999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

布魯頓酪氨酸激酶抑制劑治療B細(xì)胞腫瘤的研究進(jìn)展

2019-06-19 19:17:40徐慧雯陳波斌
上海醫(yī)藥 2019年11期

徐慧雯 陳波斌

摘 要 布魯頓酪氨酸激酶(Brutons tyrosine kinase, BTK)是B細(xì)胞受體信號(hào)傳導(dǎo)通路的重要組分,與多種B細(xì)胞腫瘤的生存和增殖密切相關(guān)。臨床試驗(yàn)已經(jīng)證實(shí),小分子BTK抑制劑伊布替尼具有良好的抗B細(xì)胞腫瘤活性。本文概要介紹BTK在B細(xì)胞受體等信號(hào)傳導(dǎo)通路中的作用、對(duì)B細(xì)胞腫瘤發(fā)生和發(fā)展的影響以及BTK抑制劑用于B細(xì)胞腫瘤治療的效果等研究進(jìn)展。

關(guān)鍵詞 布魯頓酪氨酸激酶抑制劑 B細(xì)胞腫瘤 伊布替尼

中圖分類號(hào):R979.19; R730.59 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2019)11-0003-05

Research progress in Brutons tyrosine kinase inhibitor in treatment of B cell malignancies*

XU Huiwen, CHEN Bobin**

(Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China)

ABSTRACT Brutons tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signaling and is closely related to the survival and proliferation of various B cell malignancies. Small molecule inhibitors of BTK have shown antitumor activity in several clinical trials. The effects of BTK on BCR signaling and some other signaling pathways and the occurrence and development of B cell malignancies are summarized. In addition, the effects of BTK inhibitors for the treatment of B cell malignancies are also discussed.

KEY WORDS Brutons tyrosine kinase inhibitor; B cell malignancies; ibrutinib

布魯頓酪氨酸激酶(Brutons tyrosine kinase, BTK)是胞漿內(nèi)非受體型酪氨酸激酶TEC家族中的一員,在B細(xì)胞生長發(fā)育、增殖分化過程中起著重要作用。BTK最早是于X-連鎖無丙種球蛋白血癥(X-linked agammaglobulinemia, XLA)患者中被發(fā)現(xiàn)的[1]。XLA患者因極度缺乏外周血B細(xì)胞和血漿免疫球蛋白,故會(huì)反復(fù)、持續(xù)發(fā)生嚴(yán)重感染。此后的研究證實(shí),BTK是B細(xì)胞受體信號(hào)傳導(dǎo)通路的重要組分,而B細(xì)胞受體信號(hào)傳導(dǎo)通路在B細(xì)胞生長發(fā)育以及B細(xì)胞介導(dǎo)的適應(yīng)性體液免疫應(yīng)答過程中均發(fā)揮著至關(guān)重要的作用[2]。BTK在多種B細(xì)胞腫瘤中表達(dá)異常,如慢性淋巴細(xì)胞白血病(chronic lymphocytic leukemia, CLL)、套細(xì)胞淋巴瘤(mantle cell lymphoma, MCL)等,提示BTK是抗B細(xì)胞腫瘤的一種潛在作用靶點(diǎn)。

BTK抑制劑是一類可與BTK共價(jià)結(jié)合的小分子化合物,依布替尼(ibrutinib)就屬第一代BTK抑制劑。伊布替尼經(jīng)選擇性地與BTK的半胱氨酸殘基(C481)共價(jià)結(jié)合,由此不可逆地抑制BTK的活性。臨床試驗(yàn)顯示,伊布替尼治療B細(xì)胞腫瘤有極好的效果,故美國FDA于2013年批準(zhǔn)了依布替尼上市,用于多種B細(xì)胞腫瘤的二線治療[3]。2013—2017年,美國FDA又相繼批準(zhǔn)伊布替尼用于復(fù)發(fā)或難治的CLL、MCL和瓦爾登斯特倫巨球蛋白血癥(Waldenstr?ms macroglobulinemia, WM)的一線治療。本文概要介紹BTK在B細(xì)胞受體等信號(hào)傳導(dǎo)通路中的作用、對(duì)B細(xì)胞腫瘤發(fā)生和發(fā)展的影響以及BTK抑制劑用于B細(xì)胞腫瘤治療的效果和不良反應(yīng)等的研究進(jìn)展。

1 BTK在B細(xì)胞受體信號(hào)傳導(dǎo)通路中的重要作用

B細(xì)胞膜上的B細(xì)胞受體能通過其胞外段可變區(qū)特異性地識(shí)別并結(jié)合抗原分子,但其胞內(nèi)段結(jié)構(gòu)域很短,CD79a-CD79b異源二聚體輔助B細(xì)胞受體向胞內(nèi)傳遞活化信號(hào)。磷酸化后的CD79a-CD79b與B細(xì)胞連接蛋白(B-cell linker protein, BLNK)相互作用,使BLNK活化。BTK、脾酪氨酸激酶以及Src家族激酶如Lyn等多種激酶被招募、聚集至活化的BLNK周邊,形成信號(hào)小體并發(fā)生磷酸化[4]。磷酸化的BTK激活磷脂酶C-γ2(phospholipase C-γ2, PLCγ2)。PLCγ2是一類極為重要的脂酶,可水解第二信使磷脂酰肌醇-3, 4, 5-三磷酸產(chǎn)生肌醇三磷酸和甘油二酯。肌醇三磷酸調(diào)節(jié)胞內(nèi)鈣離子濃度,激活活化T細(xì)胞核因子(nuclear factor of activated T cells, NFAT)。甘油二酯激活蛋白激酶C,誘導(dǎo)絲裂原活化的蛋白激酶(mitogen-activated protein kinase, MAPK)家族如胞外信號(hào)調(diào)節(jié)蛋白激酶(extracellular signalregulated protein kinases, ERK)1、ERK2等多種激酶活化,活化的ERK1、ERK2會(huì)促使底物c-Jun氨基末端激酶、p38蛋白的MAPK的繼續(xù)活化以及核因子κB(nuclear factor-κB, NF-κB)的轉(zhuǎn)錄激活[5]。總之,BTK被上游激酶磷酸化激活后能激活PLCγ2,從而引發(fā)下游級(jí)聯(lián)反應(yīng),由此將上游B細(xì)胞受體活化信號(hào)傳導(dǎo)至下游并最終激活NF-κB等。

除BTK能傳導(dǎo)B細(xì)胞受體信號(hào)外,磷脂酰肌醇-3激酶(phosphatidylinositol 3 kinase, PI3K)可與絲氨酸/蘇氨酸激酶Akt相互作用,招募Akt至胞膜區(qū)磷酸化而激活A(yù)kt。激活后的Akt會(huì)促使NFAT、FoxOs和NF-κB等核因子的轉(zhuǎn)錄,從而激活一條不同于B細(xì)胞受體受抗原刺激后通過BTK介導(dǎo)的信號(hào)傳導(dǎo)通路,這條PI3K-Akt信號(hào)傳導(dǎo)通路也被稱為B細(xì)胞的“生存信號(hào)傳導(dǎo)通路”[6]。BTK可促進(jìn)Akt的磷酸化,由此正向調(diào)節(jié)PI3K-Akt信號(hào)傳導(dǎo)通路的激活[7]。BTK在非經(jīng)典的B細(xì)胞受體信號(hào)傳導(dǎo)通路中亦起著一定的作用。

2 BTK對(duì)B細(xì)胞腫瘤生存和生長的影響

BTK信號(hào)傳導(dǎo)通路的激活會(huì)發(fā)出啟動(dòng)CLL細(xì)胞生長的信號(hào)。通過檢測CLL患者的腫瘤樣本發(fā)現(xiàn),CLL細(xì)胞的BTK呈過表達(dá)狀態(tài),且其磷酸化的程度組成性增高[8]。對(duì)CLL小鼠模型的研究也發(fā)現(xiàn),BTK基因缺陷型小鼠不會(huì)發(fā)生CLL,而通過基因工程手段誘導(dǎo)BTK過表達(dá)的小鼠的CLL發(fā)生率和死亡率均升高[9]。體外研究顯示,使用伊布替尼處理CLL細(xì)胞可降低腫瘤細(xì)胞生存和增殖的能力[10]。這些研究表明,BTK信號(hào)傳導(dǎo)通路與CLL細(xì)胞的生存和增殖密切相關(guān)。

BTK在CLL細(xì)胞的遷移過程中亦發(fā)揮著重要作用。伊布替尼可有效阻斷趨化因子CXCL12、CXCL13介導(dǎo)的CLL細(xì)胞向淋巴結(jié)生發(fā)中心的遷移[11]。此外,實(shí)驗(yàn)發(fā)現(xiàn),在CLL細(xì)胞與B細(xì)胞激活因子、α-腫瘤壞死因子(tumor necrosis factor, TNF)、白細(xì)胞介素-4、白細(xì)胞介素-6和CD40配基共培養(yǎng)時(shí),加入伊布替尼可降低CLL細(xì)胞的發(fā)育能力[12],提示BTK抑制劑具有中和CLL微環(huán)境中的促生存因子的作用。在CLL細(xì)胞與CLL相關(guān)巨噬細(xì)胞共培養(yǎng)時(shí),使用BTK抑制劑處理亦見能明顯減少CLL細(xì)胞增生和趨化因子CCL3、CCL4的生成[10],表明BTK抑制劑可通過阻斷巨噬細(xì)胞的共刺激作用而產(chǎn)生抗腫瘤微環(huán)境的作用。

以上機(jī)制可部分解釋伊布替尼治療CLL時(shí)患者出現(xiàn)再分布性淋巴細(xì)胞增多癥(redistribution lymphocytosis, RL)的原因[13]。RL表現(xiàn)為受累淋巴組織體積迅速縮小,而血液中的腫瘤細(xì)胞數(shù)量卻一過性地顯著增多。與傳統(tǒng)化療不同,伊布替尼通過“忽略性死亡”(death by neglect)機(jī)制使已脫離腫瘤微環(huán)境的腫瘤細(xì)胞死亡,故能避免因腫瘤細(xì)胞溶解死亡引發(fā)的腫瘤溶解綜合征[13]。RL在治療MCL、WM等患者時(shí)亦常見,可自行消退[14]。

總之,伊布替尼主要通過兩種機(jī)制產(chǎn)生抗腫瘤活性:一是抑制腫瘤B細(xì)胞內(nèi)部與其生存、增殖相關(guān)的信號(hào)傳導(dǎo)通路,二是阻斷腫瘤B細(xì)胞與腫瘤微環(huán)境的相互作用。

3 BTK抑制劑伊布替尼治療B細(xì)胞腫瘤的臨床研究

3.1 治療CLL

對(duì)CLL小鼠模型的研究發(fā)現(xiàn),伊布替尼治療可顯著延緩CLL進(jìn)展[10]。Burger等[15]采用重水標(biāo)記CLL患者的腫瘤細(xì)胞,以實(shí)時(shí)反映伊布替尼治療時(shí)CLL細(xì)胞的代謝情況。結(jié)果發(fā)現(xiàn),伊布替尼可阻斷CLL細(xì)胞增生,促使CLL細(xì)胞死亡。Ⅰ期臨床試驗(yàn)顯示,伊布替尼治療CLL的總應(yīng)答率為69%[16]。Ⅰb /Ⅱ期臨床試驗(yàn)顯示,85例復(fù)發(fā)或難治的CLL患者接受伊布替尼治療,隨訪20.9個(gè)月時(shí)的總應(yīng)答率為71%,其中完全緩解率為3%;隨訪3年時(shí)的總應(yīng)答率提高至90%[17]。伊布替尼單藥治療復(fù)發(fā)或難治的CLL療效顯著,且長期持續(xù)用藥可進(jìn)一步提高療效。

部分影響CLL化療預(yù)后的高危因素對(duì)伊布替尼治療結(jié)果的影響較小[18]。鑒于伊布替尼單藥治療大多無法達(dá)到CLL完全緩解,患者仍存在微小殘余病灶,須長期持續(xù)用藥,故目前臨床上正在開展多項(xiàng)伊布替尼聯(lián)合其他抗腫瘤藥物治療CLL的臨床試驗(yàn),以期進(jìn)一步提高療效。

3.2 治療MCL

Ⅰ期臨床試驗(yàn)顯示,9例MCL患者接受伊布替尼治療,7例患者對(duì)治療有良好應(yīng)答[16]。Ⅱ期臨床試驗(yàn)顯示,111例復(fù)發(fā)或難治的MCL患者接受伊布替尼治療,總應(yīng)答率為68%,其中完全緩解率為21%,中位疾病無進(jìn)展生存時(shí)間(progression-free survival, PFS)為13.9個(gè)月[19]。Ⅲ期臨床試驗(yàn)證實(shí),伊布替尼單藥治療復(fù)發(fā)或難治的MCL的療效優(yōu)于替西羅莫司(temsirolimus)[20]。伊布替尼治療進(jìn)展期MCL的療效不佳且復(fù)發(fā)率高[21]。對(duì)伊布替尼治療高度敏感的MCL患者多為經(jīng)典的B細(xì)胞受體信號(hào)傳導(dǎo)通路過度活化者,耐藥患者則主要為非經(jīng)典的B細(xì)胞受體信號(hào)傳導(dǎo)通路過度活化者以及TNF受體相關(guān)因子-2基因突變者[22]。

3.3 治療WM

WM患者中約90%存在髓樣分化原發(fā)性反應(yīng)基因88(myeloid differentiation primary response gene 88, MYD88)突變,約30%存在趨化因子受體CXCR4基因突變[23]。一項(xiàng)伊布替尼治療WM的臨床試驗(yàn)顯示,總應(yīng)答率為89.5%,其中應(yīng)答性最好的是MYD88突變、而CXCR4基因?yàn)橐吧偷幕颊撸麄儗?duì)伊布替尼治療的總應(yīng)答率為100%,且應(yīng)答持續(xù)時(shí)間更長[24]。突變后的MYD88可通過BTK信號(hào)傳導(dǎo)通路激活NF-κB,此通路可被伊布替尼阻斷;而CXCR4基因突變會(huì)誘導(dǎo)Akt和ERK表達(dá),表現(xiàn)出拮抗伊布替尼誘導(dǎo)WM細(xì)胞凋亡的作用。因此,應(yīng)依據(jù)WM患者的基因突變類型決定是否選用伊布替尼治療。

4 B細(xì)胞腫瘤對(duì)伊布替尼的耐藥性

對(duì)伊布替尼耐藥的CLL患者常會(huì)發(fā)生Richter轉(zhuǎn)化,即由CLL轉(zhuǎn)化為侵襲性淋巴瘤如彌漫性大B細(xì)胞淋巴瘤等。這類患者多存在高風(fēng)險(xiǎn)基因型,如CLL細(xì)胞存在未突變型免疫球蛋白重鏈可變區(qū)基因、CLL細(xì)胞染色體17p缺失等,他們常因疾病進(jìn)展或發(fā)生Richter轉(zhuǎn)化而不得不中止治療,中位總生存期僅3.1個(gè)月,預(yù)后極差[25]。伊布替尼作為三線用藥治療B細(xì)胞腫瘤的療效顯著差于一、二線用藥,且導(dǎo)致腫瘤出現(xiàn)耐藥性的幾率也更大[26]。

CLL細(xì)胞BTK中的C481S結(jié)構(gòu)的改變以及BTK信號(hào)傳導(dǎo)通路中的重要組分PLCγ2基因位點(diǎn)R665W和L845F的突變會(huì)導(dǎo)致CLL細(xì)胞對(duì)伊布替尼耐藥:C481S結(jié)構(gòu)的改變會(huì)降低BTK對(duì)伊布替尼的親和性,PLCγ2基因的突變則會(huì)導(dǎo)致BTK信號(hào)傳導(dǎo)通路下游自行激活[27]。研究發(fā)現(xiàn),使用B細(xì)胞淋巴瘤因子-2抑制劑唯奈托克(venetoclax)可克服CLL患者因PLCγ2基因突變引起的對(duì)伊布替尼的耐藥性[28],使用細(xì)胞周期蛋白依賴性激酶-4抑制劑可提高M(jìn)CL細(xì)胞對(duì)伊布替尼的敏感性[29]。

5 伊布替尼治療的不良反應(yīng)及第二代BTK抑制劑的研發(fā)

伊布替尼治療的不良反應(yīng)程度多為輕到中度,但其某些嚴(yán)重不良反應(yīng)亦可導(dǎo)致治療中斷[30]。接受伊布替尼治療,約50%患者會(huì)出現(xiàn)感染癥狀,其中20%為機(jī)會(huì)性致病菌感染性肺炎[31];約3%患者發(fā)生較嚴(yán)重的出血事件[32];超過16%患者發(fā)生心房纖顫[33]。發(fā)生心房纖顫的患者需使用抗凝藥物預(yù)防腦卒中,但此又會(huì)提高出血風(fēng)險(xiǎn),故對(duì)伊布替尼治療患者應(yīng)予以密切監(jiān)測。伊布替尼抑制心肌細(xì)胞PI3K-Akt信號(hào)傳導(dǎo)通路可能是其引發(fā)心房纖顫的原因,但具體機(jī)制還未明確[34]。

伊布替尼不是BTK的特異性抑制劑,它存在脫靶效應(yīng),與TEC家族的激酶(如Itk、Tec、Bmx等)、表皮生長因子受體、T細(xì)胞X染色體激酶和Janus激酶-3等均可發(fā)生相互作用,由此產(chǎn)生毒性及不良反應(yīng)[35]。目前,國外正在研發(fā)第二代BTK抑制劑,包括acalabrutinib(ACP-196)、ONO/GS-4059和BGB-3111,它們對(duì)BTK的選擇性更高,有望減少不良反應(yīng)發(fā)生率[36-37]。

6 結(jié)語

BTK是B細(xì)胞相關(guān)的多種信號(hào)傳導(dǎo)通路、尤其是B細(xì)胞受體信號(hào)傳導(dǎo)通路的重要組分,以BTK為作用靶點(diǎn)的小分子BTK抑制劑伊布替尼已在多項(xiàng)臨床試驗(yàn)中顯示對(duì)B細(xì)胞腫瘤治療有顯著效果。未來除繼續(xù)研發(fā)第二代BTK抑制劑外,研究并確定BTK抑制劑與其他抗腫瘤藥物聯(lián)合治療B細(xì)胞腫瘤的方案也是非常重要的。

參考文獻(xiàn)

[1] Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia [J]. Cell, 1993, 72(2): 279-290.

[2] Hendriks RW, Yuvaraj S, Kil LP. Targeting Brutons tyrosine kinase in B cell malignancies [J]. Nat Rev Cancer, 2014, 14(4): 219-232.

[3] Burger JA, Buggy JJ. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) [J]. Leuk Lymphoma, 2013, 54(11): 2385-2391.

[4] Chiu CW, Dalton M, Ishiai M, et al. BLNK: molecular scaffolding through ‘cis-mediated organization of signaling proteins [J]. EMBO J, 2002, 21(23): 6461-6472.

[5] Bajpai UD, Zhang K, Teutsch M, et al. Brutons tyrosine kinase links the B cell receptor to nuclear factor κB activation[J]. J Exp Med, 2000, 191(10): 1735-1744.

[6] Kraus M, Alimzhanov MB, Rajewsky N, et al. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer [J]. Cell, 2004, 117(6): 787-800.

[7] Craxton A, Jiang A, Kurosaki T, et al. Syk and Brutons tyrosine kinase are required for B cell antigen receptormediated activation of the kinase Akt [J]. J Biol Chem, 1999, 274(43): 30644-30650.

[8] Lamason RL, McCully RR, Lew SM, et al. Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain [J]. Biochemistry, 2010, 49(38): 8240-8250.

[9] Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma [J]. Nature, 2011, 470(7332): 115-119.

[10] Ponader S, Chen SS, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo[J]. Blood, 2012, 119(5): 1182-1189.

[11] de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia [J]. Blood, 2012, 119(11): 2590-2594.

[12] Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765 [J]. Blood, 2011, 117(23): 6287-6296.

[13] Burger JA, Montserrat E. Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling [J]. Blood, 2013, 121(9): 1501-1509.

[14] Chang BY, Francesco M, De Rooij MF, et al. Egress of CD19+CD5+ cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients [J]. Blood, 2013, 122(14): 2412-2424.

[15] Burger JA, Li KW, Keating MJ, et al. Leukemia cell proliferation and death in chronic lymphocytic leukemia patients on therapy with the BTK inhibitor ibrutinib [J/OL]. JCI Insight, 2017, 2(2): e89904 [2019-01-23]. doi: 10.1172/ jci.insight.89904.

[16] Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies [J]. J Clin Oncol, 2013, 31(1): 88-94.

[17] Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-na?ve and previously treated patients with CLL and SLL receiving single-agent ibrutinib [J]. Blood, 2015, 125(16): 2497-2506.

[18] Coutré SE, Furman RR, Flinn IW, et al. Extended treatment with single-agent ibrutinib at the 420 mg dose leads to durable responses in chronic lymphocytic leukemia/small lymphocytic lymphoma [J]. Clin Cancer Res, 2017, 23(5): 1149-1155.

[19] Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma [J]. N Engl J Med, 2013, 369(6): 507-516.

[20] Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantlecell lymphoma: an international, randomised, open-label, phase 3 study [J]. Lancet, 2016, 387(10020): 770-778.

[21] Martin P, Maddocks K, Leonard JP, et al. Postibrutinib outcomes in patients with mantle cell lymphoma [J]. Blood, 2016, 127(12): 1559-1563.

[22] Rahal R, Frick M, Romero R, et al. Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma [J]. Nat Med, 2014, 20(1): 87-92.

[23] Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstr?ms macroglobulinemia [J]. N Engl J Med, 2012, 367(9): 826-833.

[24] Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Wadenstr?ms macroglobulinemia [J]. N Engl J Med, 2015, 373(6): 584-586.

[25] Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib[J]. Blood, 2015, 125(13): 2062-2067.

[26] Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia [J]. N Engl J Med, 2015, 373(25): 2425-2437.

[27] Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Brutons tyrosine kinase inhibitor ibrutinib [J]. N Engl J Med, 2014, 370(24): 2286-2294.

[28] Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukemia with 17p deletion: a multicentre, open-label, phase 2 study [J]. Lancet Oncol, 2016, 17(6): 768-778.

[29] Chiron D, Di Liberto M, Martin P, et al. Cell-cycle reprogramming for PI3K inhibition overrides a relapsespecific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma [J]. Cancer Discov, 2014, 4(9): 1022-1035.

[30] Mulligan SP, Ward CM, Whalley D, et al. Atrial fibrillation, anticoagulant stroke prophylaxis and bleeding risk with ibrutinib therapy for chronic lymphocytic leukaemia and lymphoproliferative disorders [J]. Br J Haematol, 2016, 175(3): 359-364.

[31] Tillman BF, Pauff JM, Satyanarayana G, et al. Systematic review of infectious events with the Bruton tyrosine kinase inhibitor ibrutinib in the treatment of hematologic malignancies [J]. Eur J Haematol, 2018, 100(4): 325-334.

[32] Jones JA, Hillmen P, Coutre S, et al. Use of anticoagulants and antiplatelet in patients with chronic lymphocytic leukaemia treated with single-agent ibrutinib [J]. Br J Haematol, 2017, 178(2): 286-291.

[33] Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib [J/OL]. Blood Adv, 2017, 1(20): 1739-1748 [2019-01-23]. doi: 10.1182/ bloodadvances.2017009720.

[34] McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling [J]. Blood, 2014, 124(25): 3829-3830.

[35] Herman SEM, Montraveta A, Niemann CU, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia [J]. Clin Cancer Res, 2017, 23(11): 2831-2841.

[36] Walter HS, Rule SA, Dyer MJ, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies [J]. Blood, 2016, 127(4): 411-419.

[37] Byrd JC, Harrington B, OBrien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia [J]. N Engl J Med, 2016, 374(4): 323-332.

主站蜘蛛池模板: 亚洲AV无码久久天堂| 日本免费一区视频| 国产视频你懂得| 激情综合图区| 极品国产一区二区三区| 华人在线亚洲欧美精品| 污污网站在线观看| 18禁不卡免费网站| 欧美中文字幕在线视频| 国产一级无码不卡视频| 亚洲全网成人资源在线观看| 国产Av无码精品色午夜| 国产精品七七在线播放| 黄色免费在线网址| 久久青草免费91观看| 国产综合色在线视频播放线视| 免费播放毛片| 2021国产精品自拍| 亚洲色图欧美在线| 国产一区二区三区免费观看| 九九热视频精品在线| 99视频在线免费观看| 久久这里只有精品2| 亚洲第一中文字幕| 在线观看无码av免费不卡网站| 99视频在线精品免费观看6| 99精品免费在线| 国产精品亚洲五月天高清| 中日无码在线观看| 97在线视频免费观看| 亚洲丝袜第一页| 色婷婷电影网| 亚洲三级成人| 国产精品无码制服丝袜| 九色综合视频网| 国产剧情无码视频在线观看| 欧美a级完整在线观看| 99在线视频免费| 一级黄色片网| 国产毛片高清一级国语 | a亚洲天堂| 色偷偷一区二区三区| 久青草免费在线视频| 一本久道久久综合多人| 在线无码九区| 亚洲av片在线免费观看| 黄色在线网| 久草视频精品| 狠狠亚洲五月天| 波多野结衣国产精品| 国产一区二区视频在线| 国产永久在线视频| 国产成人久久777777| 四虎AV麻豆| 最新精品国偷自产在线| 欧美.成人.综合在线| 激情六月丁香婷婷四房播| 亚洲一级毛片在线播放| 爽爽影院十八禁在线观看| 国产免费高清无需播放器 | 99热这里只有精品在线观看| 色综合综合网| 91在线播放国产| 国产精品亚洲片在线va| 久热这里只有精品6| 激情网址在线观看| 四虎免费视频网站| 亚洲男人的天堂久久香蕉网| 亚洲国产日韩视频观看| 美女一区二区在线观看| 欧美一级高清免费a| 欧美无专区| 毛片免费视频| 国产激情在线视频| 成人福利视频网| 国产69精品久久久久孕妇大杂乱 | 亚洲视频在线青青| 无码国产伊人| 97视频免费在线观看| 国产乱码精品一区二区三区中文| 国产一级毛片网站| 国产激情第一页|