張 強, 朱彥楠, 陶建峰, 王旭永
(上海交通大學 機械與動力工程學院, 上海 200240)
葉片馬達具有體積小、轉動慣量低、響應速度快、低速性能好等優點,適用于對動態及穩定性能有一定要求的工程應用場合[1-3].凸輪轉子葉片馬達(CRVM)是在凸輪轉子葉片泵的基礎上改進而來,其結構工藝簡單、工作壽命長、輸出轉矩基本恒定、瞬時流量脈動小、噪聲低,適用于對速率脈動、響應速度、質量等有嚴格要求的場合[4].
由于液壓油的物理特性受溫度影響較大,故液壓系統在使用時需考慮其對溫度的敏感性.液壓伺服系統的發熱來源主要包括節流損失和機械損失[5].在液壓系統中,雖然各類閥體因節流損失而產生的熱量占系統總產熱的比重較大,但這部分熱量在液壓油流過CRVM內部時將被一起帶走,并不會造成液壓油溫度的急劇上升.而在CRVM內部的密封間隙處,泄漏和摩擦產生的熱量由于不能及時向循環油液傳導,容易造成局部溫度過高,甚至可能使液壓油的黏度等理化性質發生改變,進而影響液壓系統的正常工作.
因此,本文針對CRVM密封間隙局部的發熱特性,提出凸輪與定子之間以及凸輪與隔板之間密封間隙的優化設計,并通過相關模擬和初步實驗來驗證其有效性.
CRVM包含2個在空間上正交的凸輪轉子,它們通過平鍵與主軸相連.凸輪的長徑與定子內孔為滑動間隙配合,這種配合方式使CRVM具有低摩擦性和良好的低速防爬行性能[6].當凸輪轉子旋轉時,兩對葉片在定子內部的葉片槽內作徑向往復運動.2個凸輪被隔板分割成2個密封腔.由于葉片根部減壓油的作用,使得葉片與凸輪轉子能夠緊密接觸,進而將高壓腔與低壓腔分隔開.每轉1圈CRVM可完成吸、壓油2次.CRVM的具體結構原理圖參見文獻[7].
由文獻[8]可知,CRVM宜選用二次余弦曲線作為凸輪轉子的輪廓曲線.設凸輪寬度為Bc.凸輪轉子的輪廓曲線包括半徑為R的2個大圓弧和半徑為r的2個小圓弧,以及4段過渡曲線.大小圓弧所對應的中心角均為β,每段過渡曲線的中心角均為α,且α+β=π/2.
在系統工作時,壓力損失、容積損失、機械損失等能量損失最終均會轉化為熱能,使得液壓油的溫度升高且黏度降低,進而導致CRVM的容積效率和工作效率均降低,甚至導致機械設備無法正常工作.CRVM的主要發熱點有2處,分別位于凸輪與定子之間和凸輪與隔板之間.這些部位的用料均為鋼材質,并不包含橡膠等其他密封介質,因此其理化性質和形位參數受溫度影響較小.但是,溫度的升高對密封間隙處的液壓油理化性質影響較大,故下面將評估這2處關鍵發熱點對液壓油溫度升高的影響情況.由于CRVM密封間隙處的液壓油液尚未與腔體內的液壓油混合,故將其溫度升高的過程近似作為絕熱過程處理.
凸輪與定子之間的流動可以簡化為平板間的流動.假設液壓油從高壓腔泄漏到低壓腔時所做的功及剪切流的摩擦做功均轉化為內能,并且忽略過程中的熱量損失;同時,在計算泄漏量和摩擦力矩時,為了簡化計算過程,將液壓油的密度、黏度、比熱容等物理參數取常數值,忽略其取值隨溫度的變化.液壓油從高壓腔泄漏至低壓腔,設溫度變化量為ΔT1,由能量守恒方程可得
(1)
式中:Δp1=pa-pc,pa為高壓腔壓力,pc為低壓腔壓力;q1為凸輪與定子間的泄漏量;Ms為凸輪與定子間的摩擦力矩;ω為凸輪角速度;c為液壓油的比熱容,50 ℃時c=1.979 kJ/(kg·K);ρ為液壓油密度,ρ=850 kg/m3.
基于平行平板間隙流動模型[9]計算凸輪與定子間的泄漏流量q1,并參考流體切應力計算模型[10]和文獻[11]中對左右2個凸輪上對稱摩擦力矩的處理方式計算得到Ms,代入式(1)可得
(2)
式中:δ1為凸輪與定子的間隙;μ為液壓油的動力黏度;Bv為葉片寬度.
導致凸輪與隔板之間泄漏的主要原因是壓差流動,其過程如圖1所示.

圖1 壓差流動示意圖Fig.1 Differential pressure flow diagram
凸輪與隔板之間的油液溫度升高原理與凸輪與定子之間的原理類似.液壓油從高壓腔經隔板泄漏至低壓腔,設溫度變化量為ΔT2,由能量守恒方程可得
(3)
計算左右凸輪與隔板間的泄漏流量之和q2,并根據凸輪的對稱性[12],計算凸輪與隔板之間的摩擦力矩Mg,代入式(3)可得
(4)

CRVM運轉時,密封間隙處的液壓油既存在平行板間的壓差流動,又存在由摩擦副相對運動引起的液體剪切流動.這兩類流動都會造成能量的損失和局部溫度的升高.隨著密封間隙的增大,其相應的壓差流動也越大,進而導致泄漏流量和節流能量的損失也越大,其相應的密封效果就越差.但同時,密封間隙越大,由剪切流動引起的發熱量反而越小,且泄漏流量越大能促進液體吸收更多的發熱量,使得局部溫升相應減緩.
由式(2)和(4)可知,在CRVM的凸輪與定子、凸輪與隔板之間2個主要間隙密封處,其局部溫度變化量ΔT主要與工作壓力p、工作轉速ω和密封間隙δ有關.因此,對于不同工作參數要求的CRVM,其密封間隙的設計指標也有所不同.在CRVM正常工作時,上述工作參數的取值范圍分別為:2 MPa

表1 CRVM的相關參數Tab.1 Parameters of CRVM
用MATLAB軟件對凸輪與定子間的溫度變化量ΔT1進行仿真分析.首先,分析在不同的δ1和ω下,p對ΔT1的影響.當ω=120 r/min,δ1=8,10,12,14 μm時,ΔT1隨p的變化曲線如圖2(a)所示;當δ1=12 μm,ω=50,100,150,200 r/min時,ΔT1隨p的變化曲線如圖2(b)所示.

圖2 不同ω和δ1條件下ΔT1隨p的變化曲線Fig.2 The curves of ΔT1 along with p under different ω and δ1
由圖可知,當δ1和ω取值不同時,隨著p的增大,ΔT1先減小后增大,且當p=5 MPa時,除δ1=12 μm,ω=50 r/min的條件外,ΔT1均達到最小值.這是由于p較小時,泄漏流量較小,摩擦持續作用在一小部分液壓油上,使得局部溫度升高;當p過大時,泄漏造成的壓差損失使油液的壓力勢能轉化為內能而使局部溫度升高.值得注意的是,圖2(b)中紅線左側代表的低壓力高轉速的極端工況是極少出現的,因此可以不考慮這種工況下的溫度升高對系統和油液的影響.總體而言,當2 MPa
當p=5 MPa,ω=50,100,150,200 r/min時,ΔT1隨δ1的變化曲線如圖3所示.由圖可知,當δ1>15 μm時,δ1對ΔT1的影響較小;當δ1<8 μm時,ΔT1隨著δ1的減小而急劇增大,且ω越大,ΔT1的增大效應越明顯.這是由于δ1較大時,泄漏流量增大,摩擦產熱不明顯,壓差損失的發熱量與泄漏流量的比值為定值;而當δ1足夠小時,泄漏流量減小,摩擦產熱增大,局部溫升效應尤為明顯.

圖3 不同ω條件下ΔT1隨δ1的變化曲線Fig.3 The curves of ΔT1 along with δ1 under different ω

圖4 不同δ1條件下ΔT1隨ω的變化曲線Fig.4 The curves of ΔT1 along with ω under different δ1
當p=5 MPa,δ1=8,9,11,13 μm時,ΔT1隨ω的變化曲線如圖4所示.由圖可知,ΔT1隨ω的增大而升高,這是由于ω的增大加劇了摩擦產熱現象.在CRVM工作時,假設有油冷機保證油源溫度為恒定室溫(約為20 ℃),為了防止液壓油的黏度發生改變,進而影響CRVM的正常工作,應保證油液溫度低于50 ℃,即ΔT1<30 ℃.在ω=200 r/min的條件下,當δ1=8 μm時,ΔT1約為50 ℃,遠超過臨界值30 ℃;當δ1=9 μm時,ΔT1約為30 ℃;當δ1=11 μm時,ΔT1約為10 ℃;當δ1=13 μm時,ΔT1則更小.與液壓系統各閥口節流損失的發熱功率相比,密封間隙處的發熱功率占比不大,追求過小的ΔT1是沒有意義的,反而會由于δ1過大導致CRVM的綜合效率降低,因此從防止局部溫度過高和提高CRVM綜合效率的角度而言,δ1的最佳取值范圍為9~11 μm.
采用與上一節相同的研究方法,分析凸輪與隔板之間的溫度變化量ΔT2.
當ω=120 r/min,δ2=8,10,12,14 μm時,ΔT2隨p的變化曲線如圖5(a)所示;當δ2=12 μm,ω=50,100,150,200 r/min時,ΔT2隨p的變化曲線如圖5(b)所示.由圖可知,當δ2和ω取不同值時,隨著p增大,ΔT2先減小后增大.當p=3 MPa時,除δ2=12 μm,ω=50 r/min條件外,ΔT2均達到最小值.在常規工況下,ΔT2對p的變化并不敏感.與凸輪與定子之間的溫度變化量相比,在同樣的p、ω和δ條件下,ΔT2<ΔT1.

圖5 不同ω和δ2條件下ΔT2隨p的變化曲線Fig.5 The curves of ΔT2 along with p under different ω and δ2
當p=5 MPa,ω=50,100,150,200 r/min時,ΔT2隨δ2的變化曲線如圖6所示.由圖可知,凸輪與隔板之間同樣存在δ2過小時局部溫度陡升的情況.這是由于當δ2過小時,凸輪與隔板之間的泄漏流量減小,同時摩擦產熱增加,導致局部溫升比較明顯.因此,為了防止局部過熱應重點控制δ2.
當p=5 MPa,δ2=6,7,8,9 μm時,ΔT2隨ω的變化曲線如圖7所示.由圖可知,ΔT2隨ω的增大而增大.在ω=200 r/min的條件下,當δ2=6 μm時,ΔT2約為50 ℃,遠超過臨界值30 ℃;當δ2=7 μm時,ΔT2約為30 ℃;當δ2=8 μm時,ΔT2約為12 ℃;當δ2=9 μm時,ΔT2則更小.從防止局部溫度過高和提高CRVM綜合效率的角度而言,δ2的最佳取值范圍為7~8 μm.

圖6 不同ω條件下ΔT2隨δ2的變化曲線Fig.6 The curves of ΔT2 along with δ2 under different ω

圖7 不同δ2條件下ΔT2隨ω的變化曲線Fig.7 The curves of ΔT2 along with ω under different δ2
CRVM的性能指標主要有輸出轉矩和綜合效率.輸出轉矩主要與p和轉子尺寸有關,幾乎不受δ影響;綜合效率η是容積效率ηv與機械效率ηm的乘積,這一指標與δ的關系可參考文獻[13].其研究結果表明,當δ=10~15 μm時,η最高(約為85%),即基于熱特性間隙優化原則選取的最優間隙同樣能夠提升CRVM的綜合效率.
搭建一套CRVM電液伺服系統,該系統通過上位機和下位機雙計算機控制模式對CRVM進行控制.CRVM電液伺服系統的控制原理如圖8所示.
在CRVM實驗系統中,上位機輸出的控制指令經過下位機的運算處理,將輸出的電壓控制信號經過伺服放大器轉換為電流控制信號后輸入電液伺服閥并控制伺服閥閥芯的位移,伺服閥輸出高壓液壓油驅動CRVM旋轉,從而帶動負載運動.基于接觸式溫度表的CRVM伺服系統的熱特性實驗裝置實物如圖9所示.

圖8 CRVM伺服系統熱特性原理圖Fig.8 Schematic of thermal characteristics of the CRVM system

圖9 CRVM伺服系統熱特性實驗裝置側面圖Fig.9 Side view of test rig of the CRVM servo system
在實際工作時,電動機和液壓泵的運轉會不可避免地為CRVM伺服系統引入大量熱量,同時伺服閥的節流損失也都將轉化為熱量,造成伺服系統溫升較快.因此,若只是簡單地測量CRVM的表面溫度Tm,無法對由于其自身運轉產生的熱量對CRVM造成的溫升影響進行研究.本文設計了一種實驗方案,即分別記錄油箱溫度To和CRVM的表面溫度Tm,待溫度穩定(120 min)后,以(ΔTm-ΔTo)表征排除系統其他熱源后CRVM自身運轉產生的熱量對Tm升高造成的影響.
在實驗過程中,p=5 MPa,電液伺服閥全開.首先使CRVM連續回轉運行(ω=60 r/min),分別記錄To和Tm的數值.待系統冷卻后,再將CRVM負載盤卡住,使CRVM處于堵轉狀態,再次記錄To和Tm的數值.實驗結果記錄如表2和3所示.

表2 回轉狀態下油箱和CRVM的溫度變化情況表

表3 堵轉狀態下油箱和CRVM的溫度變化情況表
在回轉狀態下,CRVM的轉子、定子、葉片的摩擦以及密封間隙處的泄漏都會產生熱量,使Tm升高;而在堵轉狀態下,只有泄漏會造成發熱量.由表2和3可知:待溫度穩定后,在回轉狀態下,Tm比To高約 2.6 ℃;在堵轉狀態下,Tm比To高約 0.9 ℃.這與圖8(b)中,當δ1=12 μm,p=5 MPa,ω=50 r/min時,ΔT1約為3 ℃的模擬結果是一致的.同時,實驗結果也驗證了影響CRVM溫度升高的因素中,摩擦因素比泄漏因素占更大比例這一結論.
(1) 過高或者過低的工作壓力p都會導致CRVM密封間隙處的溫度變化量ΔT較大;當p=3~5 MPa時,ΔT較小.在一般工況下,ΔT對p的變化并不敏感.
(2) 當密封間隙δ>15 μm時,δ對ΔT的影響十分微弱;而當δ<8 μm時,ΔT會隨δ的減小而急劇增大,且工作轉速ω越大,此增大效應越明顯.因此,實際工作中應嚴格控制凸輪與定子及凸輪與隔板之間的制造和裝配精度,防止因間隙過小造成局部過熱,最終影響CRVM的正常工作.
(3) 在p、ω和δ取值相同的條件下,ΔT1大于ΔT2.
(4) 為了保證液壓油良好的工作狀態,應控制CRVM的ΔT不超過30 ℃,這就要求CRVM的δ不可過小.研究表明過大的δ對控制ΔT的升高沒有意義,因此從防止局部過熱和提高CRVM的綜合效率角度而言,δ1的取值范圍為9~11 μm,δ2的取值范圍為7~8 μm.