余斌,孫德恩,1b,Yongda Zhen
?
PVD導熱涂層的研究綜述
余斌1a,孫德恩1a,1b,Yongda Zhen2
(1.重慶大學 a. 材料科學與工程學院 b. 機械傳動國家重點實驗室, 重慶 400030;2. Singapore Polytechnic, Singapore 139651)
首先從導熱涂層的應用背景出發,分析了導熱涂層研究的必要性,其次探討了導熱涂層的導熱機理和影響涂層導熱的宏觀和微觀因素。在此基礎上,闡述了PVD導熱涂層的研究現狀,重點分析了SiC、AlN、DLC三種常見的具有較大應用潛力的PVD導熱涂層。聲子散射是影響涂層熱導率的直接原因,涂層內部同位素、雜質、缺陷及晶界等均會引起聲子發生散射,而界面聲子散射引起的界面熱阻對涂層導熱性能影響巨大,通過合理選擇制備技術和精確控制工藝參數,在一定程度上能改善涂層的導熱性能,提高熱導率。在此基礎上,筆者提出了離子源輔助高功率脈沖磁控濺射(HiPIMS)的工藝配合,提高涂層質量和致密度,優化界面結構,降低界面熱阻,以期實現涂層的高導熱性能。
導熱涂層;熱導率;熱阻;聲子散射;界面結構
隨著科技的迅速發展,輕量化和集成化成為現代及未來電子設備及電子電路的發展潮流。越來越復雜的電路,越來越小的電路板面積要求,導致微電子設備及集成電路的縮小化,元器件密度和功率不斷增加,熱擁擠現象越來越嚴重,大量材料界面的熱電阻成為限制電路或電子設備高效散熱的重要因素[1]。統計數據表明,電子元器件的溫度每升高2 ℃,可靠性下降10%,溫度為50 ℃時,電子設備的壽命只有25 ℃時的1/6[2]。高功率發光二極管LED,因其高的發光效率、較長的使用壽命及節能等優點,在汽車照明、家用照明等領域應用廣泛[3]。LED燈的發光效率為20%左右,剩余70%~80%的能量轉化為熱量,熱量使得大功率LED燈具的溫度升高。如果不及時高效散熱,將降低元器件的可靠性,甚至損壞電路及電子設備。LED燈具產生故障大約有70%來由散熱不及時導致的芯片溫度過高[4-5]。散熱問題成為提高產品功率,發展先進LED產品的最大障礙,解決LED散熱問題的途徑之一是應用高導熱、絕緣和透過率的基板材料,將熱量有效地傳出去,但基板上的熱量往往不能有效地傳導至外殼表面[6-7]。因此,導熱涂層在芯片封裝設計及散熱方面極為重要[8]。
導熱涂層的研發和應用對于提高大功率集成化電子設備外殼及封裝的有效導熱率起著重要的貢獻。PVD導熱涂層由于PVD技術的優勢,能在低沉積溫度下實現高沉積效率,得到表面形態較好、內應力低的厚膜,實現涂層的高熱導性能[9-10]。在集成電路系統中加入導熱涂層,能顯著提高其散熱效率,并且高熱導率涂層的散熱效果遠遠優于低熱導率涂層[11-12]。目前,研究較多較為成熟的PVD導熱涂層主要有SiC[13-15]、AlN[16-18]、DLC[19-21]等。這些涂層都在一定程度上緩解了元器件的熱擁擠問題,即便隨著元器件功率的提高,產熱過多,高熱導率涂層也能將熱能及時高效地傳導出去,保證器件或電路在額定溫度下使用,提高了大功率微電子設備的使用性能和壽命。Horng[22-23]等人在LED封裝基板表面沉積DLC涂層,在1400 mA注入電流下的熱阻比無涂層的要低34%,并且能在2000 mA的注入電流及620 mW的輸出功率下正常工作,極大地提高了LED的光性能和壽命。PVD導熱涂層的發展,對于大功率微電子器件的發展有著重要的意義,并且在高導熱的同時,一定程度上也提高了設備的耐蝕抗磨等性能。
導熱涂層實現熱量的快速傳導,保證電路設備安全可靠的基礎是涂層材料具有較高的熱導率。與塊狀材料不同,薄膜材料表現出來的熱導率往往比同種的塊狀材料要低得多。目前已經有研究表明,同種材料塊狀和薄膜形式的熱導率不同,是由于導熱機理的差異和影響熱導率的因素差異導致的。高的熱導率往往得益于材料的高導熱及傳輸過程的低損耗,因此需要對涂層導熱的機理和影響因素有清晰的認識,以便能夠對涂層的導熱進行調控,降低傳輸過程中的熱量損耗,實現熱量地高效傳導。
根據固體傳熱理論,材料熱導率主要由兩部分組成,即熱傳導是由自由電子和聲子兩種載體傳遞熱量的綜合(=p+e)[24]。對于金屬而言,主要依靠材料內部的自由電子傳輸能量;非金屬主要是通過晶格振動(聲子導熱)來傳遞能量,實現熱傳導。涂層與塊狀材料導熱的基本原理大致相同,不同的是涂層本身是一個微尺度量,不像塊狀材料尺度很大。涂層厚度一般在幾納米到幾百納米之間,尺度與聲子或電子平均自由程量級相當,涂層與襯底間的界面熱阻會超過涂層本身固有熱阻,大大降低熱導率。常見的PVD導熱涂層多為陶瓷非金屬(SiC、AlN等),廣大學者研究了從基體金屬到非金屬涂層的傳熱途徑。Shukla[25-27]等人在文獻中提出了金屬-非金屬熱流傳導模型,有兩種方式:熱量直接從金屬中的自由電子轉移到非金屬的晶格振動;可以首先從金屬中的自由電子轉移為金屬晶格振動,然后通過界面上聲子-聲子的耦合實現金屬-非金屬之間的熱流傳導。
涂層的熱導率是實現高效導熱的基礎,在傳導熱量的過程中,任何能使聲子產生散射,降低平均自由程的因素都會直接或間接地對涂層的熱導率產生影響,降低導熱性能。在涂層結構內部,主要存在散射機制有[28]:聲子-聲子、聲子-同位素、聲子-雜質或缺陷及聲子-晶界散射[29]等,膜基界面與聲子間的散射機制對涂層熱導率也有顯著影響。完美單晶結構中只有聲子-聲子散射,隨溫度的下降,其熱導率升高。源于晶格中聲子數量減少,散射概率降低,聲子的平均自由程增加[30],而實際涂層會存在各種各樣的散射阻礙。因此,要提高PVD涂層的熱導率,必須從制備工藝和涂層結構入手,優化工藝參數,減少引起聲子散射的因素。經過眾多學者的深入研究,發現諸如沉積溫度[13, 31-32]、涂層厚度[33-38]、缺陷[39-40]及界面結構[41-45]等對涂層熱導率影響很大,需要對工藝和參數進行精確控制[46]。
涂層的沉積溫度對于涂層組織結構及熱導率是一個關鍵因素。沉積溫度表示涂層制備過程中能量的多少,對于涂層結構產生重要的影響,比如提高涂層的致密度,對聲子散射會有一定的減小。對界面結構而言,提高濺射溫度可以增強涂層與基底的結合,減小界面無定形層的熱阻影響[47]。對于晶體和非晶涂層,二者的熱導率具有不同的溫度依賴性。非晶涂層對溫度的依賴性類似于塊狀材料;而晶體涂層厚度與平均自由程相近時,熱導率峰值隨溫度變化,較厚涂層的熱導率在低溫下達到峰值[48]。
研究發現,涂層厚度對熱導率的影響很大。隨著涂層厚度的增加,熱阻下降,熱導率升高。DLC涂層的熱導率及熱阻隨溫度的變化曲線如圖1所示,實線源于熱導率及熱阻與涂層厚度之間的函數公式[45,49]:f=i/(1+ik/f)及f/f=f/i+k。式中:f為涂層的有效熱導率;i為涂層材料的體熱導率;ik/f表示涂層的邊界效應。隨著涂層厚度的增加,邊界效應減小,有效熱導率f逐漸趨于材料的體熱導率i,微尺度效應減小。對于較薄涂層,厚度因素對涂層的熱邊界阻礙更大,這就是圖1剛開始變化趨勢較大的原因。當涂層厚度的增量遠大于聲子波長及聲子平均自由程時,涂層熱導率逐漸接近于材料體熱導率,涂層散熱高效。

圖1 DLC涂層熱導率及熱阻隨厚度變化[43]
由于空氣的熱導率很低,涂層內部的孔隙不僅增加了界面,而且孔隙中的空氣也阻礙了熱傳導,嚴重影響了涂層的導熱性能及綜合性能[50],較大的致密度對于實現高導熱涂層也有一定的積極影響。除此之外,多層膜結構由于界面增加,界面阻礙效應嚴重,聲子散射增強,對熱導率產生不利影響。Samani等人[51]通過對多層膜導熱性能的研究,發現隨著層數的增加,涂層系統的熱導率顯著下降。認為其原因是多層膜會打斷柱狀結構,柱狀結構的分裂導致聲子散射增加,擇優取向降低,涂層尺寸減小,產生嚴重的微尺度效應,以及界面的位錯等缺陷增多。這些均會使聲子散射強烈增加,平均自由程大大縮短,涂層熱導率下降。
國內外研究學者對PVD導熱涂層已經進行了很多研究,由于PVD制備工藝的優越性,PVD導熱涂層的潛能也逐漸被進一步挖掘,實現了涂層的高熱導率及各種防護性能。導熱涂層要求具有較高的熱導率和低的熱膨脹系數,高熱導率能保證熱量高效傳導,低熱膨脹系數可以使得涂層和基底之間實現良好的結合,常見的幾種高熱導低熱膨脹涂層材料如圖2所示。左上角DLC材料具有極高的熱導率和低的熱膨脹系數,熱導率是銅的1.5倍,而熱膨脹系數與Mo相當,展現出巨大的導熱潛能。此外,發明專利(ZL201420603314.6)[52]提出了一種電子元件導熱涂層結構,是以連接層結合于電子元件的表層,接觸層與外部接觸,可以提高位于其二端面間的導熱性,快速地協助電子元件散熱。

圖2 不同材料的熱導率及熱膨脹系數[23]
目前,該領域對高熱導率及低熱膨脹系數的DLC、AlN、SiC三種材料用作導熱涂層展開了廣泛的研究,研究對象主要針對涂層沉積技術、沉積溫度、涂層厚度及界面結構優化等。制備方法常采用磁控濺射[53]及高功率脈沖磁控濺射[54]等PVD技術,也有人通過等離子噴涂制備導熱涂層[55-56]。研究結果表明,在不同制備方法和工藝參數下獲得的涂層,實現了較高的熱導率,提高了襯底的散熱效率,保證了密集電路和設備正常運行。
目前對于SiC涂層的導熱性能研究,發現SiC涂層的熱導率遠小于SiC塊狀材料。文獻[57] 對比了SiC塊狀和薄膜形式的組織結構和導熱性能,通過不同方法制備得到的SiC塊狀材料結構為晶體,而厚度在幾百個納米的SiC涂層表現為非晶結構。相比于SiC塊狀晶體材料,薄膜內部非晶結構的紊亂是導致SiC涂層熱導率較低的原因。劉霞等人[14]的研究結果也得到了相同的結論。Wang等人[58]通過射頻磁控濺射PVD技術在鎂合金表面沉積了單層及復合SiC涂層,結果顯示,復合SiC涂層的熱導率隨溫度不同而改變。經過腐蝕后,復合涂層在25 ℃和100 ℃下的熱導率分別為90.1 W/(m·K)和108.4 W/(m·K),表明SiC涂層能在腐蝕環境下保持高熱導性能。
單晶AlN在室溫下的熱導率為320W/(m·K),平均自由程為100 nm,使得AlN涂層在高功率高溫電子設備和集成電路中有巨大的應用潛力[59-60]。大量的報道[16,61-63]表明,在幾百納米或幾個微米范圍厚的AlN涂層仍保持晶體結構,有(002)的擇優取向,并且隨著晶粒尺寸的增加,涂層的成形性越好,熱導率越高。Duquenne等人[64]通過平衡磁控濺射和非平衡磁控濺射技術在Si基體表面沉積了AlN涂層,同時比較了涂層厚度、氣體含量等參數對熱導率的影響。結果表明,熱導率取決于涂層晶型質量、致密度等微觀結構,相比平衡磁控濺射,非平衡磁控濺射沉積的涂層的晶型更完整、組織更致密、厚度更大、界面結合更好(見圖3),獲得了更大的熱導率。此外,元素C[65]、Si[66]、B[67]等的摻雜,在某一方面可以降低邊界熱阻,提高導熱性能。
與SiC涂層相似,DLC涂層也是一種非晶結構。DLC涂層是一種由sp3和sp2雜化碳鍵組成的性質介于金剛石和石墨之間的碳膜。金剛石具有最高的熱導率2000 W/(m·K),石墨由于具有與金屬相似的性質,體內含有大量的自由電子,導熱性能也很好。因此,DLC也具有優異的導熱性能,熱導率高達600 W/(m·K),是一種非常具有潛力的導熱涂層。與其他涂層略有差異的是,結構獨特的DLC涂層的導熱兼顧金屬的自由電子導熱和非金屬的聲子導熱(晶格振動),以及可以將表面熱能轉換為紅外線的電磁波(原子振動),以黑體輻射的形式加速散熱[68],而熱輻射散熱效率主要取決于紅外發射率[69]。大量的研究[70-72]表明,DLC涂層的熱導率與sp3雜化鍵的數量和結構有序度有關,取決于涂層密度、楊氏模量及sp3的含量。涂層熱導率隨厚度及溫度等的變化歸因于這些因素對涂層密度、楊氏模量及sp3的含量的影響,并且影響涂層與基體界面結構,引起界面熱阻的變化。在高注入電流下,LED封裝基底上沉積有DLC涂層的光輸出功率和EQE都優于無DLC涂層[73]。此外,研究顯示,旌宇顯卡散熱器在沉積DLC涂層后,熱阻能降低到大約0.05,溫度下降5 ℃左右。表明DLC涂層在提高各種器件散熱性能上有較大的應用潛力[74]。

圖3 不同方法制備的AlN涂層截面SEM圖[64]
與結構材料不同,涂層尺度在納米或微米量級,由于涂層的厚度與界面層厚度相當,納米尺度上測量的涂層導熱性可能受到界面層熱阻的影響[75]。因此,常規熱導率測量方法并不適用與涂層材料。目前用于薄膜熱導率的測試技術主要有3ω技術[76-79]、Raman光譜法[80]、瞬態熱帶技術[62-64]、TDTR法[37,81]等,各種測試技術都有各自的優勢和應用。3ω技術是目前薄膜熱導率最常用的測試技術之一,因為其對輻射不敏感,測量條件簡單方便,非常適用于薄膜縱向熱導率的測量[82]。3ω技術的熱穿透深度大于薄膜的厚度,所測得的熱導率受界面熱阻的影響,TDTR法則沒有(見圖4)[81]。

圖4 3ω技術和TDTR法的熱流傳輸[81]
界面散射造成的界面熱阻對熱導率的影響很大,甚至阻隔大量熱傳輸,大大降低涂層的導熱性能。優化界面結構,減小界面散射是提高涂層導熱性能的關鍵。研究[47,83-84]發現,在界面處生成的無定形結構擴散層大大增強了對聲子的散射,并隨著擴散層厚度的增加,散射增強,熱導率下降。界面無定形擴散層與涂層有效熱導率的關系為:tot/eff=p/p+a/a,其中eff、p、a分別為有效熱導率、薄膜熱導率及界面擴散層熱導率;tot、p及a分別為薄膜厚度、薄膜頂層厚度及界面擴散層厚度。同時研究發現,隨著沉積溫度的升高,界面擴散層的厚度會減小,涂層熱導率增加(見圖5),界面擴散層厚度的降低可能與溫度升高致使能量增加有關。與此同時,Aissa等人[85]通過直流磁控濺射(dcMS)和高功率脈沖磁控濺射(HiPIMS)沉積AlN涂層(如圖6所示),dcMS沉積涂層有明顯的界面無定形擴散層,而HiPIMS制備的涂層沒有或不明顯,這可能與HiPIMS技術的高離化率有關。
在此對導熱涂層的分析基礎上,筆者提出用離子源輔助HiPIMS技術制備DLC涂層。DLC涂層的熱導率和熱膨脹系數對于作為導熱材料來說是非常有導熱潛力的一方面,但是由于現有的制備技術和工藝未能發揮DLC更大的導熱潛能,進一步研究和提高現有DLC涂層的熱導率具有重要意義。其次,離子源輔助HiPIMS技術能夠在沉積過程中實現高的離化率,在高沉積能量下獲得光滑致密的涂層,有利于減小涂層的內部缺陷,提高致密度,實現高的熱導率。再者,用離子源轟擊過渡層和基材,去除表面缺陷或不穩定結構,預期實現優化界面結構,達到界面良好結合,減小界面無定形擴散層厚度,提高導熱性能的效果。

圖5 不同沉積溫度下界面的HRTEM圖[47]

圖6 不同制備技術的界面HRTEM圖[85]
PVD導熱涂層對于提高微電子元器件及集成電路散熱性能、緩解熱擁擠具有重要的意義。可以通過合理選擇制備技術和精確控制工藝參數提高涂層質量,優化界面結構,減小聲子散射,實現涂層導熱性能的進一步提升。
目前對于導熱涂層的研究不足,很多理論和機制尚不清楚,比如晶體涂層和非晶涂層導熱機理的差異。如何進一步降低界面熱阻等都大大限制了導熱涂層的實際應用,這將是接下來重要的研究方向。此外,導熱涂層的發展也需要更科學精確的測量技術來支撐。在此基礎上,筆者認為影響聲子散射及熱導率的因素,反過來也可以作為提高涂層導熱性能研究的切入點,進一步挖掘,實現導熱涂層研究現狀的突破。這需要廣大科學研究者的不懈努力,未來定可以突破導熱涂層的現有研究局限,實現PVD導熱涂層的大發展。
[1] SHAO Chen, BAO Hua. A molecular dynamics investiga-tion of heat transfer across a disordered thin film[J]. Intern-ational journal of heat & mass transfer, 2015, 85: 33-40.
[2] 王靜, 劉貴昌, 李紅玲, 等. 銅基類金剛石膜功能梯度材料作為散熱材料的研究[J]. 物理學報, 2012, 61(5): 472-478. WANG Jing, LIU Gui-chang, LI Hong-ling, et al. Study on the thermal conductivity of diamond-like carbon functionally graded material on copper substrate[J]. Acta physica sinica, 2012, 61(5): 472-478.
[3] SHEN Kun-ching, LIN Wen-yu, WUU Dong-sing, et al. An 83% enhancement in the external quantum efficiency of ultraviolet flip-chip light-emitting diodes with the incorporation of a self-textured oxide mask[J]. IEEE electron device letters, 2013, 34(2): 274-276.
[4] 陳彪彪. LED燈具的散熱及可靠性分析[J]. 建材與裝飾, 2018(16): 209-210. CHEN Biao-biao. Analysis of heat dissipation and reliability of LED lamps[J]. Construction materials & decoration, 2018(16): 209-210.
[5] 曾傳銳, 陳繼榕, 吳趙平. 大功率LED燈散熱設計技術[J]. 中國新技術新產品, 2018(9): 66-67. ZENG Chuan-rui, CHEN Ji-rong, WU Zhao-ping. High power LED lamp heat dissipation design technology[J]. China new technologies and new products, 2018(9): 66-67.
[6] 陳勇. 高導熱絕緣氮化鋁薄膜的制備?性能及在LED上的應用研究[D]. 重慶: 重慶大學, 2008. CHEN Yong. Study on of preparation?properties and application on LED of AlN thin films[D]. Chongqing: Chongqing University, 2008.
[7] 張淑芳, 方亮, 付光宗, 等. 硅脂導熱涂層改善LED散熱性能的研究[J]. 材料導報, 2007, 21(z2): 145-146. ZHANG Shu-fang, FANG Liang, FU Guang-zong, et al. Study on effect of thermal conductive silicon grease coating on thermolysis property of LED[J]. Materials review, 2007, 21(z2): 145-146.
[8] WENG Chun-jen. Advanced thermal enhancement and management of LED packages[J]. International communi-cations in heat & mass transfer, 2009, 36(3): 245-248.
[9] KHANNA A, BHAT D G. Effects of deposition parameters on the structure of AlN coatings grown byreactive magnetron sputtering[J]. Journal of vacuum science & technology A vacuum surfaces & films, 2007, 25(3): 557-565.
[10] PELEGRINI M V, PEREYRA I. Characterization of AlN films deposited by R. F. reactive sputtering aiming MEMS applications[J]. Physica status solidi, 2010, 7(3-4): 840- 843.
[11] 張淑芳, 方亮, 付光宗, 等. 導熱涂層對LED散熱性能的影響[J]. 半導體光電, 2007, 28(6): 793-796. ZHANG Shu-fang, FANG Liang, FU Guang-zong, et al. Effect of thermal conductive coating on thermolysis property of LED[J]. Semiconductor optoelectronics, 2007, 28(6): 793-796.
[12] 萬紅兵, 任岳. h-BN和石墨烯薄膜在AlN襯底的導熱增強效應[J]. 山東工業技術, 2016(7): 27-28. WAN Hong-bing, REN Yue. Thermal enhancement effect of h-BN and graphene films on AlN substrate[J]. Shandong industrial technology, 2016(7): 27-28.
[13] MAZUMDER M, BORCATASCIUC T, TEEHAN S C, et al. Temperature dependent thermal conductivity of Si/SiC amorphous multilayer films[J]. Applied physics letters, 2010, 96(9): 093103.
[14] 劉霞, 陳云貴, 肖素芬, 等. Mg-3Sn合金表面高導熱耐腐蝕SiC涂層研究[J]. 功能材料, 2013, 44(10): 1480-1483. LIU Xia, CHEN Yun-gui, XIAO Su-fen, et al. High thermal conductivity and corrosion resistant SiCcoating on Mg-3Sn alloy[J]. Functional materials, 2013, 44(10): 1480-1483.
[15] CHOI S R, KIM D, CHOA S H, et al. Thermal conductivity of AlN and SiC thin films[J]. International journal of thermo physics, 2006, 27(3): 896-905.
[16] 楊力. 大功率LED散熱封裝用鋁基氮化鋁薄膜基板研究[D]. 杭州: 浙江大學, 2013. YANG Li. Study on aluminum nitride film substrate for high power LED heat dissipation package[D]. Hangzhou: Zhejiang University, 2013.
[17] PARK M H, KIM S H. Thermal conductivity of AlN thin films deposited by RF magnetron sputtering[J]. Materials science in semiconductor processing, 2012, 15(1): 6-10.
[18] SHANMUGAN S, NORAZLINA M S, MUTHARASU D. Thermal transient analysis of LED using carbon doped AlN film deposited on metal substrate as heat sink[J]. Optical & quantum electronics, 2015, 47(5): 1245-1253.
[19] TSAI P Y, HUANG H K, SUNG C M, et al. Reducing heat crowding in InGaN/GaN flip-chip light-emitting diodes with diamond-like carbon heat-spreading layers[J]. IEEE transactions on components packaging & manufacturing technology, 2017, 6(11): 1615-1619.
[20] TSAI P Y, HUANG H K, SUNG C M, et al. High-power LED chip-on-board packages with diamond-like carbon heat-spreading layers[J]. Journal of display technology, 2016, 12(4): 357-361.
[21] 艾立強, 張相雄, 陳民, 等. 類金剛石薄膜在硅基底上的沉積及其熱導率[J]. 物理學報, 2016, 65(9): 257-263. AI Li-qiang, ZHANG Xiang-xiong, CHEN Min, et al. Deposition and thermal conductivity of diamond-like carbon film on a silicon substrate[J]. Acta physica sinica, 2016, 65(9): 257-263.
[22] HORNG R H, SHEN K C, TIEN C H, et al. Performance of Cu-plating vertical LEDs in heat dissipation using diamond-like carbon[J]. IEEE electron device letters, 2014, 35(2): 169-171.
[23] TSAI P Y, HUANG H K, SUNG C M, et al. InGaN/GaN vertical light-emitting diodes with diamondlike carbon/titanium heat-spreading layers[J]. IEEE electron device letters, 2013, 34(8): 1029-1031.
[24] ZHANG Xiang-xiong, AI Li-qiang, CHEN Min, et al. Thermal conductive performance of deposited amorphous carbon materials by molecular dynamics simulation[J]. Molecular physics, 2017, 115(7): 831-838.
[25] SHUKLA N C, LIAO H H, ABIADE J T, et al. Thermal conductivity and interface thermal conductance of amorphous and crystalline Zr47Cu31Al13Ni9alloys with a Y2O3coating[J]. Applied physics letters, 2009, 94(8): 081912.
[26] MAJUMDAR A, REDDY P. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces[J]. Applied physics letters, 2004, 84(23): 4768-4770.
[27] ORDONEZ-MIRANDA J, ALVARADO-GIL J J, YANG R G. The effect of the electron-phonon coupling on the effective thermal conductivity of metal-nonmetal multilayers[J]. Journal of applied physics, 2011, 109(9): 094310.
[28] 顧長志, 金曾孫, 呂憲義, 等. 高導熱金剛石薄膜的研究[J]. 物理學報, 1997, 46(10): 1984-1989. GU Chang-zhi, JIN Zeng-sun, LYU Xian-yi, et al. Study on high thermal conductive diamond films[J]. Acta physica sinica, 1997, 46(10): 1984-1989.
[29] ZHANG Q G, CAO B Y, ZHANG X, et al. In?uence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms[J]. Physi- cal review B condensed matter, 2006, 74(13): 134109.
[30] JACQUOT A, LENOIR B, DAUSCHER A, et al. Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition[J]. Applied surface science, 2002, 186(1): 507-512.
[31] LI Man, YUE Ya-nan. Molecular dynamics study of thermal transport in amorphous silicon carbide thin film[J]. RSC advances, 2014, 4(44): 23010-23016.
[32] ZHAN Tian-zhuo, XU Yi-bin, GOTO M, et al. Thermal conductivity of sputtered amorphous Ge films[J]. AIP advances, 2014, 4(2): 027126.
[33] 張博, 蔡輝, 張陽, 等. 鋁基板表面微弧氧化膜厚度對其導電導熱性的影響[J]. 表面技術, 2017, 46(5): 23-27. ZHANG Bo, CAI Hui, ZHANG Yang, et al. Effect of oxide film thickness on electrical and thermal conductivity of micro-arc oxidize aluminium substrates[J]. Surface tech- nology, 2017, 46(5): 23-27.
[34] AISSA K A, SEMMAR N, MENESESD D S, et al. Thermal conductivity measurement of AlN films by fast photothermal method[J]. Journal of physics conference series, 2012, 395(1): 12089-12096.
[35] BJORLING M, LARSSON R, MARKLUND P. The effect of DLC coating thickness on elstohydrodynamic friction[J]. Tribology letters, 2014, 55(2): 353-362.
[36] UZGUR S, HUTSON D, KIRK K. Thickness optimization of AlN thin films deposited by RF magnetron sputtering[C]// Applications of ferroelectrics held jointly with european conference on the applications of polar dielectrics & international symp piezoresponse force microscopy & nanoscale phenomena in polar materials. [s. l.]: IEEE, 2012.
[37] KANG Jun-gu, HONG K S, YANG H S. Investigation of film-thickness dependent thermal conductivity of Gd2Zr2O7thin films[J]. Current applied physics, 2013, 13(9): 1967- 1970.
[38] ZHAO H F, TANG W Z, LI C M, et al. Thermal conductive properties of Ni-P electroless plated SiCp/Al composite electronic packaging material[J]. Surface & coatings technology, 2008, 202(12): 2540-2544.
[39] YAGI T, OKA N, OKABE T, et al. Effect of oxygen impurities on thermal diffusivity of AlN thin films deposited by reactive RF magnetron sputtering[J]. Japanese journal of applied physics, 2013, 50(11): 1-5.
[40] BEBEK M B, STANLEY C M, GIBBONS T M, et al. Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping[J]. Scientific reports, 2016(6): 32150.
[41] JAGANNADHAM K. Thermal conductivity and interface thermal conductance of titanium silicide films on Si[J]. IEEE transactions on electron devices, 2015, 63(1): 432-438.
[42] JAGANNADHAM K. Thermal conductivity and interface thermal conductance in films of tungsten-tungsten silicide on Si[J]. IEEE transactions on electron devices, 2014, 61(6): 1950-1955.
[43] KIM J W, YANG H S, JUN Y H, et al. Interfacial effect on thermal conductivity of diamond-like carbon films[J]. Journal of mechanical science & technology, 2010, 24(7): 1511-1514.
[44] TIAN Wei-xue, YANG Rong-gui. Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites[J]. Applied physics letters, 2007, 90(26): 263105.
[45] YANG H S, KIM J W, PARK G H, et al. Interfacial effect on thermal conductivity of Y2O3thin films deposited on Al2O3[J]. Thermochimica acta, 2007, 455(1): 50-54.
[46] 趙齊, 代明江, 韋春貝, 等. 金剛石薄膜熱導率的研究現狀(英文)[J]. 材料導報, 2013, 27(s1): 201-206. ZHAO Qi, DAI Ming-jiang, WEI Chun-bei, et al. Research status of thermal conductivity of diamond films[J]. Materials review, 2013, 27(s1): 201-206.
[47] PAN T S, ZHANG Y, HUANG J, et al. Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure[J]. Journal of applied physics, 2012, 112(4): 044905.
[48] HUANG Zheng-xing, TANG Zhen-an, YU Jun, et al. Thermal conductivity of amorphous and crystalline thin films by molecular dynamics simulation[J]. Physica B condensed matter, 2009, 404(12): 1790-1793.
[49] YANG H S, BAI G R, THOMPSON L J, et al. Interfacial thermal resistance in nanocrystalline yttriastabilized zirconia[J]. Acta materialia, 2002, 50(9): 2309-2317.
[50] 賈涵, 高培虎, 郭永春, 等. 熱噴涂熱障涂層孔隙與涂層性能關系研究進展[J]. 表面技術, 2018, 47(6): 151-160. JIA Han, GAO Pei-hu, GUO Yong-chun, et al. Relationship between pores on thermal sprayed thermal barrier coatings and coating properties[J]. Surface technology, 2018, 47(6): 151-160.
[51] SAMANI M K, DING X Z, KHOSRAVIAN N, et al. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotat-ing cathode arc[J]. Thin solid films, 2015, 578(16): 133-138.
[52] 宮非, 吳定宇. 導熱涂層結構及應用該導熱涂層結構的電子元件: 中國, CN204206704U[P]. 2015-03-11. GONG Fei, WU Ding-yu. Structure of thermal conductive coatings and electronic components applying the structure: China, CN204206704U[P]. 2015-03-11.
[53] KALE A, BRUSA R S, MIOTELLO A. Structural and electrical properties of AlN films deposited using reactive RF magnetron sputtering for solar concentrator application[J]. Applied surface science, 2012, 258(8): 3450-3454.
[54] AISSA K A, SEMMAR N, ACHOUR A, et al. Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering[J]. Journal of physics D: Applied physics, 2014, 47(35): 355303.
[55] SHAHIEN M, YAMADA M, FUKUMOTO M, et al. Reactive plasma-sprayed aluminum nitride-based coating thermal conductivity[J]. Journal of thermal spray technology, 2015, 24(8): 1385-1398.
[56] YU Jian-hua, ZHAO Hua-yu, TAO Shun-yan, et al. Thermal conductivity of plasma sprayed SmZrO coatings[J]. Journal of the european ceramic society, 2010, 30(3): 799-804.
[57] JEONG T, ZHU Jian-gang, MAO Si-ning, et al. Thermal characterization of SiCamorphous thin films[J]. International journal of thermophysics, 2012, 33(6): 1000-1012.
[58] WANG Chun-ming, XIAO Su-fen, CHEN Yun-gui, et al. Effect of single Si1?xC, coating and compound coatings on the thermal conductivity and corrosion resistance of Mg-3Sn alloy[J]. Journal of magnesium & alloys, 2015, 3(1): 10-15.
[59] SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of physics & chemistry of solids, 1987, 48(7): 641-647.
[60] SPINA L L, IBORRA E, SCHELLEVIS H, et al. Aluminum nitride for heatspreading in RF IC's[J]. Solid state electronics, 2008, 52(9): 1359-1363.
[61] SUBRAMANIAN B, ASHOK K, JAYACHANDRAN M. Structure, mechanical and corrosion properties of DC reactive magnetron sputtered aluminum nitride(AlN)hard coatings on mild steel substrates[J]. Journal of applied electrochemistry, 2008, 38(5): 619-625.
[62] BELKERK B E, SOUSSOU A, CARETTE M, et al. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron spu-ttering[J]. Applied physics letters, 2012, 101(15): 151908.
[63] BELKERK B E, BENSALEM S, SOUSSOU A, et al. Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature[J]. Applied physics letters, 2014, 105(22): 221905.
[64] DUQUENNE C, BESLAND M, TESSIER P Y, et al. Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering[J]. Journal of physics D: Applied physics, 2012, 45(1): 218-224.
[65] SHANMUGAN S, NORAZLINA M S, MUTHARASU D. Thermal transient analysis of LED using carbon doped AlN film deposited on metal substrate as heat sink[J]. Optical and quantum electronics, 2015, 47(5): 1245-1253.
[66] PANTHA B N, SEDHAIN A, LI J. Probing the relationship between structural and optical properties of Si-doped AlN[J]. Applied physics letters, 2010, 96(13): 173504.
[67] SHANMUGAN S, MUTHARASU D. Performance of chemical vapor deposited boron-doped AlNthin film as thermal interface materials for 3-W LED: Thermal and optical analysis[J]. Acta metallurgica sinica, 2018, 31(1): 97-104.
[68] 宋建民, 甘明吉, 胡紹中, 等. 無晶鉆石的機電與光熱應用[J]. 機械工業, 2006, 278: 147-157. SONG Jian-min, GAN Ming-ji, HU Shao-zhong, et al. Electromechanical and photothermal applications of amorphous diamonds[J]. Mechanical industry, 2006, 278: 147- 157.
[69] 郭嘉成, 徐文彬, 章志鋮, 等. 鎂合金表面制備高紅外發射率和高導電率熱控膜層[J]. 表面技術, 2017, 46(3): 47-52. GUO Jia-cheng, XU Wen-bin, ZHANG Zhi-cheng, et al. Preparation of high infrared emissivity and electrical conductivity coating on magnesium alloy[J]. Surface technology, 2017, 46(3): 47-52.
[70] SHAMSA M, LIU W L, BALANDIN A A, et al. Thermal conductivity of diamond-like carbon films[J]. Applied physics letters, 2006, 89(16): 085401.
[71] BULLEN A J, OHARA K E, CAHILL D G, et al. Thermal conductivity of amorphous carbon thin films[J]. Journal of applied physics, 2000, 88(11): 6317-6320.
[72] BALANDIN A A, SHAMSA M, LIU W L, et al. Thermal conductivity of ultrathin tetrahedral amorphous carbon films[J]. Applied physics letters, 2008, 93(4): 043115.
[73] TSAI P Y, HUANG H K, SUNG C M, et al. Thermal characteristics of InGaN/GaN flip-chip light emitting diodes with diamond-like carbon heat-spreading layers[J]. International journal of photoenergy, 2014(3): 829284.
[74] 佚名. 旌宇顯卡散熱器配備類金剛石碳薄膜[J]. 超硬材料工程, 2009, 21(1): 4. YI Ming. Diamond-like carbon filmequipped with Jingyu display card radiator[J]. Superhard material engineering, 2009, 21(1): 4.
[75] WANG Lei, WRIGHT C D, AZIZ M M, et al. Optimisation of readout performance of phase-change probe memory in terms of capping layer and probe tip[J]. Electronic materials letters, 2014, 10(6): 1045-1049.
[76] LIU Wei-li, BALANDIN A A. Temperature dependence of thermal conductivity of AlGa1?xN thin films measured by the differential 3ω technique[J]. Applied physics letters, 2004, 85(22): 5230-5232.
[77] BOGNER M, HOFER A, BENSTETTER G, et al. Differential 3ω method for measuring thermal conductivity of AlN and Si3N4thin films[J]. Thin solid films, 2015, 591: 267-270.
[78] BOGNER M, BENSTETTER G, FU Yong-qing. Cross-and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method[J]. Surface & coatings technology, 2017, 320: 91-96.
[79] MORIDI A, ZHANG Liang-chi, LIU Wei-dong, et al. Characterisation of high thermal conductivity thin-film substrate systems and their interface thermal resistance[J]. Surface & coatings technology, 2018, 334: 233-242.
[80] YAN Ru-sen, SIMPSON J R, BERTOLAZZI S, et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy[J]. ACS nano, 2014, 8(1): 986-993.
[81] KANG J G, HONG K S, YANG H S. Studies of thermal conductivity of Gd2Zr2O7and diamond-like carbon films and the interfacial effect[J]. Japanese journal of applied physics, 2010, 49(2): 1-4.
[82] 張武康, 陳小源, 李東棟, 等. 薄膜熱導率測量方法研究進展[J]. 功能材料, 2017, 48(6): 6034-6041. ZHANG Wu-kang, CHEN Xiao-yuan, LI Dong-dong, et al. Research progress of measurement for the thermal conductivity of thin films[J]. Functional materials, 2017, 48(6): 6034-6041.
[83] MORAES V, RIEDL H, RACHBAUER R, et al. Thermal conductivity and mechanical properties of AlN-based thin films[J]. Journal of applied physics, 2016, 119(22): 225304.
[84] ALAILI K, ORDONEZ-MIRANDA J, EZZAHRI Y. Effective interface thermal resistance and thermal conductivity of dielectric nanolayers[J]. International journal of thermal sciences, 2018, 131(7): 40-47.
[85] AISSA K A, ACHOUR A, CAMUS J, et al. Comparison of the structural properties and residual stress of AlN films deposited by DC magnetron sputtering and high power impulse magnetron sputtering at different working pressure[J]. Thin solid films, 2014, 550(1): 264-267.
Thermal Conductive Coatings by PVD Technology
1a,1a,1b,2
(1.a. School of Materials Science and Engineering, b. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China; 2. Singapore Polytechnic, Singapore 139651, Singapore)
Firstly, the necessity of thermal conductive coating research was analyzed based on the application background of thermal conductive coating. Secondly, the thermal conduction mechanism of the coating and the macroscopical and microcosmic factors affecting the thermal conductivity of the coating were discussed. On this basis, the research status of PVD thermal conductive coatings was described, and three common PVD thermal conductive coatings, namely SiC, AlN and DLC, were emphatically analyzed.Phonon scattering was the direct factor affecting the thermal conductivity of the coating, and phonon scattering could be caused by some factors, such as coating internal isotope, impurities, defects and grain boundary. The interfacial thermal resistance caused by phonon scattering had great influence on the thermal conductivity of the coating. Thermal conductivity of the coating could be improved to a certain extent by reasonably selecting preparation technology and accurately controlling process parameters.On this basis, the technological cooperation of ion source assisted high-power pulsed magnetron sputtering (HiPIMS) is proposed to improve coating quality and density, optimize interface structure and reduce interface thermal resistance, in order to achieve the high thermal conductivity of the coating.
thermal conductive coatings; thermal conductivity; thermal resistance; phonon scattering; interface structure
2018-11-29;
2019-01-14
YU Bin (1996—), Male, Master, Research focus: hard and functional film.
孫德恩(1974—),男,博士,教授,主要研究方向為硬質及功能薄膜。郵箱:deen_sun@cqu.edu.cn
TG174.444
A
1001-3660(2019)06-0158-09
10.16490/j.cnki.issn.1001-3660.2019.06.018
2018-11-29;
2019-01-14
國家自然科學基金(51771037);材料腐蝕與防護四川省重點實驗室開放基金(2016CL13);重慶市基礎與前沿研究計劃項目(cstc2015jcyjA70005)
Support by National Natural Science Foundation of China(51771037); Material Corrosion and Protection in Sichuan Province Key Laboratory of Open Fund(2016CL13); The Basic and Frontier Research Project of Chongqing (cstc2015jcyjA70005)
余斌(1996—),男,碩士,主要研究硬質及功能薄膜。
SUN De-en (1974—), Male, Doctor, Professor, Research focus: hard and functional film. E-mail: deen_sun@cqu.edu.cn