王振華,楊彬林,謝香文,王則玉,楊洪澤,董心久
?
灌溉制度對膜下滴灌甜菜產量及水分利用效率的影響
王振華1,2,楊彬林1,2,謝香文3,4※,王則玉4,楊洪澤5,董心久5
(1. 石河子大學水利建筑工程學院,石河子 832000;2. 石河子大學現代節水灌溉兵團重點實驗室,石河子 832000; 3. 中國農業大學水利與土木工程學院,北京 100083;4. 新疆農業科學院土壤肥料與農業節水研究所,烏魯木齊 830091; 5. 新疆農業科學院經濟作物研究所,烏魯木齊 830091)
為制定新疆合理的甜菜膜下滴灌制度,設置3個灌水次數(8、9和10次)和2個灌水定額(45和60 mm)兩因素全組合試驗,于2016—2017年在新疆瑪納斯縣農科院甜菜改良中心開展田間試驗。結果表明,灌水次數增加時甜菜葉面積指數與產量增加,含糖率降低,對甜菜的水分利用效率、耗水量無明顯影響(>0.05),甜菜葉綠素值隨灌水次數與定額增加呈下降趨勢;在灌水次數與定額交互作用下,灌水8次時由于土壤相對含水率低于50%,甜菜會減產;當灌水9次,灌水定額為45 mm時,增加15 mm灌水定額土壤相對含水率達50%以上,此時甜菜增產7.4%~7.7%,糖產增加9.4%~9.7%;而繼續增加灌水次數時,會導致甜菜含糖率降低而降低糖產。因此針對新疆膜下滴灌甜菜以60 mm灌水定額灌水9次為宜,可獲得高產與糖產,較傳統新疆膜下滴灌甜菜制度節水10%。該研究對指導新疆膜下滴灌甜菜灌溉制度具有一定意義。
灌溉;作物;土壤水分;甜菜產量;甜菜產糖量;水分利用效率
水資源是農業的保障,當前中國農業用水量占總用水量的60%以上[1],而新疆農業灌溉用水占到總用水量95%左右[2],如何有效利用水資源是當下研究熱點。膜下滴灌既能提高田間水分利用效率,避免深層滲漏,減少棵間蒸發,同時又具備增溫保墑作用[3],在中國西北干旱區特別是新疆農業灌溉上得到廣泛應用[4-5]。膜下滴灌與傳統灌溉模式相比可減少灌溉用水50%以上,顯著提高作物水分利用效率[6-7]。甜菜(L.)屬于需水量大的藜科經濟作物,灌水量對甜菜產量影響顯著[8],而在膜下滴灌條件下甜菜產量與產糖量均高于溝灌和噴灌[9]。
灌溉制度直接影響土壤含水率,對作物產量影響顯著[10-12]。目前,國內外學者對甜菜適宜灌溉制度及土壤含水率做了大量研究:Kosobryukhov等提出適當減少甜菜灌水量可以提高水分利用效率[13]。Fabeiro等在半干旱氣候條件下試驗表明甜菜最適宜的需水量為6 898 m3/hm2,同時也能達到較高的產量117.64 t/hm2,水分利用效率提高到170.55 kg/(mm·hm2)[14]。李智通過不同灌水試驗表明:甜菜葉面積指數、干物質積累量、凈光合速率和氣孔導度均隨灌水量增加而增加,在耗水量為545.15 mm時,塊根產量達到8.6′104kg/hm2,水分利用效率為160.71 kg/(mm·hm2)[15]。馮澤洋等通過滴灌甜菜虧缺試驗表明:葉叢繁茂期與塊根膨大期適宜灌水量為1 147.78和635.54 m3/hm2[16]。董心久等試驗表明新疆膜下滴灌甜菜適宜灌溉定額為360 m3/667m2[17]。孫烏日娜提出在膜下滴灌條件下甜菜生長所需土壤含水率占田間持水量的69%,低于此值時可以考慮田間灌溉[18]。李陽陽對甜菜進行虧缺試驗,表明在甜菜葉叢快速生長期,0~40 cm土層含水量下降至田間持水量50%時應及時補充灌溉;在甜菜塊根膨大期, 0~40 cm土層含水量下降至田間持水量的30%時應補充灌溉;在糖分積累期,0~40 cm土層含水量保持在田間持水量30%時甜菜產量及含糖量最高[19-21]。Topak等在不同膜下滴灌方案下證明調虧灌溉可節約25%的灌水量[22]。
以上研究結果顯示,不同地區和不同試驗條件下,得出適宜甜菜生長灌水量及土壤含水率存在一定差異,多偏重于甜菜產量、適宜灌水量及土壤含水率的研究,缺乏對于膜下滴灌甜菜高糖產量灌溉制度研究。同時,不同灌溉次數與灌水定額對作物生長及土壤水分布影響顯著[23-26],而對甜菜產糖量的影響鮮有報道。新疆是典型干旱區氣候,少雨蒸發量大,日照充足,是中國最大的甜菜生產基地,甜菜種植面積在8.6′104hm2,產糖量占全國的50%以上[27]。而不同灌水次數及定額對新疆膜下滴灌甜菜耗水規律研究及甜菜高糖產量還有待研究。本文在此基礎上,以優化新疆膜下滴灌甜菜灌溉制度提高甜菜糖產量為目標,對不同灌水次數與灌水定額對甜菜生長、糖產量及水分利用效率進行為期2 a的試驗研究,為新疆膜下滴灌甜菜灌溉制度制定提供理論依據。
試驗分別于2016年4—10月和2017年4—10月在新疆農科院瑪納斯甜菜改良中心試驗基地進行。試驗區位于新疆維吾爾自治區瑪納斯縣城東北方向5 km處,地理坐標為86°5¢~87°8¢E,43°7¢~45°20¢N。7—9月平均氣溫為21.8 ℃,有效積溫為2 000 ℃,無霜期150~204 d,生長期(4—9月)日照時數為1 780 h,多年平均蒸發量為1 691 mm,2016年生育期降水量為182 mm,2017年為108 mm。試驗采用甜菜品種為ST15140。土壤類型為灰漠土,土壤養分狀況見表1。0~30 cm土壤質地良好,30~70 cm土壤質地較黏重。田間持水量均為36.1%(體積),平均容重均為1.42 g/cm3。

表1 土壤養分狀況
2 a試驗采用膜下滴灌方式,按新疆甜菜基肥與出苗水標準在播種前施67.5 kg/hm2氮肥,112.5 kg/hm2磷肥,40.5 kg/hm2鉀肥,播種后出苗灌水量為450 m3/hm2,4月中旬播種,10月上旬收獲。當地推薦灌水定額為60 mm,頻率為10次,經前期土壤入滲試驗及灌水定額公式計算得出60 mm灌水定額下β=28.89%,計算公式如下[28]:
1 000=ρH(ββ)(1)
式中為灌水定額,mm,取60 mm;ρ為該時段土壤計劃濕潤層內土壤容重,g/cm3,取1.42 g/cm3;為計劃濕潤層深度,cm,本試驗計劃濕潤層深度為90 cm;β為目標含水量(田間持水率乘以目標相對含水率),%;β為灌前土壤含水率,%,取21.72%;為土壤濕潤比,%,取65.41%。
故本試驗灌水定額設I1(45 mm),I2(60 mm)2個水平,灌水頻率設F8(8次)、F9(9次)、F10(10次)3個水平,按不同灌溉定額不同次數灌溉布設6個灌水單因素處理,每個處理3組重復(表2)。采用隨機區組排列,小區面積10 m×3 m(3個膜幅),試驗區兩側設有6膜保護行。種植行距50 cm,株距20 cm,采用一膜兩行一管種植模式;采用單翼迷宮式滴灌帶,滴頭間距30 cm,流量1.5 L/h,灌水量由水表控制。

表2 試驗設計方案
1.3.1 土壤含水率測定
分別在各處理第一次灌水前一天(6月4日、6月14日、6月19日)以及收獲前一天(10月10日)用Trime水分測試儀分層測定土壤含水率,測試深度90 cm,每10 cm為1層。各處理在距甜菜種植行0、±0.125 m處垂直種植行方向共布設3根探管(圖1),為評價灌溉制度對土壤含水率影響,考慮在測定水分前降雨對土壤含水率臨時影響,利用以下公式對土壤含水率進行折算。公式(2)用于計算影響區域降雨總質量[29]:
=10-3 F·R·ρ(2)
式中為降雨量,mm;為降雨計算區域土壤面積,取1 m2;ρ為降雨密度,取1′103kg/m3;為計算區域降雨總質量,kg;10-3為雨量換算系數。
由公式(3)得出土壤體積含水率為[30]

式中θ為土壤體積含水率,%;θ為土壤質量含水率,%;ρ為土壤容重,為1.42g/cm3。
土壤質量含水率計算公式采用國家GB 7172-1987標準,為

式中m為烘干空鋁盒質量,g;1為烘干前鋁盒及土樣質量,g;m為烘干后鋁盒及土樣質量,g。
由公式(5)得出土壤折算質量含水率計算公式為

將公式(5)帶入(3)中得出土壤折算后體積含水率為
(6)
式中θ為土壤折算后體積含水率,%。
土壤相對含水率計算公式為[31]

式中θ為土壤相對含水率,%;為計算時段內土壤平均含水率,%;θ為土壤田間持水率,%。
注:單位為m
Note:Unit is m
圖1 Trime埋設位置圖
Fig.1 Location of Trime
1.3.2 生長指標測定
2 a的甜菜生長指標均于7月30日測定,選取小區中行具有代表性6棵植株定點觀測甜菜株高、葉面積、塊根質量。用直尺測量各處理甜菜株高、葉長寬,葉面積指數=(Σ0.7)/750(為葉長,為葉寬),塊根質量用電子秤稱量(精度0.05 g)。
1.3.3 葉片SPAD值測定
采用便攜式葉綠素儀每次灌水前測定SPAD值,每處理選擇同方向同位置的10片葉觀測,取各處理生育期所測葉綠素值的平均值。
1.3.4 作物耗水量測定
作物生育期間耗水量采用水量平衡法計算,本試驗區地下水埋深低于8 m,地下水對作物用水補給忽略不計;滴頭灌水強度小于土壤入滲率,無地表徑流與深層滲漏,即[32]:

式中ETc為作物耗水量,mm;R為時段內計劃土壤有效降雨量(圖2),mm;I為時段內灌水量,mm;Ds為0~90 cm深度土壤儲水量變化量,mm。
1.3.5 產量、含糖率及產糖量測定
甜菜產量于10月上旬收獲,由小區中間行去除頭尾1.5 m后全部采收稱量測產;含糖率采用垂度計測定甜菜的可溶性固形物含量:取樣并切取1/2甜菜塊根,沿塊根直立45°角方向切取1.0 cm厚、中心條狀塊根,去除表皮,搗碎成汁,采用錘度計監測不同處理甜菜的可溶性固形物含量,含糖率(%)=可溶性固形物含量(%)′0.82;糖產量為甜菜產量與含糖率乘積。
1.3.6 水分利用效率計算
水分利用效率計算公式[33]為
式中WUE為作物水分利用效率,kg/(mm·hm2);為單位面積產量,kg/hm2;ETc為作物耗水量,mm。
產糖水分利用效率公式[33]為

式中SWUE為作物產糖水分利用效率,kg/(mm·hm2);為單位面積糖產量,kg/hm2;ETc為作物耗水量,mm。
采用SPSS20.0和Excle2013軟件進行數據統計及相關分析,差異顯著性分析采用Duncan法(極顯著<0.01,顯著<0.05)。
不同灌水次數與定額處理的甜菜株高、葉面積指數(LAI, leaf area index)、塊根質量及灌前土壤含水率與相對含水率見表3。由表3知,2 a內,不同灌水次數處理的灌前土壤相對含水率表現為灌水8次小于50%,灌水9次介于50%~60%,灌水10次在60%以上。
灌水次數對甜菜株高、LAI、塊根質量影響極顯著(<0.01),灌水定額對甜菜塊根質量影響顯著(<0.05)。在2016年,F8水平下不同灌水定額對甜菜LAI影響顯著(<0.05),在2017年影響極顯著(<0.01)。2 a內,灌水定額與次數交互作用對甜菜株高、LAI、塊根質量影響極顯著(<0.01)。
2 a內灌水10次(I1F10與I2F10)處理的甜菜株高超過70 cm,顯著高于其他處理(<0.05),灌水8次與9次無明顯差異(>0.05);不同灌水定額水平下灌水次數對甜菜LAI影響顯著表現為:I1F10> I1F9> I1F8,I2F10> I2F9> I2F8(<0.05),表明灌水次數增加能促進甜菜葉叢生長,而灌水定額對甜菜株高與葉面積指數無明顯影響。
I1灌水定額下,2016年甜菜塊根質量隨灌水次數增加呈增大趨勢,表現為I1F10>I1F9>I1F8,(<0.05);2017年I1F10的塊根質量較I1F9、I1F8分別增加40.01%、78.5%(<0.05),I1F8與I1F9無明顯差異(>0.05)。在I2水平下,2 a內I2F10處理塊根質量顯著高于I2F8、I2F9處理(<0.05),保持在800 g以上,I2F8與I2F9無明顯差異(>0.05)。2 a數據表明,相同灌水次數下I2水平下甜菜塊根質量顯著高于I1,表現為,I2F8>I1F8,I2F9>I1F9,I2F10>I1F10,表明灌水定額增加能增加甜菜塊根質量。

表3 不同灌溉制度對甜菜形態指標的影響
注:表中土壤含水率為灌前測定值,測定日期分別為6月4日(F10)、6月14日(F9)、6月19日(F8);*表示差異顯著(<0.05),**表示差異極顯著(<0.01);a、b、c等分別表示=0.05水平下差異顯著,下同。
Note:Soil water content was measured before irrigation in the table, which were measured in 6/4(F10), 6/14(F9), 6/19(F8), respectively; * means significant difference (<0.05), while ** means extremely significant difference (<0.01). a, b and c means significant difference at=0.05 level, the same below.
葉綠素含量是衡量植物養分狀況、光合能力以及植物生長發育階段的良好指示器[34]。2 a內不同灌溉制度對甜菜SPAD值影響見圖3。由圖知,在2 a內,SPAD值隨灌水次數增加呈降低趨勢;不同灌水次數下I1處理SPAD值顯著高于I2處理(<0.05)。I1F8與I1F9處理SPAD值顯著高于其他處理(<0.05),I2F10處理顯著小于其他處理(<0.05)。表明甜菜SPAD值隨灌水定額與次數增加呈降低趨勢。

注:I1表示45 mm灌水定額,I2表示60 mm灌水定額。
不同灌溉制度對甜菜產量、含糖率、產糖量的影響見表4。由表4知,2 a內,灌水次數對甜菜的產量、含糖率影響極顯著(<0.01),對產糖量無明顯影響(>0.05);I1與I2灌水定額在F8水平下對甜菜產量影響顯著(< 0.05),F9水平下對甜菜產量影響極顯著(<0.01),F10水平對產量無明顯影響(>0.05)。I1與I2灌水定額在F8水平下對甜菜含糖率無明顯影響(>0.05);在F9水平下甜菜產糖量影響極顯著(<0.01);在F10水平下甜菜產糖量無明顯影響(>0.05)。2 a內,灌水定額與灌水次數交互作用對甜菜產量、含糖率、產糖量影響極顯著(<0.01)。
于收獲前測定土壤含水率折算后知,2 a內F8處理的土壤相對含水率降至50%以下;F10的土壤相對含水率保持在50%~60%之間;F9的土壤相對含水率在I1灌水定額下分別降至46.13%、49.63%,在I2灌水定額下分別降至53.12%、52.58%。
2 a內在I1水平下,I1F10處理的甜菜產量顯著高于I1F8與I1F9(<0.05),2016年I1F8與I1F9無明顯差異(>0.05),2017年I1F8與I1F9差異顯著(<0.05)。在I2水平下,2 a內I2F10與I2F9無明顯差異(>0.05),顯著高于I2F8處理(<0.05);I2F8與I1F8無明顯差異(>0.05,除2016年)I2F9產量較I1F9增加7.7%、7.4%(<0.05),I1F10與I2F10處理的甜菜產量無明顯差異(>0.05)。
2 a內,I1水平下甜菜含糖率隨灌水次數增加呈顯著減小趨勢,表現為:I1F8>I1F9>I1F10。在I2水平下,2016年甜菜含糖率表現為:I2F8>I2F9>I2F10(<0.05);2017年I2F8與I2F9無明顯差異(>0.05),I2F10處理的甜菜含糖率顯著小于其他處理(<0.05)。2 a內不同灌水定額水平下甜菜含糖率無明顯差異(>0.05)。
在I1水平下,2 a內F9的產糖量顯著小于F8(<0.05),F8與F10無明顯差異(>0.05)。在I2水平下,2016年F8與F9糖產量顯著高于F10(<0.05),F8與F9無明顯差異(>0.05),I2F9的甜菜產糖量達到1.92×104kg/hm2;在2017年I2F9的甜菜產糖量達到1.97×104kg/hm2,較I2F8與I2F10增加6.48%(<0.05),I2F8與I2F10無明顯差異(>0.05)。2 a內不同灌水定額下,I2F9較I1F9分別增加糖產9.7%、9.4%(<0.05),I1F8與I2F8、I1F10與I2F10無明顯差異(>0.05)。

表4 不同灌溉制度對甜菜產量、含糖率及產糖量的影響
注:表中土壤含水率為收獲前測定值,測定日期為10月10日
Note: Soil water content was measured before harvest in the table, which measured in 10/10
總體看來,灌水9次時增加15 mm灌水定額能顯著提高甜菜產量與糖產量;而灌水次數增加會導致甜菜含糖率降低,灌水定額增加對含糖率無明顯影響。
不同灌溉制度對甜菜耗水量(ETc,evapotranspiration)、水分利用效率(WUE,water use efficiency)、產糖水分利用效率(SWUE,sugar water use efficiency)的影響見表5。分析表5知,ETc隨灌溉定額增加呈增大趨勢,WUE隨灌溉定額增加呈減小趨勢。2 a內,灌水次數對甜菜ETc、WUE無明顯影響(>0.05),灌水定額對ETc、WUE、SWUE有極顯著影響(<0.01);2016年灌水次數增加對SWUE影響顯著(<0.05),在2017年無明顯影響(>0.05);在2 a內灌水次數與灌水定額交互作用對甜菜ETc、WUE、SWUE影響極顯著(<0.01)。

表5 不同灌溉制度對甜菜耗水量、水分利用效率及產糖水分利用效率的影響
2 a內,I2處理的甜菜ETc明顯大于I1處理(<0.05)。在I1水平下,F8與F9的ETc無明顯差異(>0.05),F10處理的ETc顯著大于其他處理(<0.05)。在I2處理下,2016年甜菜ETc隨灌水次數增加呈明顯增大趨勢,表現為I2F10>I2F9>I2F8(<0.05),2017年I2F8與I2F9無明顯差異(>0.05),I2F10處理的ETc為669.45 mm,顯著大于其他處理(<0.05)。
水分利用效率是指作物消耗單位水量生產出的同化量。由表6知,在2 a內I1灌水定額下各處理無明顯差異(>0.05);在I2水平下,2016年F8與F9處理的WUE顯著大于F10(<0.05),F8與F9無明顯差異(>0.05),在2017年無明顯差異(>0.05)。在2 a內I1處理的WUE顯著大于I2(<0.05),表明灌水定額增加會減小WUE。
產糖水分利用效率是評價甜菜產糖能力的指標。I1水平下,在2016年隨灌水次數增加SWUE呈顯著下降趨勢(<0.05);2017年F8與F9處理的SWUE無明顯差異(>0.05),F10處理SWUE較F8、F9減小5.5、3 kg/(mm·hm2)。在I2水平下,2 a內F8與F9無明顯差異,F10處理顯著小于F8、F9(<0.05)。2 a內相同灌水次數下I2處理的甜菜SWUE明顯小于I1(<0.05),表明灌水定額增加同時也會減小SWUE。
總之,ETc隨灌溉定額增大呈增大趨勢,灌水次數對甜菜WUE無明顯影響,灌水定額增加會明顯降低WUE與SWUE。灌水10次會明顯降低SWUE。
前人通過新疆膜下滴灌甜菜方法測得甜菜株高介于50~60 cm之間,LAI均在4.0以上[35]。本次試驗F8與F9處理的甜菜株高與前人相似,F10處理的甜菜株高均在70 cm以上。作物對土壤含水率反應較為敏感[36-37],土壤含水率是前期制約甜菜生長重要因素,本試驗灌水前1 d測得F8、F9、F10土壤相對含水率分別位于50%以下、50%~60%、60%以上,2 a試驗表明灌水次數對甜菜株高、LAI影響極顯著,這與Radin等提出灌水頻率對棉花植株生殖生長期影響顯著的結論相吻合[38],說明灌水次數對前期土壤含水率及甜菜生長起決定性作用;陳凱麗等通過小麥滴灌試驗表明52.5與60 mm灌水定額對冬小麥生長與產量無明顯影響[39],本次研究表明在2 a內F9、F10水平下灌水定額對甜菜株高、LAI無明顯影響,這與陳凱麗呈相同規律,但F8水平下灌溉定額對甜菜LAI影響顯著,說明灌水8次時土壤含水率位于50%以下時,甜菜生長受到影響,應該增加灌水定額。
王唯逍等研究表明適度減少灌水量有利于水稻葉片葉綠素形成[40],李智等通過試驗表明過多水分供應不會增加葉綠素含量[41]。而本次試驗說明甜菜葉綠素隨灌水定額與次數增加呈下降趨勢,與王唯逍等結果相似。
Doorenbos等研究表明土壤相對含水率保持在50%~60%時甜菜可獲得高產[42]。Tognetti等表明當缺水程度達到田間持水量50%時,甜菜減產25%[43]。樊福義等通過膜下滴灌甜菜試驗表明灌水8次時產量最高為9.07′104kg/hm2[44]。本次試驗表明灌水8次時產量較低,與樊福義結論不同,因為樊福義試驗年降雨量為350 mm,為豐雨年,而灌水次數增加能提高甜菜產量,這與灌水次數增加能增加作物產量[45-47]結論吻合,土壤含水率介于51%~56%產量較高,這與Doorenbos等[42]研究結果吻合。李智試驗表明甜菜產量隨甜菜LAI與土壤含水率增加而增加,含糖率與土壤含水率呈負相關[15,41]。本次試驗I2F9處理獲得雙高產,2 a內產糖量較I2F10分別增加4.3%、6.5%,I2F9的甜菜LAI小于與I1F10、I2F10,但同時獲得高產,說明土壤含水率是影響甜菜LAI與產量的根本原因,當土壤相對含水率達到50%以上時獲得高產;土壤含水率對含糖率影響主要體現在灌水次數上,隨灌水次數增加而降低。
Yildirim在安卡拉對甜菜進行充分灌溉后測得甜菜耗水量為865 mm[48];Barbanti等對甜菜進行虧缺與充分灌溉處理后得出甜菜耗水量在567~1 262 mm之間[49];Katerji等在黏土與壤土上充分灌溉后測得甜菜耗水量在731~836 mm之間[50]。本次試驗在2 a不同灌溉制度下測得甜菜耗水量在475~721 mm之間,耗水量隨灌溉定額增加而增大,2 a內I2F10處理耗水量分別為669、721 mm,與前人結果相似。孫烏日娜通過試驗表明甜菜ETc隨灌水量增加而增大,WUE隨灌水量增加而減小[18]。本次試驗表明I2灌水定額的WUE明顯低于I1處理,與前人結果相符,但灌水次數對ETc、WUE無明顯影響。李智研究表明甜菜產量與耗水量呈正比[41],本次試驗與李智結論相符,而WUE與ETc呈反比,證明WUE隨甜菜產量增加而呈減小趨勢。甜菜屬于經濟作物,應在保證高產量與產糖量前提下提高WUE與SWUE,因此以60 mm灌水定額灌水9次為更適宜新疆膜下滴灌甜菜制度,此外,新疆傳統膜下滴灌甜菜灌溉定額為600 mm,該灌溉制度相比傳統灌溉模式可節水10%。
1)在新疆膜下滴灌甜菜制度下,灌水次數增加能增加甜菜葉面積指數、產量,但會降低含糖率與產糖水分利用效率,對甜菜的耗水量、水分利用效率無顯著影響(>0.05);基于45 mm灌水定額增加15 mm灌水定額會增加甜菜產量、耗水量、降低水分利用效率與產糖水分利用效率,對含糖率與葉面積指數無明顯影響。甜菜SPAD值隨灌水次數與定額增加呈下降趨勢。
2)甜菜產量增加會導致水分利用效率降低,甜菜屬經濟作物,從經濟高產及新疆典型干旱區地域特征角度分析,灌水9次土壤相對含水率低于50%時,增加15 mm灌水定額2 a的糖產分別為1.92×104和1.97×104kg/hm2,能增加糖產量9.4%~9.7%左右,產量與灌水10次無明顯差異(>0.05),但對含糖率無明顯影響(>0.05),因此灌水9次,60 mm灌水定額更適應新疆膜下滴灌甜菜制度。
[1] 金巍,劉雙雙,張可,等. 農業生產效率對農業用水量的影響[J]. 自然資源學報,2018,33(8):1326-1339. Jin Wei, Liu Shuangshuang, Zhang Ke, et al. Influence of agricultural production efficiency on agricultural water consumption[J]. Journal of Natural Resources, 2018, 33(8): 1326-1339. (in Chinese with English abstract)
[2] 謝文寶,陳彤,劉國勇. 新疆農業水資源利用與經濟增長脫鉤關系及效應分解[J]. 節水灌溉,2018(4):69-72,77. Xie Wenbao, Chen Tong, Liu Guoyong. Decoupling relationship and effect decomposition of agricultural water resources utilization and economic Growth in Xinjiang[J]. Water Saving Irrigation, 2018(4), 69-72, 77. (in Chinese with English abstract)
[3] 李明思,鄭旭榮,賈宏偉,等. 棉花膜下滴灌灌溉制度試驗研究[J]. 中國農村水利水電,2001(11):13-15. Li Mingsi, Zheng Xurong, Jia Hongwei, et al. Experimental research on under mulch drip irrigation regime for cotton[J]. China Rural Nater and Hydropower, 2001(11): 13-15. (in Chinese with English abstract)
[4] 劉新永,田長彥. 棉花膜下滴灌鹽分動態及平衡研究[J]. 水土保持學報,2005,19(6):82-85. Liu Yongxin, Tian Changyan. Study on dynamic and balance of salt for cotton under plastic mulch in south Xinjiang[J]. Journal of Soil and Water Conservation, 2005, 19(6): 82-85. (in Chinese with English abstract)
[5] 張偉,呂新,李魯華,等. 新疆棉田膜下滴灌鹽分運移規律[J]. 農業工程學報,2008,24(8):15-19. Zhang Wei, Lü Xin, Li Luhua, et al. Salt transfer law cotton field with drip irrigation under the plastic mulch in Xinjiang region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(8): 15-19. (in Chinese with English abstract)
[6] 王昱,趙廷紅,李波,等. 西北內陸干旱地區農戶采用節水灌溉技術意愿影響因素分析[J]. 節水灌溉,2012(11):50-54 Wang Yu. Zhao Tinghong, Li Bo, et al. Affecting factors of farmers willingness to adopt water-saving technology in northwest arid region of China[J]. Water Saving Irrigation, 2012(11): 50–54. (in Chinese with English abstract)
[7] 王敏,王海霞,韓清芳,等. 不同材料覆蓋的土壤水溫效應及對玉米生長的影響[J]. 作物學報,2011,37(7):1249-1258. Wang Ming, Wang Haixia, Han Qiangfang, et al. Effects of different mulching materials on soil water, temperature, and corn growth[J]. Acta Agronomica Sinica, 2011, 37(7): 1249-1258. (in Chinese with English abstract)
[8] Hassanli A M, Ahmadirad S, Beecham S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency[J]. Agric. Water Manage, 2011, 97(2): 357-362.
[9] 冶軍,陳軍,朱新在. 不同灌溉方式對新疆甜菜生長發育的影響[J]. 現代農業科技,2009(7):15-16. Ye Jun, Chen Jun, Zhu Xinzai. Effects of different irrigation ways on the growth and development of sugarbeet in Xinjiang[J]. Modern Agricultural Science and Technology. 2009(7):15-16. (in Chinese with English abstract)
[10] 趙長星,馬東輝,王月福,等. 施氮量和花后土壤含水量對小麥旗葉衰老及粒重的影響[J]. 應用生態學報,2008(11):2388-2393. Zhao Changxin, Ma Donghui, Wang Yuefu, et al. Effects of nitrogen application rate and post-anthesis soil moisture content on the flag leaf se- nescence and kernel weight of wheat[J]. Chinese Journal of Applied Ecology. 2008(11): 2388-2393. (in Chinese with English abstract)
[11] 馬東輝,趙長星,王月福,等. 施氮量和花后土壤含水量對小麥旗葉光合特性和產量的影響[J]. 生態學報,2008(10):4896-4901. Ma Donghui, Zhao Changxin, Wang Yuefu, et al. Effects of nitrogen application and soil moisture content after flowering on photosynthetic characteristics and yield of flag leaves of wheat[J]. Chinese Journal of Applied Ecology. 2008(10): 4896-4901. (in Chinese with English abstract)
[12] 侯玉虹,尹光華,劉作新,等. 土壤含水量對玉米出苗率及苗期生長的影響[J]. 安徽農學通報,2007(1):70-73. Hou Yuhong, Yi Guanghua, Liu Zuoxin, et al. Effects of soil water contents on seedlings emergence rate and seeding growth of maize[J]. Anhui Agricultural Science Bulletin. 2007(1): 70-73. (in Chinese with English abstract)
[13] Kosobryulchov A A, Bil K Y, Nishio J N. Sugar beet photosynthesis under conditions of increasing water defcciency in soil and protective effects of a low- molecular-weight alcohol[J]. Applied Biochemistry and Microbiology, 2004, 40(1):668-674.
[14] Fabeiro C, Martin d S O F, Lopez R, et al. Production and quality of the sugar beet () cultivated under controlled deficit irrigation conditions in a semi-arid climate[J]. Agricultural Water Management, 2003, 62(3): 215-227.
[15] 李智. 膜下滴灌條件下甜菜水分代謝特點的研究[D].呼和浩特:內蒙古農業大學,2015 Li Zhi. The Physiological Effects on Coupling of Water and Nitrogen in Sugar Beets With Drip Irrigation under Plastic Mulch[D]. Hohhot: Inner Mongolla Agricultural University, 2015. (in Chinese with English abstract)
[16] 馮澤洋,李國龍,李智,等. 調虧灌溉對滴灌甜菜生長和產量的影響[J]. 灌溉排水學報,2017,36(11):7-12. Feng Zeyang, Li Guolong, Li Zhi, et al. Effects of regulated deficit drip irrigation on growth and yield of sugar beet[J]. Journal of Irrigation and Drainage. 2017, 36(11): 7-12. (in Chinese with English abstract)
[17] 董心久,楊洪澤,高衛時,等. 灌水量對滴灌甜菜生長發育及產質量的影響[J]. 中國糖料,2013(4):37-38,41. Dong Xinjiu, Yang Hongze, Gao Weishi, et al. Effect of drip irrigation amount on sugar beet growth, yield and quality[J]. Sugar Crops of China. 2013(4): 37-38,41. (in Chinese with English abstract)
[18] 孫烏日娜. 膜下滴灌甜菜水分利用效率的研究[D]. 呼和浩特:內蒙古農業大學,2013. Sun Wurina. Study on Water Use Efficiency of Sugar Beet with Drip Irrigation under Mulch[D]. Hohhot: Inner Mongolla Agricultural University,2013. (in Chinese with English abstract)
[19] 李陽陽,費聰,崔靜,等. 滴灌甜菜對糖分積累期水分虧缺的生理響應[J]. 中國生態農業學報,2017,25(3):373-380. Li Yangyang, Fei Cong, Cui Jing, et al. Physiological response of sugar beet() to water deficit at sugar accumulation stage under drip irrigation[J]. Chinese Journal of Eco-Agriculture. 2017, 25(3): 373-380. (in Chinese with English abstract)
[20] 李陽陽,費聰,崔靜,等. 滴灌甜菜對塊根膨大期水分虧缺的補償性響應[J]. 作物學報,2016,42(11):1727-1732. Li Yangyang, Fei Cong, Cui Jing, et al. Compesation response of drip-irrigated sugar beets () to different water deficits during storage root development[J]. Acta Agronomica Sinica. 2016, 42(11): 1727-1732. (in Chinese with English abstract)
[21] 李陽陽,耿青云,費聰,等. 滴灌甜菜葉叢生長期對干旱脅迫的生理響應[J]. 應用生態學報,2016,27(1):201-206. Li Yangyang, Geng Qingyun, Fei Cong, et al. Physiological responses of sugar beet () to drought stress during vegetative development period under drip irrigation[J]. Chinese Journal of Applied Ecology. 2016, 27(1): 201-206. (in Chinese with English abstract)
[22] Topak R, Su Heri S, Acar B. Effect of different drip irrigation regimes on sugar beet) yield, quality and water use efficiency in Middle Anatolian, Turkey [J]. Irrigation Science, 2011, 29(1): 79-89.
[23] 董平國,王增麗,溫廣貴,等.不同灌溉制度對制種玉米產量和階段耗水量的影響[J]. 排灌機械工程學報,2014,32(9):822-828. Dong Pingguo, Wang Zengli, Wen Guanggui, et al. Effects of irrigation schedule on water consumption and yield of seed maize[J]. Journal of Drainage and Irrigation Machinery Engineering. 2014, 32(9): 822-828. (in Chinese with English abstract)
[24] 王振華,楊培嶺,鄭旭榮,等. 新疆現行灌溉制度下膜下滴灌棉田土壤鹽分分布變化[J]. 農業機械學報,2014,45(8):149-159. Wang Zhenhua, Yang Peiling, Zheng Xurong, et al. Soil salt dynamics in cotton fields with mulched drip irrigation under the existing irrigation system in Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery. 2014, 45(8): 149-159. (in Chinese with English abstract)
[25] 王峰,孫景生,劉祖貴,等. 不同灌溉制度對棉田鹽分分布與脫鹽效果的影響[J]. 農業機械學報,2013,44(12):120-127. Wang Feng, Sun Jingsheng, Liu Zugui, et al. Effect of different irrigation scheduling on salt distribution and leaching in cotton field[J]. Transactions of the Chinese Society for Agricultural Machinery. 2013, 44(12): 120-127. (in Chinese with English abstract)
[26] Collins W. Remote sensing of crop type and maturity [J]. Photogrammetric Engineering and emote Sensing, 1978, 44(1): 43-55.
[27] 劉升廷,王燕飛,高衛時,等. 對我國甜菜種業發展的思考[J]. 中國糖料,2017,39(2):71-74. Liu Shengting, Wang Yanfei, Gao Weishi, et al. Research progress of proteomics in sugar beet[J]. Sugar Crops of China. 2017, 39(2): 71-74. (in Chinese with English abstract)
[28] 李明思,康紹忠,孫海燕. 點源滴灌滴頭流量與濕潤體關系研究[J]. 農業工程學報,2006,22(4):32-35. Li Mingsi, Kang Shaozhong, Sun Haiyan. Relationships between dripper discharge and soil wetting pattern for drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE). 2006, 22(4): 32-35. (in Chinese with English abstract)
[29] 張國輝,江行久. 利用土壤含水量資料估算區域降水滲透量[J]. 東北水利水電,2005(8):53-54. Zhang Guohui, Jiang Xingjiu. Estimation of regional precipitation infiltration using soil water content data[J]. Water Resources & Hydropower of Northeast China. 2005(8): 53-54. (in Chinese with English abstract)
[30] 龔元石,廖超子,李保國. 土壤含水量和容重的空間變異及其分形特征[J]. 土壤學報,1998,35(1):10-15. Gong Yuanshi, Liao Chaozi, Li Baoguo. Spatial varibility and fractal dimension for soil water content and bulk density[J]. Acta Pedologica Sinica. 1998, 35(1): 10-15. (in Chinese with English abstract)
[31] 柴紅敏,蔡煥杰,王健,等. 虧缺灌溉試驗中土壤水分脅迫水平設置新指標[J]. 中國農村水利水電,2009(6):14-17. Chai Hongmin, Cai Huanjie, Wang Jian, et al. A new index for setting level of soil water in deficit irrigation experimentation[J]. China Rural Water and Hydropower. 2009(6): 14-17.(in Chinese with English abstract)
[32] James L G. Principles of farm irrigation system design[J]. Cab International Wallingford Uk Pp, 1988. 12(4): 279-291.
[33] He J. Best Management Practice Development with the Ceres-Maize Model for Sweet Corn Production in North Florida[D].Florida: University of Florida. 2008.
[34] 宮兆寧,趙雅莉,趙文吉,等. 基于光譜指數的植物葉片葉綠素含量的估算模型[J]. 生態學報,2014,34(20):5736-5745. Gong Zhaoning, Zhao Yali, Zhao Wenji, et al. Estimation model for plant leaf chlorophyll content based on the spectral index content[J]. Acta Ecologica Sinica. 2014, 34(20): 5736-5745. (in Chinese with English abstract)
[35] 胡華兵. 新疆甜菜高產高效種植技術研究[D]. 石河子:石河子大學,2014. Hu Huabin. Study of Yield and High Efficiency Cultivation Technology of Sugar Beet in Xinjiang[D]. Shihezi: Shihezi University, 2014. (in Chinese with English abstract)
[36] 鄭國保,張源沛,孔德杰,等. 不同灌水次數對日光溫室番茄土壤水分動態變化規律的影響[J]. 中國農學通報,2011,27(22):192-196. Zheng Guobao, Zhang Yuanpei, Sun Dejie, et al. Research on soil water dynamics of greenhouse tomato by different irrigation frequency[J]. Chinese Agricultural Science Bulletin. 2011, 27(22): 192-196. (in Chinese with English abstract)
[37] 霍東亮,孔維萍. 調虧灌溉對作物土壤含水量及生長特性的影響[J]. 農業科技與信息,2017(22):73-74. Huo Dongliang, Kong Weiping. Effects of regulated deficit irrigation on soil water content and growth characteristics of crops[J]. Agricultural Science-Technology and Information,2017(22): 73-74. (in Chinese with English abstract)
[38] Radin J W, Mauney J R, Kerridge P C, et al, Water up take by cotton roots during fruit filling In relation to irrigation frequency[J]. Crop Sci. 1989(4): 1000-1005.
[39] 陳凱麗,趙經華,馬亮,等. 不同灌水定額對北疆小麥生長和產量的影響[J]. 節水灌溉,2016(5):19-22. Chen Kaili, Zhao Jinghua, Ma Liang, et al. Effects of different irrigation quota of drip irrigation in the northern Xinjiang region of the growth and yield of wheat[J]. Water Saving Irrigation. 2016(5): 19-22. (in Chinese with English abstract)
[40] 王唯逍,劉小軍,朱艷,等. 不同土壤水分處理對水稻光合特性及產量的影響[J]. 生態學報,2012,32(22):7053-7060. Wang Weixiao, Liu Xiaojun, Zhu Yan, et al. Effects of different soil water treatments on photosynthetic characteristics and grain yield in rice[J]. Acta Ecologica Sinica. 2012, 32(22): 7053-7060. (in Chinese with English abstract)
[41] 李智,李國龍,劉蒙,等. 膜下滴灌條件下甜菜水分代謝特點的研究[J]. 節水灌溉,2015(9):52-56. Li Zhi, Li Guolong, Liu Meng, et al. Study on water metabolism characteristics of sugar beet under plastic mulching drip irrigation[J]. Water Saving Irrigation. 2015(9): 52-56. (in Chinese with English abstract)
[42] Doorenbos Y, Kassam A H. Yield response to water[J]. Irrigation & Agricultural Development, 1986, 33(6): 257-280.
[43] Tognetti R, Palladino M, Minnocci A, et al. The response of sugar beet to drip and low-pressure sprinkler irrigation in Southern Italy[J]. Agricultural Water Management, 2003, 60(2): 135-155.
[44] 樊福義,蘇文斌,宮前恒,等. 高寒干旱區膜下滴灌甜菜灌溉制度的研究[J]. 中國糖料,2017,39(6):37-39,42. Fan Fuyi, Su Wenbin, Gong Qianheng, et al. Effects of active organic calcium-magnesium-silicon fertilizer on yield, quality and benefits of sugarcane[J]. Sugar Crops of China, 2017, 39(6): 37-39, 42. (in Chinese with English abstract)
[45] 朱文新,孫繼穎,高聚林,等. 深松和灌水次數對春玉米耗水特性及產量的影響[J]. 玉米科學,2016,24(5):75-82. Zhu Wenxin, Sun Jiying, Gao Julin, et al. Effect of subsoiling and irrigation frequency on water consumption characteristics and yield of super high yield spring maize[J]. Journal of Maize Sciences. 2016, 24(5): 75-82. (in Chinese with English abstract)
[46] 王偉. 不同灌水次數下施氮量對優質春小麥產量與品質的影響[D]. 烏魯木齊:新疆農業大學,2013. Wang Wei. The Nitrogen Application Rate on Wheat Yield and Quality of High-quality Spring Wheat under Different Irrigation Times[D]. Urumqi: Xinjiang Agricultural University, 2013. (in Chinese with English abstract)
[47] 李云,李金霞,李瑞奇,等. 灌水次數和施磷量對冬小麥養分積累量和產量的影響[J]. 麥類作物學報,2010,30(6):1097-1103. Li Yun, Li Jinxia, Li Ruiqi, et al. Effect of irrigation times and phosphorus application rate on nutrient accumulation and grain yield of winter wheat[J]. Journal of Triticeae Crops. 2010, 30(6): 1097-1103. (in Chinese with English abstract)
[48] Yildirim O. Sugar Beet Yields Response to Surface Drip and Subsurface Irrigation Methods[D]. Wikipedia: University of Ankara, 1990.
[49] Barbanti L, Monti A, Venturi G. Nitrogen dynamics and fertilizer use efficiency in leaves of different ages of sugar beet (Beta vulgaris) at variable water regimes[J]. Ann Appl Bio. 2010, 150(2): 197–205.
[50] Katerji N, Mastrorilli M. The effect of soil texture on the water use efficiency of irrigated crops: results of a multi-year experiment carried out in the Mediterranean region[J]. Euro JAgron. 2009, 30(2): 95–100.
Effects of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency
Wang Zhenhua1,2, Yang Binlin1,2, Xie Xiangwen3,4※, Wang Zeyu4, Yang Hongze5, Dong Xinjiu5
(1.832000,; 2.832000,; 3.100083,; 4.830091,; 5.830091,)
In this study, we analyzed the effects of different drip irrigation regimes under plastic film on sugar beet yield and water use efficiency in Xinjiang of China. Drip irrigation under plastic film had been widely used in the arid areas of northwest China, especially in Xinjiang for saving water and fertilizer, increasing temperature of soil and preservation of soil moisture. The drip irrigation regimes of sugar beet under plastic film had a significant effect on increasing sugar beet root yield compared with traditional irrigation regimes. Two irrigation water quota (45 mm, 60 mm) and three irrigation frequency (eight, nine, ten) were combined to six treatments based on traditional drip irrigation regimes of sugar beet under plastic film in Xinjiang for suitable drip irrigation regimes under plastic film. The experiment was conducted during 2016 and 2017 at the Sugar Beet Improvement Center in Manasi, Xinjiang. The effects of different irrigation treatments on height and weight of sugar beet, leaf area index, root yield, sugar yield, percentage of sugar content, soil water content, evapotranspiration and water use efficiency were investigated. The water consumption of sugar beet was indicated combined with the soil water content and the suitable drip irrigation regimes under plastic film was proposed. The results showed that the increase of irrigation frequency could increase leaf area index, weight of sugar beet root and root yield, decreased percentage of sugar content and had no significant (> 0.05) effect on evapotranspiration and sugar beet water use efficiency. The increase of irrigation water quota were not significant effect on leaf area index and percentage of sugar content, increased weight of sugar beet root and evapotranspiration and decreased water use efficiency of sugar beet. In addition, The SPAD value was decreased as the increase of irrigation water quota and irrigation frequency. By irrigation frequency and water quota interaction, the root yield of 45 mm and 60 mm irrigation water quota at frequency of eight were significant decreased, and percentage of sugar content and water use efficiency of 45 mm and 60 mm irrigation water quota at frequency of eight were decreased for the soil relative water content were under 50%. The soil relative water content was under 50% for 45 mm irrigation water quota at frequency of nine, and was more than 50% when 45 mm irrigation water quota at frequency of nine increased 15 mm. The weight of root yield was increased and root yield was increased by 7.4%-7.7% with the sugar yield increased by 9.4%-9.7% as the increase of 15 mm of 45 mm irrigation water quota at frequency of nine. The height of sugar beet, leaf area index were significant (<0.05) higher than other irrigation frequencies for ten irritation frequency which the soil relative water content was more than 50%. The ten irrigation frequency was not significant (>0.05) compared with nine irrigation frequency at 60 mm irrigation water quota, but the sugar yield of sugar beet was significant (<0.05) less than nine irrigation frequency for 60 mm irrigation water quota. As increased 15 mm irrigation water quota for ten irrigation frequency at 45 mm irrigation water quota, the evapotranspiration was increased, the water use efficiency was decrease and root yield, percentage of sugar content and sugar yield of sugar beet had no significant difference. The results indicated that the nine irrigation frequency at 60 mm water quota was the suitable irrigation regimes of sugar beet under plastic film in Xinjiang for the lack of rain and sufficient sunshine, which saving 10% irrigation water compared with traditional irrigation regimes of sugar beet under plastic film.
irrigation; crops; soil moisture; root yield of sugar beet; sugar yield of sugar beet; water use efficiency
2018-07-04
2019-01-12
國家糖料產業體系水分管理與節水栽培崗位(CARS-170202);國家重點研發計劃“經濟作物水肥一體化技術模式研究與應用(2017YFD0201506)”
王振華,河南扶溝人,教授,博士生導師,主要從事干旱區節水灌溉理論與技術研究。Email:wzh2002027@163.com
謝香文,甘肅民勤人,研究員,研究方向為農業節水。Email:xiexw@sina.cn
10.11975/j.issn.1002-6819.2019.08.019
S275.6;S566.3
A
1002-6819(2019)-08-0158-09
王振華,楊彬林,謝香文,王則玉,楊洪澤,董心久. 灌溉制度對膜下滴灌甜菜產量及水分利用效率的影響[J]. 農業工程學報,2019,35(8):158-166. doi:10.11975/j.issn.1002-6819.2019.08.019 http://www.tcsae.org
Wang Zhenhua, Yang Binlin, Xie Xiangwen, Wang Zeyu, Yang Hongze, Dong Xinjiu. Effects of different irrigation regimes of drip irrigation under plastic film on sugar beet yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 158-166. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.019 http://www.tcsae.org