999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于MT-BCS的可分離DOA估計(jì)算法

2019-04-04 03:17:40萬連城黑蕾王迎斌
現(xiàn)代電子技術(shù) 2019年6期

萬連城 黑蕾 王迎斌

關(guān)鍵詞: 二維DOA估計(jì); 壓縮感知; 貝葉斯; 多任務(wù)貝葉斯壓縮感知; 分辨率; 算法復(fù)雜度

中圖分類號: TN951?34 ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)06?0010?04

Abstract: The constant development of the compressed sensing theory provides a new idea for the problem of 2?D direction of arrival (DOA) estimation. The traditional 2?D DOA estimation method is only the extension of the 1?D DOA estimation, and the modeling method of the 2?D DOA estimation is the same as that of the 1?D DOA estimation, which leads to problems of high computation complexity and low resolution in solving. The multitask Bayesian compressive sensing (MT?BCS) theory is applied to the 2?D DOA estimation problem by remodeling of the 2?D DOA model, so as to propose a separable 2?D DOA estimation algorithm based on MT?BCS. A comparative experiment was carried out. The results demonstrate that the proposed algorithm has the advantages of high resolution and low complexity.

Keywords: 2?D DOA estimation; compressed sensing; Bayesian; MT?BCS; resolution; algorithm complexity

基于稀疏表示[1?3]的二維DOA(Direction of Arrival)估計(jì)算法大多是基于一維DOA估計(jì)的擴(kuò)展,算法建模時(shí)也是將二維矩陣展開為向量,仿照一維DOA估計(jì)的建模方法進(jìn)行建模。這類算法主要有:基于[lp]范數(shù)的POCUSS算法[2?4],經(jīng)典的高分辨[lp?SVD]算法[5],MP[6],OMP[7?8]等貪婪算法和基于貝葉斯壓縮感知的DOA估計(jì)算法[9]。

然而,這類仿照一維DOA的二維DOA建模方法導(dǎo)致稀疏基矩陣的維度過大,求解時(shí)算法的時(shí)間復(fù)雜度過高,難以滿足實(shí)時(shí)性的要求。為了降低算法的時(shí)間復(fù)雜度,本文提出了可分離的二維DOA建模新方法,并使用MT?BCS(Multitask Bayesian Compressive Sensing)算法[10]進(jìn)行求解,成功解決了二維DOA估計(jì)算法時(shí)間復(fù)雜度高、分辨率低的缺點(diǎn)。

由表1可知,由于本文所提出的方法將矩陣[A∈CML×PQ] 分離為俯仰維導(dǎo)向矢量基矩陣[Ψ∈CM×L]和方位維[Ψ]導(dǎo)向矢量基矩陣[Θ∈CP×Q],從而有效地減少了算法的時(shí)間復(fù)雜度,使算法更適合工業(yè)應(yīng)用。

4 ?結(jié) ?語

對于傳統(tǒng)二維DOA估計(jì)分辨率低、精度低、算法復(fù)雜度高等問題,本文提出基于MT?BCS算法的可分離二維DOA估計(jì)算法。該算法巧妙地將陣列流形矩陣A分解為俯仰維和方位維兩個(gè)獨(dú)立的低維導(dǎo)向矢量基矩陣,從而大大降低了算法的時(shí)間復(fù)雜度。而且算法對俯仰維、方位維進(jìn)行獨(dú)立估計(jì)大大提高了二維DOA估計(jì)的分辨率。由于不涉及對噪聲方差的估計(jì),算法的魯棒性也很高。在后續(xù)工作中將進(jìn)一步提高算法的分辨率,并降低其時(shí)間復(fù)雜度。

參考文獻(xiàn)

[1] GORODNITSKY I F, GEORGE J S, RAO B D. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm [J]. Electroencephalography and clinical neurophysiology, 2015, 95(4): 231?251.

[2] GORODNITSKY I F, RAO B D. Sparse signal reconstruction from limited data using FOCUSS: a re?weighted minimum norm algorithm [J]. IEEE transactions on signal processing, 1997, 45(3): 600?616.

[3] GORODNITSKY I F, RAO B D, GEORGE J. Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1992: 167?171.

[4] COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE transactions on signal processing, 2005, 53(7): 2477?2488.

[5] MALIOUTOV D, ?ETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE transactions on signal processing, 2005, 53(8): 3010?3022.

[6] MALLAT S G, ZHANG Z. Matching pursuit with time?frequency dictionaries [J]. IEEE transactions on signal processing, 2013, 41(12): 3397?3415.

[7] DAVIS G, MALLAT S G, ZHANG Z. Adaptive time?frequency decompositions [J]. Optical engineering, 1994, 33(7): 2183?2191.

[8] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1993: 40?44.

[9] JI S, DUNSON D, CARIN L. Multitask compressive sensing [J]. IEEE transactions on signal processing, 2009, 57(1): 92?106.

[10] CARLIN M, ROCCA P, OLIVERI G, et al. Directions?of?arrival estimation through Bayesian compressive sensing strategies [J]. IEEE transactions on antennas & propagation, 2013, 61(7): 3828?3838.

[11] 劉自成.基于稀疏表示的雷達(dá)目標(biāo)角度與距離估計(jì)[D].西安:西安電子科技大學(xué),2014.

LIU Zicheng. Estimation of target′s angle and range in radar based on sparse representation [D]. Xian: Xidian University, 2014.

[12] Candès E J. Compressive sampling [C]// Proceedings of the International Congress of Mathematics. Madrid: European Mathematical Society, 2006: 1433?1452.

[13] 馬文潔.貝葉斯壓縮感知在DOA估計(jì)中的應(yīng)用研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2014.

MA Wenjie. DOA estimation through Bayesian compressive sensing algorithm [D]. Harbin: Harbin Institute of Technology, 2014.

主站蜘蛛池模板: 老司机精品一区在线视频| 青青青国产视频手机| 成人免费一级片| 国产精品爆乳99久久| 欧美成人二区| 青青青国产精品国产精品美女| 欧美在线国产| 国产精品免费p区| 国产午夜一级淫片| 日本尹人综合香蕉在线观看| 欧美日韩国产在线播放| 久久天天躁狠狠躁夜夜躁| 国产精品美女自慰喷水| 亚洲日本一本dvd高清| 在线观看国产精美视频| 91久久夜色精品| 国产麻豆va精品视频| 精品欧美视频| 99热最新在线| 欧美亚洲国产精品久久蜜芽| 国产草草影院18成年视频| 蜜芽国产尤物av尤物在线看| 奇米影视狠狠精品7777| 在线看国产精品| 成人福利在线观看| 亚洲国产日韩视频观看| 亚洲综合18p| 免费精品一区二区h| 午夜视频免费试看| 国产精品3p视频| 色综合网址| 伊人国产无码高清视频| 伊在人亚洲香蕉精品播放| 色久综合在线| 伊人久久大线影院首页| 丰满人妻一区二区三区视频| 国产精品成人免费视频99| 婷婷亚洲天堂| 免费一级无码在线网站| 亚洲人成成无码网WWW| 国产区在线观看视频| 久久99热这里只有精品免费看| 精品久久久久久成人AV| 99久久人妻精品免费二区| 日韩av在线直播| 中美日韩在线网免费毛片视频| 国产亚洲精品无码专| 欧美日韩va| 天堂成人av| 刘亦菲一区二区在线观看| 99精品高清在线播放| 国产成人精品一区二区三在线观看| 国产丝袜丝视频在线观看| 老司机精品一区在线视频| 国产在线观看人成激情视频| 视频一区亚洲| 经典三级久久| 国产一区成人| 欧美亚洲综合免费精品高清在线观看| 天天做天天爱天天爽综合区| 91精品啪在线观看国产91| 欧美成人精品在线| 亚洲人成网站在线播放2019| 亚洲欧美综合在线观看| 欧美国产日产一区二区| 精品福利视频网| 亚洲国产欧洲精品路线久久| 亚洲精品欧美日本中文字幕| 免费看一级毛片波多结衣| 国产成人三级在线观看视频| 色视频国产| 久久黄色一级视频| 国产精品亚洲精品爽爽| 免费人成视频在线观看网站| 欧洲亚洲欧美国产日本高清| 在线精品欧美日韩| 国产精品福利在线观看无码卡| 亚洲成在线观看 | 自拍偷拍欧美日韩| 亚洲第一色网站| 亚洲综合18p| 国产自无码视频在线观看|