 不同超高壓壓力處理后苦蕎淀粉的掃描電子顯微鏡照片(1 500×)
2.1.2 不同超高壓處理對苦蕎淀粉顆粒晶體結構的影響
由表2可知,苦蕎淀粉在衍射角2為14.64°,16.52°,17.63°、22.56°和28.64°時出現較強的特征衍射峰,屬于典型的A型粉的衍射圖譜。超高壓處理后(100~300 MPa),苦蕎淀粉的晶型結構并未發生變化,但其衍射強度增加,且相對結晶度從35.0%增加到41.8%。這可能是由于苦蕎淀粉中直鏈淀粉含量為25.8%~32.6%,支鏈淀粉含量為52.13%~41.88%[31],支淀粉與支淀粉之間的交互作用,使得分子鏈上的羥基相互作用形成氫鍵,產生新的雙螺旋結構,形成新的結晶體。當HHP處理壓力達到500 MPa時,苦蕎淀粉X射線衍射圖譜在2為14.76°,16.56°,22.68°的3個強衍射峰發生合并,且各個衍射峰強度下降,結晶度降低,接近于0,說明結晶結構幾乎全部瓦解,形成完全的無定型淀粉,即500 MPa的HHP處理導致苦蕎淀粉發生糊化。
這一方面可能是由于A型淀粉構成其晶體結構的支鏈淀粉分子相對有較多的短支鏈,支鏈間形成的雙螺旋結構較為松散,在壓力作用下很容易使原來的雙螺旋結構破壞而形成新的螺旋結構,并導致晶體結構的變化,進而表現出晶型結構的變化[32]。另一方面說明A型淀粉不耐高壓,在較低的壓力條件下部分水分子就會進入淀粉內部,發生有限制的膨脹,從而使結晶區部分淀粉鏈雙螺旋結構被解開,顆粒內部結晶部分被破壞而減少。

表2 不同壓力處理后苦蕎淀粉顆粒晶型的分析
2.1.3 超高壓處理對苦蕎淀粉溶解性和膨脹度的影響
溶解度即淀粉乳的水合力,反映了淀粉顆粒的吸水性及其與水分子的結合程度。由于苦蕎淀粉的顆粒較小,比表面積大,苦蕎淀粉有較高的持水能力。圖2a、2b為不同HHP處理后苦蕎淀粉的溶解度和膨脹度,由圖2a和2b可知,HHP處理后的苦蕎淀粉溶解度和膨脹度均低于常壓條件下,結合圖1可知,這可能是由于經過HHP處理的淀粉顆粒結構發生了變化,淀粉顆粒之間相互聚集阻礙了水分進入淀粉顆粒。并且,溶解度和膨脹度均隨著壓力的增加呈先減小后增大的趨勢,其中在200 MPa時,溶解度和膨脹度達到0.83%和171%,而當壓力增加到300 MPa后又開始逐漸升高,這與HHP處理后苦蕎淀粉析水率及凝沉穩定性變化一致。
2.1.4 超高壓處理對淀粉透光率的影響
淀粉糊的透明度和老化程度關系密切,一般易老化的淀粉透明度較差。圖2c為不同HHP壓力處理前后苦蕎淀粉的透光率,由圖2c可知,經HHP處理后的苦蕎淀粉透光率低于常壓下的苦蕎淀粉,且隨著壓力的增大而減小,這可能是由于HHP使淀粉晶體結構受到破壞,壓力越大,晶體結構破壞越嚴重。在壓力增大的過程中,沒有膨脹的淀粉顆粒和未完全破裂的淀粉顆粒的數量增多,導致光線發生散射,使淀粉的透光率下降。這主要與其淀粉顆粒的結晶度較高,糊化困難,導致淀粉糊中還存在沒有充分糊化的生淀粉有關。

圖2 超高壓處理對苦蕎淀粉顆粒性質的影響
2.1.5 超高壓處理對苦蕎淀粉凍融穩定性和凝沉穩定性的影響
析水率的高低關系著凍融穩定性的好壞,析水率越高,凍融穩定性越差,而凍融穩定性越差說明淀粉乳形成的凝膠強度也較差,在加工、運輸中意外的溫度波動變化都會影響淀粉品質。由圖2d可知,隨著壓力的增大,淀粉糊的析水率呈先下降后上升的趨勢,其中,在200 MPa時達到最小值,當壓力超過300 MPa時析水率又開始上升。由此可知,適當壓力的HHP處理(200 MPa)可降低淀粉糊的析水率,改善淀粉的凍融穩定性,而隨著壓力的繼續增大,淀粉顆粒破壞較嚴重,析水率升高,淀粉品質下降。
圖2e為不同HHP處理前后苦蕎淀粉的凝沉曲線。由圖2e可知,HHP處理后的苦蕎淀粉較常壓下苦蕎淀粉的沉降體積降低了10.9%~26.6%,其中,HHP處理(500 MPa)時苦蕎淀粉的沉降體積最小,且在300與500 MPa時,淀粉凝膠保水能力較強,200與400 MPa下次之,常壓和100 MPa下最差。
2.2.1 超高壓處理后苦蕎淀粉對雙歧桿菌數量的影響
雙歧桿菌在腸道菌群的平衡方面發揮重要作用,它能夠產生抑制非有益菌生長的有機酸,并刺激腸道蠕動。體外發酵過程中雙歧桿菌的數量變化見圖3a。由圖可知,在發酵前期(0~8 h),各組雙歧桿菌數量顯著增加(<0.05)。與空白組(未添加苦蕎淀粉)相比常壓組、HHP處理組(200 MPa)、HHP處理組(500 MPa)雙歧桿菌增加量依次為28.2%、37.0%和22.16%,說明添加并經適度HHP處理(200 MPa)后,苦蕎淀粉可以促進雙歧桿菌增殖。這可能是由于經過HHP處理后,苦蕎淀粉顆粒發生了不同程度的變化,淀粉顆粒表面積增加在一定程度上可提高雙歧桿菌對淀粉的利用率。這與Wronkowska等[33]研究結果一致。
2.2.2 超高壓處理后苦蕎淀粉對乳酸桿菌數量的影響
乳酸桿菌同樣可產生有機酸降低腸道pH值,從而抑制腐敗菌的增殖,維持腸道菌群的平衡。體外發酵過程中乳酸桿菌的數量變化見圖3b。由圖可知,在發酵前期(0~8 h),HHP處理組(200 MPa)乳酸桿菌增長速率最高,增幅達到53.7%。其次是低聚果糖組,增長率為37.0%。而HHP處理(500 MPa)組增幅只有19.5%,其原因可能是經500 MPa HHP處理后淀粉中快消化淀粉、慢消化淀粉和抗消化淀粉比例發生變化,導致水解度下降,從而不容易被乳酸桿菌選擇性發酵。而在發酵中后期(8~32 h),低聚果糖組乳酸桿菌數量增幅達到70%以上,且HHP處理組中乳酸桿菌的增幅均小于常壓組。其原因可能是低聚果糖組中糖類碳鏈較短,更便于乳酸桿菌利用,而苦蕎淀粉中的總糖碳鏈長,聚合度高,對腸道菌群的發酵作用有更高的抵抗力。在HHP處理后引起支鏈淀粉-支鏈淀粉間的相互作用,有助于形成一種致密的分子結構從而影響乳酸桿菌利用。
2.2.3 超高壓處理后苦蕎淀粉對腸球菌數量的影響
腸球菌是人類和動物腸道正常菌群的一部分,近年研究己證實了腸球菌具有一定的致病性。體外發酵過程中腸球菌的數量變化見圖3c,由圖可知,發酵前期(0~8 h)腸球菌數量增加顯著(<0.05)。發酵中后期(8~32 h),除空白組外腸球菌數量均持續下降,其中HHP處理(500 MPa)組腸球菌下降幅度明顯,下降了8.9%,其次為低聚果糖組,下降了5.8%。相比于其他有害菌,腸球菌下降速度緩慢,推測腸球菌能夠在一定的酸性環境下存活生長,但不能長時間在酸性環境下存在。

注:同一時間標有不同小寫字母表示有顯著差異(P<0.05),下同。
2.2.4 超高壓處理后苦蕎淀粉對大腸桿菌數量的影響
大腸桿菌為動物或人腸道內的條件致病菌,微生態平衡情況下是無害的,但一旦過量則會引起疾病。體外發酵過程中大腸桿菌的數量變化見圖3d,在發酵中后期(8~32 h),空白組大腸桿菌數量持續顯著上升(<0.05)。常壓、HHP處理(200 MPa)組、超高壓處理(500 MPa)組、低聚果糖組與空白組相比大腸桿菌數量分別下降了25.3%、5.24%、7.66%、40.0%。其原因可能是空白組中沒有抗性淀粉作為碳源,有益菌的生長代謝受到抑制無法產生SCFAs而導致其發酵液pH值上升為大腸桿菌的生長提供了有利環境。
圖4為HHP處理后苦蕎淀粉對SCFAs和發酵液pH值的影響,由圖4可知,相較于常壓組,HHP處理有利于短鏈脂肪酸的生成,其SCFAs濃度大小依次為:乙酸、丙酸、丁酸。其中,在發酵前期(0~8 h),HHP處理(200 MPa)組SCFAs濃度最高。即經200 MPa處理后的苦蕎淀粉可有效降低腸道發酵液的pH值,抑制有害菌生長。在發酵中后期(8~32 h),低聚果糖組SCFAs濃度最高。
乙酸是多數細菌發酵的主要代謝產物,能夠合成膽固醇,進入人體參與物質合成和代謝[32]。由圖4a可知,低聚果糖組、HHP處理(200 MPa)組和HHP處理(500 MPa)組乙酸含量顯著上升(<0.05),其中低聚果糖組在發酵過程中乙酸濃度最高,為6.63 mmol/L,其次是HHP處理(500 MPa)組,濃度為6.17 mmol/L。丙酸可以影響肝臟和膽固醇代謝[33-35],且丙酸的增加還能減弱肝膽固醇的合成[36],對人體結腸健康產生積極作用。由圖4b可知,低聚果糖組在發酵過程中丙酸濃度最高,為0.63 mmol/L,其次是HHP處理(200 MPa)組。丁酸在腸道中能提供能量,抑制腸癌細胞的生長[37-38]。由圖4c可知,低聚果糖組在發酵過程中丁酸濃度最高,為0.59 mmol/L,其次是HHP處理(200 MPa)組,丁酸濃度為0.58 mmol/L。
從圖4d中可以得出,隨著發酵時間的增加,除空白組外,其余各組pH值均顯著下降(<0.05)。表明隨著發酵時間的增加,乳酸桿菌等腸道菌可以利用低聚果糖、苦蕎淀粉發酵產酸。其中,發酵8 h時,常壓組pH值最低,為5.21。說明在發酵前期(0~8 h)常壓苦蕎淀粉有利于腸道內菌群利用產酸。發酵16 h時,低聚果糖組pH值下降幅度最大,降幅達到55%,其次為HHP處理組(200 MPa)。發酵32 h時,常壓組、HHP處理組(200 MPa)和HHP處理組(500 MPa)的pH值無顯著差異(>0.05)。綜上所述,在發酵中后期(8~32 h),除低聚果糖組外,HHP處理(200 MPa)的pH值下降幅度最大。這可能是由于HHP處理后,苦蕎淀粉中的顆粒發生變化,更有利于腸道菌群對其的利用。

圖4 超高壓處理后苦蕎淀粉對SCFAs、pH值的影響
本文比較系統分析了不同壓力處理后對苦蕎淀粉理化性質的影響,并通過建立體外模擬胃腸道消化模型,分別對雙歧桿菌、乳酸桿菌、大腸桿菌以及腸球菌數量進行分析。并通過氣相色譜質譜聯用技術,對體外模擬胃腸道消化發酵液中SCFAs含量及發酵液pH值進行測定,研究結果表明:
1)HHP處理可以改變苦蕎淀粉顆粒結構。當壓力高于300 MPa時,苦蕎淀粉顆粒表面會向內凹陷,并逐漸被擠壓成塊狀或片狀并粘連在一起;且衍射強度逐漸增加(<0.05),相對結晶度從35.0%增加到41.8%,當壓力達到500 MPa時,苦蕎淀粉在500 MPa處理后的晶型特征由A型轉變為B型。
2)HHP處理后,苦蕎淀粉的溶解度和膨脹度均小于常壓條件下;且經適當HHP處理(200 MPa)后,苦蕎淀粉析水率均低于常壓條件下,同時,超高壓處理會降低苦蕎淀粉的透光率,并且隨著壓力和凝沉時間的增大,淀粉凝膠保水能力增強。
3)腸道微生物分析結果表明,適當超高壓處理(200 MPa)的苦蕎淀粉具有一定的益生作用。其中,體外發酵前期(0~8 h),各組對小鼠腸道中雙歧桿菌及乳酸桿菌的選擇性增殖作用差異不大,大腸桿菌、腸球菌、數量均有一定增加。發酵中后期(8~32 h),除空白組外所有組益生作用明顯,均能夠被雙歧桿菌和乳酸桿菌利用,同時抑制大腸桿菌、腸球菌的增殖。
4)SCFAs主要是大腸內碳水化合物發酵和蛋白質降解的產物。腸道菌群通過產生SCFAs,改變腸道微生物群落,促進腸道有益微生物繁殖,減少腐敗物和致癌物的產生、生成B族維生素、促進腸道蠕動、提高人體免疫力等。通過對小鼠糞便發酵液中SCFAs 含量以及pH值的測定發現,除空白組外,其他各組pH值均呈現顯著下降(<0.05),SCFAs中乙酸、丙酸和丁酸均顯著增加。試驗組與空白組相比SCFAs含量均有增加,并呈顯著性差異,表明苦蕎淀粉可能通過調節腸道菌群和腸道內SCFAs 含量發揮益生元作用,也能在一定程度上為苦蕎對人體腸道產生的影響提供有效信息。
[1] 周中凱,申曉鈺,楊蕊. 超高壓處理對抗性淀粉消化性的影響研究[J]. 糧食與油脂,2018,31(1):7-11.
Zhou Zhongkai, Shen Xiaoyu, Yang rui. Effect of ultra-high pressure treatment on antagonistic starch digestibility [J]. Cereals and Oils, 2018, 31(1): 7-11. (in Chinese with English abstract)
[2] 朱雪萍,趙原偉,張斌,等. 超高壓處理對大豆分離蛋白與甘薯淀粉磷酸酯共混凝膠體質構的影響[J]. 安徽農學通報,2018(7):16-19.
Zhu Xueping, Zhao Yuanwei, Zhang Bin, et al. Effect of ultra-high pressure treatment on the gel texture of soybean protein isolate and sweet potato starch phosphate blend [J]. Anhui Agronomy Bulletin, 2018(7): 16-19. (in Chinese with English abstract)
[3] 馬海建,施文正,汪之和. 響應面試驗優化超高壓制備馬鈴薯淀粉草魚魚糜制品工藝[J]. 食品科學,2016,37(24):8-15.
Ma Haijian, Shi Wenzheng, Wang Zhihe, et al. Response surface test optimization of ultra-high pressure preparation of potato starch grass carp surimi products[J]. Food Science, 2016, 37(24): 8-15. (in Chinese with English abstract)
[4] 劉瑞,馮佰利,晁桂梅,等. 苦蕎淀粉顆粒及淀粉糊性質研究[J]. 中國糧油學報,2014,29(12):31-36.
Liu Rui, Feng Baili, Chao Guimei, et al. Studies on the properties of tartary buckwheat starch granules and starch paste[J]. Chinese Journal of Cereal and Oils, 2014, 29(12): 31-36. (in Chinese with English abstract)
[5] 周小理,劉泰驛,閆貝貝,等. 苦蕎對高脂膳食誘導小鼠生理及腸道菌群的影響[J]. 食品科學,2018,39(1):172-177.
Zhou Xiaoli, Liu Taiyi, Yan Beibei, et al. Effect of tartary buckwheat on the physiological and intestinal flora of mice induced by high fat diet[J]. Food Science, 2018, 39(1): 172-177. (in Chinese with English abstract)
[6] 周小理,王越,趙燊,等. 苦蕎對高脂膳食誘導小鼠血脂代謝及組織氧化還原的影響[J]. 食品科學,2018,39(3):188-192.
Zhou Xiaoli, Wang Yue, Zhao Shen, et al. Effects of tartary buckwheat on blood lipid metabolism and tissue oxidation and reduction in mice induced by high fat diet[J]. Food Science, 2018, 39(3): 188-192. (in Chinese with English abstract)
[7] 周一鳴,李保國,崔琳琳,等. 蕎麥淀粉及其抗性淀粉的顆粒結構[J]. 食品科學,2013,34(23):25-27.
Zhou Yiming, Li Baoguo, Cui Linlin, et al. Particle structure of buckwheat starch and its resistant starch[J]. Food Science, 2013, 34(23): 25-27. (in Chinese with English abstract)
[8] 王立,楊懿,錢海峰,等. 不同加工方式對淀粉性質的影響[J]. 食品與生物技術學報,2017,36(3):225-235.
Wang Li, Yang Yi, Qian Haifeng, et al. Effects of different processing methods on the properties of starch[J]. Journal of Food and Biotechnology, 2017, 36(3): 225-235. (in Chinese with English abstract)
[9] 王曦,潘見. 超高壓處理對發芽糙米飯淀粉體外消化特性的影響[J]. 安徽農業科學,2017,45(13):96-98.
Wang Xi, Pan Jian. Effects of ultra-high pressure treatment on in vitro digestion characteristics of germinated brown rice starch[J]. Anhui Agricultural Sciences, 2017, 45(13): 96-98. (in Chinese with English abstract)
[10] 郭澤鑌. 超高壓處理對蓮子淀粉結構及理化特性影響的研究[D]. 福州:福建農林大學,2014.
Guo Zebin. Effect of Ultra-High Pressure Treatment on the Structure and Physicochemical Properties of Lotus Seed Starch[D]. Fuzhou: Fujian Agriculture And Forestry University, 2014. (in Chinese with English abstract)
[11] 張靜林,劉桂玲,陶陽,等. 超高壓處理對發芽糙米淀粉凝膠特性的影響[J]. 食品與發酵工業,2018,44(4):82-88.
Zhang Jinglin, Liu Guiling, Tao Yang, et al. Effects of ultra-high pressure treatment on the gel properties of germinated brown rice[J]. Food and Fermentation Industry, 2018, 44(4): 82-88. (in Chinese with English abstract)
[12] 陳蕾. 苦蕎對腸道菌群影響的研究[D]. 上海:上海師范大學,2016.
Chen Lei. Effect of Tartary Buckwheat on Intestinal Flora[D]. Shanghai: Shanghai Normal University, 2016. (in Chinese with English abstract)
[13] Hang L, Guo X, Li W et al. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing[J]. Carbohydrate Polymers, 2015, 132: 237-244.
[14] Xiao Y, Liu H, Wei T, et al. Differences in physicochemical properties and in vitro digestibility between Tartary buckwheat flour and starch modified by heat-moisture treatment[J]. LWT-Food Science and Technology, 2017, 86: 285-292.
[15] Tian Y, Li D, Zhao J, et al. Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches[J]. Food Chemistry, 2014, 152(2): 225-229.
[16] 周小理, 周一鳴, 肖文艷. 蕎麥淀粉糊化特性研究[J]. 食品科學, 2009, 30(13): 48-51.
Zhou Xiaoli, Zhou Yiming, Xiao Wenyan. Study on gelatinization properties of buckwheat starch[J]. Food Science, 2009,30(13): 48-51.
[17] 尚曉婭,高群玉,楊連生. 抗性淀粉對糖、脂以及腸道代謝影響的研究進展[J]. 食品工業科技,2005,26(4):179-182.
Shang Xiaoya, Gao Qunyu, Yang Liansheng. Advances in research on the effects of resistant starch on sugar, lipid and intestinal metabolism[J]. Food Industry Science and Technology, 2005, 26(4): 179-182. (in Chinese with English abstract)
[18] Cheng H H, Lai M H. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats[J]. Journal of Nutrition, 2000, 130(8): 1991.
[19] 張玉榮,周顯青,成軍虎,等. 干燥條件對玉米淀粉顆粒形態、色澤和糊化特性的影響[J]. 糧食與飼料工業,2012,12(3):21-24.
Zhang Yurong, Zhou Xianqing, Cheng Junhu, et al. Effect of drying conditions on the morphology, color and gelatinization of corn starch granules [J]. Grain and Feed Industry, 2012, 12(3): 21-24. (in Chinese with English abstract)
[20] 陳福泉,張本山,黃強,等. X射線衍射測定淀粉顆粒結晶度的研究進展[J]. 食品工業科技,2010,1(30):432-435.
Chen Fuquan, Zhang Benshan, Huang Qiang, et al. Advances in determination of crystallinity of starch granules by X-ray diffraction[J]. Food Industry Science and Technology, 2010, 1(30): 432-435. (in Chinese with English abstract)
[21] He X, Mao L, Gao Y, et al. Effects of high pressure processing on the structural and functional properties of bovine lactoferrin[J]. Innovative Food Science & Emerging Technologies, 2016, 38: 221-230.
[22] De l C K, Pe?a C, Ciannamea E M, et al. Characterization of soybean protein concentrate—stearic acid/palmitic acid blend edible films[J]. Journal of Applied Polymer Science, 2012, 124(3): 1796-1807.
[23] 蒲華寅,馬蕓,黃萌,等. 超高壓輔助制備醋酸酯淀粉結構性質研究[J]. 食品與機械,2017,12:1-6.
Pu Huayin, Ma Yun, Huang Meng, et al. Study on the structural properties of starch acetate prepared by super high pressure[J]. Food & Machinery, 2017, 12: 1-6. (in Chinese with English abstract)
[24] 劉文婷,郭澤鑌,曾紹校,等. 超高壓處理對檳榔芋淀粉理化性質的影響[J]. 中國糧油學報,2013,28(5):80-84.
Liu Wenting, Guo Zebin, Zeng Shaoxiao, et al. Effect of ultrahigh pressure treatment on physical and chemical properties of betel hammer starch[J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(5): 80-84. (in Chinese with English abstract)
[25] Fouhse J M, Gnzle M G, Regmi P R, et al. High amylose starch with low in vitro digestibility stimulates hindgut fermentation and has a bifidogenic effect in weaned pigs[J]. Journal of Nutrition, 2015, 145(11): 2464-2470.
[26] Mills D J, Tuohy K M, Booth J, et al. Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects[J]. Journal of Applied Microbiology, 2010, 105(3): 706-714.
[27] Ho A L, Kosik O, Lovegrove A, et al. In vitro fermentability of xylo-oligosaccharide and xylo-polysaccharide fractions with different molecular weights by human faecal bacteria [J]. CarbohydrPolym, 2017, 8: 50-58.
[28] Gammacurta M, Lytra G, Marchal A, et al. Influence of lactic acid bacteria strains on ester concentrations in red wines: specific impact on branched hydroxylated compounds[J]. Food Chemistry, 2018, 239: 252-259.
[29] 蒲華寅,王樂,黃峻榕,等. 超高壓處理對玉米淀粉結構及糊化特性的影響[J]. 中國糧油學報,2017,32(1):24-28.
Pu Huayin, Wang Le, Huang Junrong, et al. Effect of ultrahigh pressure treatment on starch structure and gelatinization properties of maize starch[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(1): 24-28. (in Chinese with English abstract)
[30] 蒲華寅,黃萌,王樂,等. 超高壓對淀粉多尺度結構影響的研究進展[J]. 高分子材料科學與工程,2018,34(3):179-190.
Pu Huayin, Huang Meng, Wang Le, et al. Research progress on the effect of ultrahigh pressure on multiscale structure of starch[J]. Polymer Materials Science And Engineering, 2018, 34(3): 179-190. (in Chinese with English abstract)
[31] 李月雙,姚靜,謝婷婷,等. 超高壓對肌球蛋白-抗性玉米淀粉混合凝膠特性的影響[J]. 食品科學,2017,38(3):1-6.
Li Yueshuang, Yao Jing, Xie Tingting, et al. Effect of ultrahigh pressure on the properties of myosin-resistant maize starch mixed gel[J]. Food Science, 2017, 38(3): 1-6. (in Chinese with English abstract)
[32] 王金榮. 退火及超高壓對三種不同結晶類型的淀粉結構和功能性質的影響[D]. 天津: 天津科技大學,2016.
Wang Jinrong. Effects of Annealing and Ultrahigh Pressure on the Structure and Functional Properties of Three Different Crystalline Starch Types[D]. Tianjin: Tianjin University of Science and Technology, 2016. (in Chinese with English abstract)
[33] Wronkowska M, Soral-Smietana M, Biedrzycka E. Utilization of resistant starch of native tapioca, corn and waxy corn starches and their retrograded preparations by Bifidobacterium[J]. International Journal of Food Sciences & Nutrition, 2008, 59(1): 80-87.
[34] Ying L I, Wang J X, Zhou Z K. Chitosan oligosaccharide, resistant starch and its compound on lipid metabolism and intestinal flora in high-diet rats[J]. China Food Additives, 2016, 11: 94-101
[35] Wu Yinglong, Wang Wenting. Effect of RS4-type resistant starch on intestinal villus morphology and small intestinal flora in high-fat diet-fed C57BL/6J mice[J]. Food Science, 2013, 34(21): 333-338.
[36] Hu? T, Nowinski A, Drapala A, et al. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats[J]. Pharmacological Research, 2017, 130: 172-179.
[37] Li X, Li C. Analysis of changes in intestinal flora and intravascular inflammation and coronary heart disease in obese patients[J]. Experimental & Therapeutic Medicine, 2018, 15(5): 4538-4542.
[38] Volkova V V, Cazer C L, Gr?hn Y T. Models of antimicrobial pressure on intestinal bacteria of the treated host populations[J]. Epidemiology & Infection, 2017, 145(10): 2081-2094.
Ultra-high pressure treatment improving physicochemical properties and probiotic community of tartary buckwheat starch
Zhou Xiaoli, Du Lina, Jiang Qingyi, Zhou Yiming※
(201418,)
With the improvement of people's living standards and health care awareness, diabetes, obesity, high blood pressure and other diseases increased year by year the issue has aroused people's attention. The key to solving these problems is to promote the use of high dietary fiber foods. Tartary buckwheat is rich in protein, starch, cellulose, flavonoids and other nutrients, it can improve intestinal microecology, lower blood lipids, prevent colon cancer, treat constipation and lose weight, it can also improve the immunity of human body. Starch, as the main component of tartary buckwheat, has high peak viscosity, high hydration capacity and low solubility. As a natural starch, it has shortcomings such as poor processing ability, narrow range of viscosity and unstable storage performance. Therefore, it needs to be modified to keep the functional characteristics of food to the maximum extent. In recent years, the physical modification method represented by ultra-high pressure, microwave, ultrasonic and other green processing technologies has been applied to starch modification, has become a focus recently. Compared with traditional heat treatment, it has a lower temperature of action. In this paper, the homemade tartary buckwheat starch was treated at 0.1 MPa (ordinary pressure), 100, 200, 300, 400, 500 MPa, and kept for 15 min, using scanning electron microscopy and X-ray diffractometry, etc. analyzed the characteristics of the morphology, crystal structure, solubility, light transmittance and freeze-thaw stability of the tartary buckwheat starch granules. The in vitro model was used to simulate human digestion and intestinal fermentation process. The contents of short chain fatty acids and the main bacterial flora of mouse fecal fermentation broth were determined. The experimental results show that when the pressure was higher than 300 MPa, the surface of tartary buckwheat starch would be inwardly depressed and gradually extruded into a block or sheet and adhered together; and the diffraction intensity was gradually increased (<0.05). The crystallinity increased from 35.0% to 41.8%. When the pressure reached 500 MPa, the crystal form of tartary buckwheat changed from A to B. Both solubility and expansibility decreased first and then increase with the increase of pressure, and the transmittance would go down, at 200 MPa, the solubility and expansion degree were both the lowest, and the freeze-thaw stability would be improved to some extent. In addition, in the pre-fermentation period (0-8 h), compared with the blank group (without added tartary buckwheat starch)the number ofandin the intestinal tract increased significantly after ultra-high pressure treatment (<0.05) , compared with the blank group (no tartary buckwheat starch was added), the increase ofin the ultra-high pressure treatment (200 MPa) group and the ultra-high pressure treatment (500 MPa) group was 37.0% and 22.16% respectively. Compared with the blank group, the growth rate ofincreased by 53.7% in the ultra-high pressure treatment (200 MPa) group, and the growth ofandwas significantly inhibited (<0.05). At the same time, the pH value in the intestine decreased significantly (<0.05). The acetic acid, propionic acid and butyric acid in SCFAs increased significantly (<0.05), among which, in the early stage of fermentation (0-8 h), the concentration of SCFAs in the ultra-high pressure treatment (200 MPa) group was the highest. That is, tartary buckwheat starch treated with 200 MPa could effectively reduce the pH value of intestinal fermentation fluid and inhibit the growth of harmful bacteria. In a word, after ultra-high pressure treatment, tartary buckwheat can be used as a good natural food for improving intestinal flora.
starch; fermentation; high pressure effects; tartary buckwheat starch; in vitro fermentation; SCFAs
10.11975/j.issn.1002-6819.2019.02.036
TS201
A
1002-6819(2019)-02-0284-09
2018-08-15
2018-12-17
國家自然科學基金面上基金項目(31871805);國家自然科學基金青年基金項目(31501437);國家現代農業產業技術體系國家燕麥蕎麥產業技術研發中心項目(CARS-07-E-2-03)
周小理,教授,研究方向為食品新資源深度開發與利用。Email:zhouxl@sit.edu.cn
周一鳴,副教授,博士,研究方向為功能食品開發,食品加工與工藝。Email:zhouymsit@163.com
周小理,杜麗娜,蔣晴怡,周一鳴. 超高壓處理改善苦蕎淀粉理化性質及益生菌群落[J]. 農業工程學報,2019,35(2):284-292. doi:10.11975/j.issn.1002-6819.2019.02.036 http://www.tcsae.org
Zhou Xiaoli, Du Lina, Jiang Qingyi, Zhou Yiming. Ultra-high pressure treatment improving physicochemical properties and probiotic community of tartary buckwheat starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 284-292. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.036 http://www.tcsae.org