999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

柴油機催化型顆粒捕集器噴油助燃再生特征

2019-05-24 07:27:12陳朝輝孔孟茜趙羅峰包廣元
農業工程學報 2019年8期
關鍵詞:效率

張 韋,陳朝輝,孔孟茜,趙羅峰,包廣元

?

柴油機催化型顆粒捕集器噴油助燃再生特征

張 韋,陳朝輝※,孔孟茜,趙羅峰,包廣元

(昆明理工大學交通工程學院,云南省內燃機重點實驗室,昆明 650500)

針對在用車輛的排放升級改造,以及滿足非道路移動源四階段排放標準限制要求,該文基于自主開發的噴油助燃主動再生系統,開展了加裝DPF(diesel particulate filter)和不同CDPF(catalyzed diesel particulate filter)后處理器的發動機外特性試驗和噴油助燃主動再生燃燒試驗。結果表明:催化劑負載量為530 g/m3的CDPF,對外特性下發動機的動力性和經濟性影響較小,并為碳煙再生提供了充足的NO2組分,因而其最大排氣壓差比DPF低8.8 kPa。630 ℃時無二次供氣的CDPF其再生效率高達96.4%,載體最高溫度比DPF低31 ℃;采用二次供氣速率1.25 L/s、時長180 s,繼續供氣速率0.625 L/s、時長420 s的再生方案,600℃時CDPF的再生效率為83.2%,載體最高溫度比無二次供氣時降低了64 ℃;進行停機再生與怠速再生時,催化劑負載量為530 g/m3的CDPF具有更好的再生特性,其停機再生效率為76.4%,怠速再生效率達到88.5%。本研究對開發安全、高效的主動再生系統具有借鑒意義,并可為催化條件下的主動再生策略研究提供數據支撐。

柴油機;燃燒;催化劑;再生; DPF;CDPF;噴油助燃;臺架試驗

0 引 言

柴油機具備動力性強、經濟性好和熱效率高等優點,被廣泛應用于以農業機械和工程機械為代表的非道路移動機械[1]。但由于柴油機的PM排放較高,且非道路移動機械的保有量逐年持續增加[2],因此所產生的PM排放問題日益突出。而DPF(diesel particulate filter)可有效捕集與去除PM,但要維持捕集器的持續、高效捕集,需對捕集器內的碳煙進行適時再生,常用的再生方式包括基于熱管理的主動再生[3],以及涂覆催化劑的被動再生[4]。Kazuhiro Yamamoto[5]、Bai Shuzhan[6]等對催化再生PM的研究結果表明,被動再生熱負荷小,無需額外耗能,但非道路柴油機的工作條件惡劣,且工況運行范圍較寬,排氣溫度及成分波動大[7],難于保證各工況下都能實現較高的再生效率。主動再生則是通過氧化催化器或燃燒器氧化碳氫燃料[8],快速提升排氣溫度起燃再生PM。部分學者對PM的主動再生過程開展了試驗與仿真計算研究[9-12],王建等[13]對DPF主動再生溫度需求的柴油機進氣節流控制策略開展了試驗測試,Waldermar Karsten等[14]對噴油助燃再生燃燒器的結構進行了數值模擬,Eric Hein等[15-16]開展了發動機缸內遠后噴及排氣管后噴燃料的試驗研究。Meng Zhongwei等[17]的試驗結果發現,主動再生時在高溫燃氣的作用下,將在載體內形成大梯度溫度分布,局部最高溫甚至超過1 000 ℃。因此,需要將主、被動2種再生方式進行相互融合、取長補短,才能實現安全可靠的高效率再生[18]。然而,目前對基于DPF和CDPF(catalyzed diesel particulate filter)的噴油助燃主動再生方面的臺架試驗還比較欠缺,本文基于自主開發的主動再生燃燒系統,開展DPF和CDPF的主動再生燃燒特性試驗研究,以期為在用車輛的排放升級改造及非道路移動機械實現第四階段排放標準提供參考。

1 試驗系統

試驗測試的發動機為D30TCI型四缸直列高壓共軌柴油機,符合國Ⅳ排放標準,DPF與CDPF在發動機臺架中的安裝位置見圖1,發動機的主要技術參數見表1。測試用的DPF、CDPF1和CDPF2的具體參數見表2,其催化劑負載量分別為0、530和636 g/m3。DOC(diesel oxidation catalyst)的催化劑負載量為883 g/m3,DOC與CDPF的貴金屬催化劑Pt與Pd的配比均為5∶1。測試設備主要有WE31水力測功機、FCM油耗儀、Testo 350氣體分析儀、AVL4000煙度計、PTQ-A20精密電子稱、溫度及壓力傳感等。

本文首先對發動機原機、發動機分別加裝DOC+DPF、DOC+CDPF1和DOC+CDPF2開展了外特性穩態試驗,測試轉速范圍為1 200~3 000 r/min,每200 r/min測試1次。每個工況運行5 min,待柴油機運行穩定后測量其動力性、經濟性參數,并分別采集DOC+DPF、DOC+CDPF和DOC+CDPF2前后端的排氣溫度、排氣壓力及排放參數。在外特性試驗基礎上,進一步開展噴油助燃主動再生試驗,測試載體溫度、積碳量、再生碳煙量等參數。

1. 噴射控制單元 2. 空氣泵 3. 單向閥 4. 油泵 5. 油箱 6. 電源 7. 電磁油量閥 8. 點火棒 9. 燃燒器 10. DPF和CDPF

1. Dosing control unit 2. Air pump 3. Check valve 4. Oil pump 5. Oil tank 6. Power supply 7. Electromagnetic oil valve 8. Ignition stick 9. Burner 10. DPF and CDPF

注:P1、P2為DPF/CDPF的前、后端壓力,kPa;T1、T2為DPF/CDPF的前、后端溫度,℃。

Note: P1 and P2 are the pressure of before and after DPF/CDPF, kPa; T1 and T2 are the temperature of before and afte DPF/CDPF, ℃.

圖1 柴油機臺架測試系統

Fig.1 Diesel engine bench test system

表1 D30TCI柴油機的主要技術參數

表2 DPF、CDPF1和CDPF2的具體參數

2 發動機外特性對比

發動機原機、加裝后處理器的外特性試驗結果見圖2。從圖2a可知,CDPF2在1 200 r/min時發動機動力下降12.2%,燃油消耗率增加12.3%,而CDPF1的影響則較小,這是由于CDPF2比CDPF1的催化劑負載量高,加大了載體的壓力損失,導致缸內燃燒變差。因此,隨著轉速上升,CDPF1和CDPF2對動力性與經濟性的影響均變小,3 000 r/min時對2者的影響均小于1%。由圖2b可知,由于CDPF1和CDPF2均比DPF的再生速率高,2者壓差變化不大,與DPF相比載體內殘余碳煙量較少,因而最大排氣壓差比DPF低8.8 kPa。

圖2 發動機的外特性對比

根據圖2c可知,發動機在1 200 r/min時不透光煙度較高,而在1 600~3 000 r/min時由于原機的不透光煙度較小,排氣流經DPF、CDPF1和CDPF2后,不透光煙度幾乎都小于1。如圖2d,原機排放的NO2通過DPF后參與了碳煙氧化,因此DPF后端的NO2體積分數低于原機。由于前端DOC負載有較大量的貴金屬催化劑,這提高了NO催化氧化為NO2的表面反應速率[4,9],因而也為CDPF提供了充足的NO2組分。3 000 r/min時CDPF1前端的NO2體積分數為81×10-6,后端較前端增加了33×10-6,而CDPF2后端則較前端增加了32×10-6。這說明在DOC與CDPF內,在Pt、Pd雙金屬催化劑的作用下,NO與排氣O2的結合速率高于NO2解離產生活性氧與碳煙活性位的結合速率。由此可見,在外特性工況下,采取DOC+CDPF1的方案,既對發動機動力性與經濟性影響較小,還能為CDPF1內碳煙的再生提供充足的NO2組分,不必采用具有較高貴金屬負載量的CDPF2。

如圖2e,大部分外特性工況下,DPF后端溫度略低于前端,這是因為無催化劑時,柴油機的排溫難以達到碳煙的起燃溫度,且載體存在傳熱失所導致。1 200與1 400 r/min時,CDPF1和CDPF2的后端溫度均低于前端,而在1 600~3 000 r/min時,后端溫度略高于前端,這是由于在此轉速范圍時,雖然載體前端的排溫(約為498~520 ℃)已達到了碳煙的催化起燃溫度(約為450 ℃)[19],但載體內積累的碳煙量較少,導致放熱量較低。

3 噴油助燃主動再生特性試驗

3.1 噴油助燃主動再生試驗方案

課題組自主開發了一套噴油助燃主動再生燃燒系統,該系統主要由油箱、油泵、電磁油量閥、二次空氣泵、燃燒器、線束及噴射控制單元DCU(dosing control unit)、電瓶等組成,如圖3所示。試驗方案主要由2部分組成,第一部分試驗在燃燒試驗臺上進行,試驗前將DPF和CDPF1分別加裝到發動機排氣管路進行碳煙加載,碳載量為6 g/L。DPF和CDPF1的再生時長均為1 500 s,通過DCU控制燃燒試驗溫度分別為550 、600 和630 ℃。為防止再生時載體內的峰值溫度與熱應力過高,采取在噴油結束后進行持續供氣(稱為二次供氣,噴油助燃再生時供給的空氣稱為一次供氣)。基于二次供氣量的大小與測試發動機排量相匹配的原則,采取4種不同的二次供氣方案。方案1為無二次供氣;方案2為二次供氣速率0.625 L/s,時長300 s;方案3為二次供氣速率0.625 L/s,時長600 s;方案4為二次供氣速率1.25 L/s、時長180 s,繼續供氣速率0.625 L/s,時長420 s。試驗前使用精密電子稱稱取新鮮件的質量記為,積碳和再生結束后,從排氣管取下DPF和CDPF1,稱取積碳后的載體質量記為1,稱取再生后的載體質量記為2,即可得到積碳量和再生碳煙量。定義再生效率為,計算公式如式(1)。

第二部分試驗在發動機測試臺架上進行,仍采取在排氣系統進行碳加載,加載工況為1 200 r/min、100%負荷,積碳時長1 200 s,然后開展噴油助燃再生試驗。由于在用車輛的排放升級改造和非道路移動機械實現第四階段排放標準,均會采用停機噴油再生和怠速再生2種方式,因此,本文測試了這2種方案的再生特性。停機噴油主動再生即發動機停機,依靠主動再生系統二次供氣燃燒產生的高溫,氧化再生碳煙(簡稱停機再生)。發動機怠速工況再生即發動機處于怠速工況,依靠發動機排氣結合二次供氣,進行噴油助燃主動再生(簡稱怠速再生)。停機再生和怠速再生后,對DPF、CDPF1和CDPF2進行3 000 r/min、100%負荷工況下的再生效果評價。

1. 噴射控制單元 2. 空氣泵 3. 單向閥 4. 油泵 5. 油箱 6. 電源 7. 電磁油量閥 8. 點火棒 9. 燃燒器 10. DPF/CDPF

1. Dosing control unit 2. Air pump 3. Check valve 4. Oil pump 5. Oil tank 6. Power supply 7. Electromagnetic oil valve 8. Ignition stick 9. Burner 10. DPF/CDPF

a. 噴油助燃主動再生試驗裝置示意圖

a. Schematic diagram of fuel injection combustion active regeneration system

1. DPF和CDPF 2. 燃燒器 3. 旁通管 4. DCU 5. 熱電偶 6. 數顯儀表

1. DPF and CDPF 2. Burner 3. Bypass pipe 4. DCU 5. Thermocouples 6. Digital display meter

b. 噴油助燃主動再生試驗臺

b. Fuel injection combustion active regeneration test bench

圖3 噴油助燃主動再生試驗系統

Fig.3 Fuel injection combustion active regeneration testing system

3.2 測試結果與分析

圖4為不同再生溫度時DPF和CDPF1的主動再生效率及載體的最高溫度。分析圖4a可知,隨著再生溫度升高,DPF與CDPF1的再生效率都有所上升。DPF在550 ℃的再生效率僅為43.8%,630 ℃的再生效率達到84.3%。CDPF1在600 ℃時的再生效率為89.7%,而630 ℃的再生效率達到96.4%。CDPF1在3個溫度下的再生效率都較DPF高,這是由于在Pt、Pd雙金屬催化劑的作用下,不但提高了碳煙的起燃活性,還提升了O2的吸附量與遷移到碳煙表面的速率[20-22]。從圖4b可以看出,由于CDPF1內的碳煙起燃溫度較低[23-25],載體內的溫度上升速率較快,但載體的最高溫度卻較DPF低。再生溫度為600 ℃時,CDPF1載體的最高溫度比DPF低約35 ℃,630 ℃時的最高溫比DPF低約31 ℃。由此可見,CDPF1不僅能提高再生效率,還能降低載體內的最高溫度。

圖4 不同再生溫度時的再生效率及載體的最高溫度

圖5為不同二次供氣條件下DPF和CDPF1的再生效率及載體的最高溫度對比。分析圖5a可知,DPF采用二次供氣方案2比方案1的再生效率低2.8個百分點,而方案4比方案1低5.5個百分點。CDPF1采用方案2的再生效率為85.4%,比方案1的再生效率低4.3個百分點,而采用方案4的再生效率為83.2%,比方案1低6.5個百分點。分析圖5b可知,DPF和CDPF1采用方案4時,載體最高溫度降低幅度最大,DPF最高溫度降低約53 ℃,CDPF1降低約64℃。由此可見,先采用短時長、大流量的二次供氣,能加快載體的散熱速率,雖然初始階段溫度降低迅速,但O2組分的傳質速率增加;繼而再采用較小流量、較長時長的二次供氣策略,確保了載體再生所需溫度,因此對再生效率的影響較小。所以采用方案4的二次供氣策略,CDPF1的再生效果較好,再生效率下降幅度較小,載體最高溫度降低幅度較大,這將有助于提高載體在實車應用中的安全性與可靠性。

圖5 不同二次供氣方案的再生效率及載體的最高溫度

3.3 停機與怠速噴油再生試驗結果與分析

3.3.1 停機再生與怠速再生的溫度對比

圖6為停機與怠速再生時,載體的入口與出口排氣溫度。從圖6a可知,噴油助燃再生開始后,通過DCU控制燃油噴射,燃燒器點火燃燒,入口溫度迅速上升到600 ℃并持續保持480 s,DCU切斷燃油噴射,采用二次供氣方案4直到1 100 s再生結束。由于本文試驗用碳化硅載體的導熱系數較高,并且考慮到再生過程中載體的安全性,DPF碳載量為4.6 g/L,CDPF1和CDPF2的碳載量均為2.2 g/L。當600 ℃的高溫燃氣進入載體后,雖然會燃燒碳煙釋放熱量,但由于傳熱過程損失了部分熱能[26-28],第600 s時CDPF1的出口溫度比入口溫度低約199 ℃。怠速再生時,由于具有較高溫度的發動機排氣進入燃燒器,高溫廢氣與二次空氣配合,在載體內會蓄積更多熱量的燃氣,引發了碳煙的快速再生并釋放了更多的熱量。因此,怠速再生時載體出口溫度都較停機再生的高。此外,CDPF1較CDPF2將碳煙燃燒的速率快,因而其載體出口的溫升速率也較CDPF2上升迅速,CDPF1在600 s時出口溫度約為445 ℃,而CDPF2在750 s時才上升到相同溫度。

圖6 停機再生與怠速再生的載體入口與出口溫度

3.3.2 停機再生與怠速再生的碳煙量對比

圖7為停機再生與怠速再生時,DPF、CDPF1和CDPF2的2次積碳量及再生效率對比。從圖7可知,當積碳溫度為427 ℃時,DPF第1次積碳量為19 g,停機再生效率為48.9%,經過第2次積碳后進行怠速主動再生的效率為73.3%。CDPF1和CDPF2的停機與怠速再生效率都較DPF高,CDPF1的停機再生效率為76.4%,而怠速再生效率增加到88.5%。CDPF2的2次再生效率較CDPF1低,其停機再生效率為71%,怠速再生效率為83.8%。通過以上分析可知,載體的怠速主動再生效率均高于停機再生,這是由于停機再生是冷態二次空氣進入燃燒器,而怠速再生是將具有較高溫度的發動機廢氣引入燃燒器,在二次空氣的配合下,既提高了燃油在燃燒器內的燃燒速率,同時高溫燃氣會以更快的速率燃燒更多的碳煙,從而提高了怠速主動再生的燃燒效率。基于噴油再生的試驗結果,說明通過DCU控制燃燒器的溫度為600 ℃,采取方案4的二次供氣策略,能確保載體的安全可靠再生,使用貴金屬負載量較低的CDPF1,在停機與怠速再生時,都能具有較高的再生效率。

3.3.3 停機再生與怠速再生后壓差與溫度的評價對比

圖8是開展停機再生和怠速再生結束后,在3 000 r/min、100%負荷工況下DPF、CDPF1和CDPF2的壓差對比。結合圖6~8可知,由于更多的高溫燃氣產生了較高的再生效率,怠速再生后載體內殘余的碳煙量更少,因而怠速再生后的壓差都較停機再生低。DPF停機再生后的壓差在32 kPa上下波動,怠速再生后壓差下降到28 kPa左右。CDPF1停機再生后的壓差約為27 kPa,怠速再生后的最終壓差降低到25 kPa。CDPF2停機再生后最終壓差約為24.5 kPa,怠速再生后的壓差下降到22 kPa。

圖7 停機再生與怠速再生效果

圖8 停機再生和怠速再生后的壓差對比

圖9為停機再生和怠速再生后,在3 000 r/min、100%負荷工況下,DPF、CDPF1和CDPF2的溫度對比。在初始時刻,停機再生后CDPF1的入口溫度為466 ℃,CDPF2的溫度為405 ℃,怠速再生后CDPF1入口溫度上升到469 ℃,CDPF2的則增加到441 ℃,DPF也具有同樣的變化規律。這是由于怠速再生后載體的排氣壓差較小,引起發動機缸內燃燒壓力和燃燒溫度增加[29],排氣溫度上升,因此怠速再生后載體入口端的溫度較高,但入口溫度都達到了碳煙被動再生的起燃溫度。由此說明,采取催化型CDPF進行主、被動相結合的再生方式,能將2者的優點進行相互融合,在未來的研究中,通過進一步優化催化負載量、再生時機,同時結合排氣熱管理等技術[30],將有助于形成基于催化條件下的主動再生策略。

圖9 停機再生和怠速再生后的溫度對比

4 結 論

1)外特性試驗中,采用催化劑負載量為530 g/m3的CDPF,在Pt、Pd雙金屬催化劑的作用下,能為被動再生提供充足的NO2組分,因此,CDPF的最大排氣壓差比DPF低8.8 kPa。加裝CDPF對發動機的動力性與經濟性影響較小,3 000 r/min時對動力性與經濟性的影響均小于1%。

2)基于自主開發的主動再生燃燒系統,開展噴油助燃再生燃燒試驗。通過ECU控制燃燒溫度為600 ℃,采取4種不同的二次供氣方案,催化劑負載量為530 g/m3的CDPF,采用二次供氣速率1.25 L/s、時長180 s,繼續供氣速率0.625 L/s、時長420 s的方案時,再生效率達到83.2%,比無二次供氣時載體的最高溫度降低了64 ℃。說明采用上述二次供氣方案再生效果較好,這將有助于實現載體在實車應用中進行安全、可靠的高效率再生。

3)在停機與怠速再生試驗中,采取二次供氣速率1.25 L/s、時長180 s,繼續供氣速率0.625 L/s、時長420 s的方案,再生時長為1 100 s。試驗結果表明,催化劑負載量為530 g/m3的CDPF具有較好的再生效果,其停機再生效率為76.4%,怠速再生效率達到88.5%。

未來的研究可通過進一步優化催化負載量、再生時機,同時結合排氣熱管理等技術,形成基于催化條件下的主動再生策略,為在用車輛的排放升級改造及非道路移動機械實現第四階段排放標準提供參考。

[1] 譚丕強,王德源,樓狄明,等.農業機械污染排放控制技術的現狀與展望[J]. 農業工程學報,2018,34(7):1-14. Tan Piqiang, Wang Deyuan, Lou Diming, et al. Progress of control technologies on exhaust emissions for agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 1-14.(in Chinese with English abstract)

[2] Fu Mingliang, Ge Yunshan, Tan Jianwei, et al.Characteristics of typical non-road machinery emissions in China by using portable emission measurement system[J]. Science of the Total Environment, 2012 , 437(20): 255-261.

[3] Bai Shuzhan, Chen Guobin, Sun Qiang, et al. Influence of active control strategies on exhaust thermal management for diesel particular filter active regeneration[J]. Applied Thermal Engineering, 2017(119): 297-303.

[4] 黃河,孫平,劉軍恒,等. 納米CeO2催化劑對柴油機碳煙顆粒和NO降低效果[J]. 農業工程學報,2017,33(2):54-59. Huang He, Sun Ping, Liu Junheng, et al. Reducing soot and NO emission from diesel engine exhaust catalyzed by nano- CeO2[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 54-59. (in Chinese with English abstract)

[5] Kazuhiro Yamamoto, Tatsuya Sakai. Simulation of continuously regenerating trap with catalyzed DPF[J].Catalysis Today, 2015(242): 357-362.

[6] Bai Shuzhan, Tang Jiao, Wang Guihua, et al. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine[J]. Applied Thermal Engineering, 2016(100): 1292-1298.

[7] E Jiaqiang, Zuo Wei, Gao Junxu, et al. Effect analysis on pressure drop of the continuous regeneration-diesel particulate filter based on NO2assisted regeneration[J]. Applied Thermal Engineering, 2016(100): 356-366.

[8] Dieter Rothe, Markus Knauer, Gerhard Emmerling, et al. Emissions during active regeneration of a diesel particulate filter on a heavy duty diesel engine: Stationary tests[J]. Journal of Aerosol Science, 2015(90): 14-25.

[9] Chen Pingen, Wang Junmin. Air-fraction modeling for simultaneous Diesel engine NOx and PM emissions control during active DPF regenerations[J]. Applied Energy, 2014, 122(5): 310-320.

[10] Deng Yuanwang, Zheng Wenping, E Jiaqiang, et al. Influence of geometric characteristics of a diesel particulate filter on its behavior in equilibrium state[J]. Applied Thermal Engineering, 2017(123) :61-73.

[11] 伏軍,龔金科,左青松,等. 微粒捕集器噴油助燃再生噴油與補氣的優化控制[J]. 農業工程學報,2012,28(17): 11-18. Fu Jun, Gong Jinke, Zuo Qingsong, et a1. Optimum control of fuel injection and air supply for burner-type diesel particulate filter regeneration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 11-18. (in Chinese with English abstract)

[12] Hiroyuki Yamada, Satoshi Inomat, Hiroshi Tanimoto. Mechanisms of increased particle and VOC emissions during DPF active regeneration and practical emissions considering regeneration[J]. Environmental Science & Technology, 2017, 51(5): 2914-2923.

[13] 王建,曹政,張多軍,等. 基于DPF主動再生溫度需求的柴油機進氣節流控制策略[J]. 農業工程學報,2018,34(2):32-37. Wang Jian, Cao Zheng, Zhang Duojun, et al.Intake throttling control strategy based on DPF active regeneration temperature for diesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 32-37.(in Chinese with English abstract)

[14] Waldemar Karsten, Martina Goy, Heide Vom Schloss, et al. Diesel burner for particle filter regeneration at mobile machinery[J]. Mtz Worldwide, 2013, 74 (7/8): 18-22.

[15] Eric Hein, Adam Kotrba, Tobias Inclan, et al. Secondary fuel injection characterization of a diesel vaporizer for active DPF regeneration[J]. SAE Int. J. Engines, 2014, 7(3): 1228-1234.

[16] Chen Pingen, Umar Ibrahim, Wang Junmin. Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations[J]. Fuel, 2014, 130(7): 286-295.

[17] Meng Zhongwei, Zhang Jing, Chen Chao, et al. A numerical investigation of the diesel particle filter regeneration process under temperature pulse conditions[J]. Heat and Mass Transfer, 2017, 53(5): 1589-1602.

[18] Kuwahara T, Nishii S, Kuroki T, et al. Complete regeneration characteristics of diesel particulate filter using ozone injection[J].Applied Energy, 2013, 111(11): 652-656.

[19] Keld Johansen. Multi-catalytic soot filtration in automotive and marine applications[J].Catalysis Today, 2015(258): 2-10.

[20] Herreros J M, Gill S S, Lefort I, et al.Enhancing the low temperature oxidation performance over a Pt and a Pt–Pd diesel oxidation catalyst[J].Applied Catalysis B Environmental, 2014 , 147(7): 835-841.

[21] Verónica Rico Pérez, Agustín Bueno-López. Catalytic regeneration of diesel particulate filters: Comparison of Pt and CePr active phases[J]. Chemical Engineering Journal, 2015(279): 79-85.

[22] Zdeněk Vít, Daniela Gulková, Luděk Kalu?, et al. Effect of catalyst precursor and its pretreatment on the amount of-Pd hydride phase and HDS activity of Pd-Pt/silica-alumina[J]. Applied Catalysis B: Environmental, 2014(146): 213-220.

[23] Zhou Qiuhong, Zhong Kunhua, Fu Weiling, et al. Nanostructured platinum catalyst coating on diesel particulate filter with a low-cost electroless deposition approach[J]. Chemical Engineering Journal, 2015(270): 320-326.

[24] Qi Guolu, Zhang Yexin, Chen Aibing, et al. Potassium- activated wire mesh: A stable monolithic catalyst for diesel soot combustion[J]. Chemical Engineering & Technology, 2016, 40(1): 50-54.

[25] Valeria Di Sarli, Gianluca Landi, Luciana Lisi, et al. Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance[J]. Applied Catalysis B Environmental, 2016(197): 116-124.

[26] Galindo J, Serrano J R, Piqueras P, et al. Heat transfer modelling in honeycomb wall-flow diesel particulate filters [J]. Energy, 2012, 43(1): 201-213.

[27] Nepal C Roy, Akter Hossain, Yuji Nakamura. A universal model of opposed flow combustion of solid fuel over an inert porous medium[J]. Combustion & Flame, 2014, 161(6): 1645-1658.

[28] Chen Tao, Wu Zhixin, Gong Jinke, et al. Numerical simulation of diesel particulate filter regeneration considering ash deposit[J]. Flow Turbulence Combust, 2016, 97(3): 1-16.

[29] Yu Mengting, Dan Luss, Vemuri Balakotaiah. Analysis of flow distribution and heat transfer in a diesel particulate filter[J]. Chemical Engineering Journal, 2013, 226(24): 68-78.

[30] Eid S Mohamed. Experimental study on the effect of active engine thermal management on a bi-fuel engine performance, combustion and exhaust emissions[J]. Applied Thermal Engineering, 2016(106): 1352-1365.

Bench test of regeneration characteristics of catalyzed diesel particulate filter based on fuel injection combustion system

Zhang Wei, Chen Zhaohui※, Kong Mengxi, Zhao Luofeng, Bao Guangyuan

(650500,)

In order to provide technical references for upgrading emissions of existing vehicles, to meet the four-stage emission limitation requirements of non-road mobile machineries, based on the self-developed fuel injection combustion active regeneration system, the external characteristic tests of diesel engine with diesel particulate filter(DPF) and the active regeneration combustion tests were carried out in this paper. The results showed that the catalyzed diesel particulate filter (CDPF) with 530 g/m3catalysts loading, name as CDPF1, has little effect on the power and economy performances of the engine under external characteristic conditions. At 3 000 r/min, the volume fraction of NO2is 81×10-6at front end of CDPF1, while it is increased by 33×10-6at rear end of that. This indicates that with the action of Pt and Pd bimetallic catalysts, the binding rate of NO to exhaust O2is higher than the rate of active oxygen dissociated from NO2binding to the soot active sites. Adequate NO2content promotes regeneration efficient of soot in the CDPF, therefore the maximum exhaust pressure difference of CDPF1 was 8.8 kPa which lower than that of DPF. On the basis of external characteristic tests, the active regeneration tests of fuel injection combustion was further carried out. The first part of the regeneration tests were carried on the combustion test bench, the combustion temperatures were controlled by dosing control unit (DCU) to be 550, 600 and 630 ℃, respectively. In order to prevent the peak temperature and thermal stress in the carrier from being too high during regeneration, secondary gas supply was carried out after fuel injection. Based on the principle that the amount of the secondary gas supply matches with displacement of the test engine, 4 different secondary gas supply schemes were adopted. The experimental results showed that when the regeneration temperature was 630 ℃, the regeneration efficiency of CDPF1 reached 96.4% in the absence of secondary gas supply, however, the regeneration efficiency of DPF was only 84.3%. In addition, the maximum temperature of CDPF1 carrier was also lower than that of DPF during regeneration, and the highest temperature of CDPF1 was about 31 ℃which lower than that of DPF at 630 ℃. It can be seen that CDPF1 could not only improve the regeneration efficiency, but also reduce the maximum temperature in the carrier. When regeneration temperature was 600 ℃, the secondary gas supply scheme 4 was adopted, i.e. the secondary gas supply rate was 1.25 L/s for 180 s, then the gas supply rate was 0.625 L/s for 420 s, and the regeneration efficiency of CDPF1 was 83.2%, the maximum temperature was reduced by about 64 ℃ compared to the absence of secondary gas supply. The second part of regeneration tests were carried out on engine test bench, and the regeneration temperature was still 600 ℃. The regeneration characteristics of DPF, CDPF1, CDPF2 and the CDPF2 with 636 g/m3catalysts loading were tested under engine stop and idle speed regeneration conditions. The test results showed that CDPF1 had a good regeneration performance, with regeneration efficiency was 76.4% for engine stop regeneration, the idle regeneration efficiency was increased to 88.5%. This was because that the secondary air into the combustion chamber was cold for engine stop regeneration, and the engine exhaust with higher temperature was introduced into the burner for the idle regeneration, the secondary air was combined to improve the burning rate of the fuel in the burner, at the same time, high temperature gas would burn more soot at a faster rate, and the combustion efficiency of the idle condition regeneration was improved. The pressure difference of DPF, CDPF1 and CDPF2 was tesed under 3 000 r/min speed and 100% load conditions. Since the amount of residual soot in the carrier was less after the idle regeneration, the pressure difference of DPF, CDPF1 and CDPF2 after idle regeneration were lower than that of engine stop regeneration. The pressure difference of CDPF1 was about 27 kPa after engine stop regeneration, and the final pressure difference was reduced to 25 kPa after idle regeneration. This study showed that the combination of active and passive regeneration of catalytic CDPF can integrate the advantages of the both, in future research, the active regeneration strategy based on catalytic conditions can be formed by further optimizing the catalytic load and regeneration timing, combining with exhaust heat management technology, and provide a reference for the upgrading and transformation of exhaust emissions of vehicles in use and the realization of the fourth stage emission standards of non-road mobile machinery.

diesel engine; combustion; catalysts; regeneration; DPF; CDPF; fuel injection assisted combustion; bench test

2018-10-06

2019-01-18

國家自然科學基金資助項目(51666007;51665023)

張韋,博士,教授,主要從事內燃機燃燒與排放控制研究,Email:koko_575@aliyun.com

陳朝輝,博士,副教授,主要從事內燃機燃燒與排放控制研究。Email:chenzhaohuiok@sina.com

10.11975/j.issn.1002-6819.2019.08.011

TK411+.5

A

1002-6819(2019)-08-0092-08

張 韋,陳朝輝,孔孟茜,趙羅峰,包廣元. 柴油機催化型顆粒捕集器噴油助燃再生特征[J]. 農業工程學報,2019,35(8):92-99. doi:10.11975/j.issn.1002-6819.2019.08.011 http://www.tcsae.org

Zhang Wei, Chen Zhaohui, Kong Mengxi, Zhao Luofeng, Bao Guangyuan. Bench test of regeneration characteristics of catalyzed diesel particulate filter based on fuel injection combustion system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 92-99. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.011 http://www.tcsae.org

猜你喜歡
效率
你在咖啡館學習會更有創意和效率嗎?
提升朗讀教學效率的幾點思考
甘肅教育(2020年14期)2020-09-11 07:57:42
注意實驗拓展,提高復習效率
效率的價值
商周刊(2017年9期)2017-08-22 02:57:49
引入“倒逼機制”提高治霾效率
遼寧經濟(2017年6期)2017-07-12 09:27:16
質量與效率的爭論
中國衛生(2016年9期)2016-11-12 13:27:54
跟蹤導練(一)2
提高食品行業清潔操作的效率
OptiMOSTM 300V提高硬開關應用的效率,支持新型設計
“錢”、“事”脫節效率低
中國衛生(2014年11期)2014-11-12 13:11:32
主站蜘蛛池模板: 国产成人1024精品下载| 亚洲中文字幕无码mv| 一级一级特黄女人精品毛片| 91麻豆精品视频| 国产一在线| 97综合久久| 日韩A级毛片一区二区三区| 激情爆乳一区二区| 欧洲一区二区三区无码| 亚洲欧洲自拍拍偷午夜色| 亚洲成人精品| 精品视频第一页| 在线网站18禁| 成人亚洲视频| 在线a视频免费观看| 四虎永久在线| 超级碰免费视频91| 亚洲国产综合自在线另类| 中文字幕 欧美日韩| 亚洲小视频网站| 美女啪啪无遮挡| a天堂视频在线| 免费在线观看av| 国产精品爽爽va在线无码观看| 精品91视频| 无码aⅴ精品一区二区三区| 精品国产女同疯狂摩擦2| 高清色本在线www| 国产免费好大好硬视频| 欧美97色| 国产激情影院| 国产午夜精品鲁丝片| a毛片免费观看| 麻豆精品在线视频| 色婷婷亚洲综合五月| 亚洲区第一页| 激情無極限的亚洲一区免费| 成人国产精品一级毛片天堂 | 国产免费黄| 国产内射一区亚洲| 在线观看免费国产| 99人体免费视频| 国产精品久久国产精麻豆99网站| 四虎国产在线观看| 欧美三级不卡在线观看视频| 亚洲青涩在线| 国产成人综合亚洲网址| 91网址在线播放| 亚洲开心婷婷中文字幕| 欧美中文字幕一区| 精品少妇人妻一区二区| 国产性精品| 2020亚洲精品无码| 欧美日韩福利| 亚洲一区二区成人| 色婷婷亚洲综合五月| 成人国产精品视频频| 精品自窥自偷在线看| 91激情视频| 亚洲欧美天堂网| 亚洲精品图区| 无码国产伊人| 亚洲视频一区| 亚洲国产看片基地久久1024| 福利在线不卡一区| 婷婷亚洲天堂| 国产精品久久久久久影院| 欧美在线伊人| 欧美成人精品在线| 亚洲色图欧美激情| 国产精品网址在线观看你懂的| 人与鲁专区| 国产无码网站在线观看| 精品在线免费播放| 人妻一区二区三区无码精品一区| 亚洲国产精品日韩欧美一区| 91青青草视频| 欧美在线免费| 国产h视频在线观看视频| 国产精品深爱在线| 三区在线视频| 亚洲天堂网在线视频|