999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

應變與ZnSe/ZnCdSe雙勢壘對電子隧穿的壓力影響研究

2019-07-01 14:01:04錢岙軻
現代商貿工業 2019年12期

錢岙軻

摘 要: 運用求解任意勢中波函數與轉移矩陣相結合的方法,計算得到流體靜壓下應變ZnCdSe/ZnSe雙勢壘電子隧穿的共振能級、波函數和透射系數。考慮晶格常數、有效質量及體彈性模量等參量的壓力效應對電子隧穿的影響。數值結果顯示,與無靜壓比較,勢壘的高度增加,則電子有效質量減小,導致共振峰向高能區移動,但峰值高度不變。此外,給出勢阱有無靜壓的兩種情形下的波形圖,通過對比,可以進一步看出靜壓對ZnCdSe/ZnSe電子隧穿的影響。

關鍵詞: 電子隧穿;靜壓;雙勢壘;透射系數;電子波函數

中圖分類號: TB????? 文獻標識碼: A????? doi:10.19311/j.cnki.1672-3198.2019.12.093

1 引言

近年來,由Ⅱ-Ⅵ族寬禁帶半導體材料組成的量子異質結構具有很大的潛在應用價值,如高亮度藍/綠光發光二極管和激光二極管,而且利用共振隧穿可大幅度提高光子器件和電子器件的工作速度和效率,這使得異質結構中量子隧穿問題成為物理學界關注的熱點之一.研究共振隧穿現象的基本問題之一,是計算電子穿越勢壘的透射系數。

Messiah曾于1961年給出了一種計算電子穿越任意勢壘之透射系數的WKB方法,但此方法用于突變勢情形,結果不夠理想,且不能解釋Chang,Esaki和Tsu關于半導體異質結構中電子的共振隧穿。隨后,Chandra等人對于平面摻雜三角勢,通過解薛定諤方程,得到了透射系數的數值結果。之后,Ando等人采用多階式近似和改進的轉移矩陣法討論了電子穿越任意勢的共振隧穿性質,但此方法不易求得波函數。班士良等人曾將求解任意勢中波函數與轉移矩陣相結合,給出計算電子穿越任意勢的透射系數、反射系數及波函數之較為簡單的數值計算方法。

基于上述的研究,考慮靜壓和晶格失配,運用求解任意勢中波函數與轉移矩陣相結合的方法,計算出了流體靜壓下應變ZnCdSe/ZnSe雙勢壘電子隧穿的波函數和透射系數,并通過仿真模擬,得到了靜壓對電子隧穿的影響。

2 理論模型與計算

考慮電子在雙勢壘一維勢的x方向的運動,將雙壘異質結分成三個區域,在1區(xb)中,勢場為常數,記為V01和V03; 在2區(a≤x≤b)中,勢場V(x)是任意有限雙壘勢。電子波函數SymbolyA@i(x)(i=1,2,3)可以寫為:

ψ1 x =A1eik1x+B1eik1x (1)

ψ2 x =A2f x +B2g x? (2)

ψ3 x =A3eik3x+B3e-ik3x (3)

考慮到波函數ψi(x)(i=1,2,3)及其一階導數在邊界處的連續性,根據反射系數R和透射系數T的定義

R=(t21/t11)2 T=(1/t11)2(k3/k1)

又因為R+T=1,波函數的系數滿足以下關系:

A1B1? =

eik1a e-ik1a

ik1eik1a -ik1e-ik2a? -1

f a? g a

m1 a? m2 a? f′ a?? m1 a? m2 a? g′ a???? A2B2? =

a11 a12a21 a22

A2B2??? (4)

因為區域3中沒有反射波的存在,所以B3=0,則各區域中電子的非歸一化波函數可寫為:

Ψ1 A1 =eik1x+ t21 t11 e-ik1x (5)

Ψ2 A1 =?? 1 a11a22-a21a12?? a22-a12 t21 t11? f x +? t21 t11 a11-a21 g x????? (6)

Ψ3 A1 = 1 t11 eik3x (7)

將區域2分成j個子區域,則會有j+1個節點,每個子區域的寬度h=(b-a)/j,公式2中的f(x)和g(x)均記為y,則滿足:

- h-2 2? d dx? 1 m2 x?? dy dx +V x y=- h-2 2? dz dx +V x y=Ey (8)

由上式可以得到:

z′= dz dx =- 2 h-2? E-V x? y=F x,y x??? (9)

dy dx =m x z x =G x,z x??? (10)

利用Rung-Kutts(RK)數值解法求得波函數f(x)和g(x)在x=a b 點的平面波初始解為

f1eik2 a a,f'1=ik2 a eik2 a a,g1=e-ik2 a a,g'1=-ik2 a eik2 a a (11)

k2 a = 2m2(a)(E-V(a)) /h-

由此可得到波函數f(x)和g(x)。

在壓力下,材料的晶格常數用默納漢公式來表示,而三元混晶ZnCdSe在ZnSe界面還有晶格失配的影響,即雙軸應變影響。計算80k下ZnSe和ZnCdSe的禁帶寬度Eg:

Eg(T1)-Eg(T2) T1-T2 = dE dT? (12)

Eg=Eg0+ acvΔV V -δEs(P) (13)

Eg(ZnCdSe)=(1-x)Eg(ZnSe)+xEg(CdSe)-bx(1-x) (14)

式中,δEs(P)=b 1+ 2C12 C11? ε(b)xx.acv是禁帶寬度的形變勢,b是切形變勢常量。

根據公式,可得電子的勢壘高度Ve:

Ve=0.70 Eg ZnSe -Eg ZnCdSe?? (15)

根據文獻[8],得到電子有效質量:

m0 m*e Ee? =1+ Ep 3?? 2 Eg+Ee + 1 Eg+Ee+△0?? (16)

式中,Ep是Kane勢關聯矩陣元所表示的質量,Δ0是自旋軌道分裂能量,依據上式,通過數值計算可以得到在溫度80K下ZnSe和ZnCdSe的電子有效質量。

3 數值計算結果

通過數值模擬計算,得到了透射系數隨電子能量變化的關系圖,如圖1所示,圖中波峰表明共振隧穿的位置。

由圖1可知,沒有靜壓時,在能量從0~0.12eV的變化范圍內,共有3個共振峰,數值結果表明,共振峰所對應的能量值分別是E01=0.01355800eV,E02 =0.0529720eV,E03=0.1154920eV,分別對應于電子的基態、第一激發態、第二激發態。從圖2可以看出,在加了靜壓的時候,能量從0~0.12eV的變化范圍內,共有2個共振峰,分別對應于能量E01=0.0154000eV,E02=0.0592000eV,由其對應的波形圖可以看出它們分別表示電子的基態和第一激發態的能量。從圖3可以看出,我們假設靜壓下電子的有效質量是個固定值,在能量從0~0.12eV的變化范圍內,共有3個共振峰,數值結果表明,共振峰所對應的能量值分別是E01=0.01355800eV,E02=0.0529720eV,E03=0.1154920eV,分別對應于電子的基態、第一激發態和第二激發態的能量。

通過對比圖1和圖2可知,對于有靜壓存在的雙勢壘結構,使得共振峰向高能區移動,且共振峰的尖銳程度也有所變化。在圖2中,對應于能量 E03的共振峰已經移到了高能區,在這里由于阱寬度的選擇而沒有顯示;第一激發態與第二激發態的能量區間范圍內透射系數增大,說明電子在此能量范圍內的透射幾率增加。由圖1和圖3比較可知,共振峰的個數沒有變化,且兩圖中共振峰所對應的能量值是相等的,即共振峰沒有移動。由此可得,共振峰向高能區移動是由電子有效質量減小引起的。我們將波函數寫為:

Ψn/A1=Ψ1/A1+Ψ2/A1+Ψ3/A1=Ψnr+iΨni

(下角標r表示實部,i表示虛部)電子在空間范圍內出現的概率寫為 Ψn/A1 2(n=0,1分別代表基態、第一激發態),分別給出波形和幾率圖:

圖4和圖5分別給出無或有靜壓時電子的基態波形圖。圖6為假設靜壓下電子有效質量是固定值的電子基態波形圖。圖4~6中,實線1代表基態電子出現的幾率,虛線2、3分別對應于電子基態波函數的實、虛部波形圖,圖7和圖8分別為無、有靜壓時電子第一激發態波形圖。圖9為假設靜壓下電子有效質量是固定值的電子第一激發態波形圖。圖7~9中,實線1代表第一激發態電子出現的幾率,虛線2、3分別對應于電子第一激發態波函數的實、虛波形圖。

由圖4~9可知,有無靜壓,波函數在-30-130A之間都呈現良好的對稱性,它也表明對稱性以及邊界匹配性影響波函數,波函數隨著能量而變化。 通過圖5與圖6、圖8與圖9的對比可知,波函數虛部波形圖有明顯的變化,說明電子有效質量變化引起波函數虛部的變化。目前結果表明,對于波函數的幾率不僅實部對其有貢獻,而且虛部也起著非常重要的作用。這種有趣的量子力學效應有待進一步的討論 。應該指出的是,本文采用的一維勢可極易推廣到三維情形。

4 結論

通過數值模擬得出以下結論:靜壓使得雙勢壘結構的共振峰向高能區移動,共振峰的尖銳程度變小。共振峰向高能區移動是由電子有效質量減小引起的。對稱性以及邊界匹配性影響波函數,波函數隨著能量而變化,電子有效質量變化引起波函數虛部的變化。

參考文獻

[1] Messiah? A.quantum Mechanics[M].North-Holland:Amsterdam,1961.

[2]Chang LL.EsakiL,TsuR.Resonant tunneling in semiconductor double barrier[J].App l.Phys.Lett,1974,24(12):593-594.

[3]Chanda A,Eastman LF.Quantum mechanical reflect ion at triangular”planar2doped”potential barriers for transmission[J].J.Appl.Phys,1982,53:9165.

[4]AndoY,Itoh T.Calculation of transmission tunneling current across arbitrary potential barriers[J].J.Appl.Phys,1987,61(4):1497-1502.

[5]Ban SL,Hasbun JE,Liang XX.A novelmethod for quantum transmission across arbitray potential barriers[J].J L um in,2000,87-89:369-371.

[6]Tuchman Judah A,Kim Sang sig,Sui Zhifeng,et al.Exciton photoluminescence in strained and unstrained ZnSe under hydrostatic pressure[J].Phys.Rev.B,1999,46(20):13371-13378.

主站蜘蛛池模板: 人妻91无码色偷偷色噜噜噜| 国产欧美在线观看视频| 国禁国产you女视频网站| 国产午夜福利在线小视频| 日韩区欧美区| 性色在线视频精品| 国产女同自拍视频| a毛片基地免费大全| 思思热精品在线8| 四虎AV麻豆| 美女内射视频WWW网站午夜| 思思热精品在线8| 免费毛片网站在线观看| 午夜福利网址| 亚洲高清资源| 久久久久夜色精品波多野结衣| 一本综合久久| 亚洲综合婷婷激情| 国产精品综合色区在线观看| 国产亚洲欧美在线人成aaaa| 国产精鲁鲁网在线视频| 多人乱p欧美在线观看| 99国产精品国产高清一区二区| 98超碰在线观看| 99精品在线看| 日韩最新中文字幕| 97se亚洲综合在线| 97精品伊人久久大香线蕉| 欧美日韩国产高清一区二区三区| 午夜日b视频| 色婷婷天天综合在线| 91丝袜乱伦| 久久无码av三级| 中文字幕啪啪| 日韩欧美国产中文| 一区二区三区在线不卡免费| 亚洲香蕉在线| 亚洲日韩每日更新| 日韩性网站| 久久久久久国产精品mv| 人妻免费无码不卡视频| 国产在线观看人成激情视频| 中文字幕永久视频| 在线播放91| 国产精品漂亮美女在线观看| 亚洲欧美h| 日韩天堂在线观看| 国产精品19p| 在线播放精品一区二区啪视频| 四虎亚洲国产成人久久精品| 在线无码九区| 国产青榴视频| 88国产经典欧美一区二区三区| 极品尤物av美乳在线观看| 2018日日摸夜夜添狠狠躁| 91视频青青草| 大香网伊人久久综合网2020| 国产成人综合久久精品下载| 中文字幕在线欧美| 思思热精品在线8| 自拍欧美亚洲| 在线观看欧美国产| a国产精品| 国产高清在线观看| 2021国产精品自产拍在线观看| 综合色婷婷| 国产精品成人一区二区不卡| 日本黄色a视频| 国产办公室秘书无码精品| 精品国产黑色丝袜高跟鞋| 国产成人精品男人的天堂| 久久久久九九精品影院| 国产喷水视频| 亚洲视频四区| 丁香婷婷激情综合激情| 亚洲无码熟妇人妻AV在线| 亚洲日韩高清在线亚洲专区| 国产精品视频猛进猛出| 国产后式a一视频| 青青热久免费精品视频6| 99re视频在线| 久久综合国产乱子免费|