999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

New Upper Bounds for the Spectral Radius of Nonnegative Matrices

2019-07-18 09:09:16ChenFubin

Chen Fubin

(Science Department, Oxbridge College, Kunming University of Science and Technology, Kunming 650106, China)

Abstract In this paper some new upper bounds to the spectral radius of the Hadamard product of two nonnegative matrices are studied by using Brauer’s theorem and Gerschgorin’s theorem. The Numerical example shows that the new results improve some existing results in some cases.

Key words Nonnegative matrix Hadamard product Spectral radius Upper bound

1 Introduction

For a positive integern, letNdenote the set {1,2,…,n}, Rn×ndenote the set of alln×nreal matrices and Cn×ndenote the set of alln×ncomplex matrices.

LetA=(aij)∈Cn×nandB=(bij)∈Cn×n. We writeA≥B(>B) ifaij≥bij(>bij) for alli,j∈{1,2,…,n}. If 0 is the null matrix andA≥0(>0), we say thatAis a nonnegative (positive) matrix. The spectral radius ofAis denoted byρ(A). IfAis a nonnegative matrix, the Perron-Frobenius theorem guarantees thatρ(A) is an eigenvalue ofA.

Ann×nmatrixAis reducible if there exists a permutation matrixPsuch that

whereB,Dare square matrices of order at least one. IfAis not reducible, then it is called irreducible. Note that any 1×1 matrix is irreducible[1].

For two real matricesA=(aij) andB=(bij) of the same size, the Hadamard product ofAandBisA°B=(aijbij).

In [2-7], the following bounds forρ(A°B) are given forA,B≥0 respectively:

ρ(A°B)≤ρ(A)ρ(B),

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

Recently, Guo[8] gave two sharper upper bounds forρ(A°B), that is

(1.7)

(1.8)

We will give two new upper bounds onρ(A°B) for two nonnegative matricesAandB. Example is given to illustrate our results.

For a nonnegative matrixA=(aij) we shall use the following notations. Fori,j,k∈N, let

2 Some lemmas and main result

In order to prove our results, we need the following lemmas.

Lemma 2.1[9] LetA=(aij)∈Cn×n. Then all the eigenvalues ofAlie in the region:

Lemma 2.2[10] LetA=(aij)∈Cn×n. Then all the eigenvalues ofAlie in the region:

Theorem 2.1LetA,B∈Rn×n,A≥0 andB≥0. Then

(2.1)

ProofForn=1, it is evident that (2.1) holds. In the following, we assume thatn≥2.

Case 1: Suppose thatA°Bis irreducible, obviouslyAandBare irreducible. By Lemma 2.1, there existsi(1≤i≤n) such that

i.e.,

thus, we have that

Case 2: Now, assume thatA°Bis reducible. If we denote byD=(dij) then×npermutation matrix withd12=d23=…=dn-1,n=dn1=1, the remainingdijzero, then bothA+tDandB+tDare nonsingular irreducible matrices for any chosen positive real numbert. Now we substituteA+tDandB+tDforAandB, respectively in the previous case, and then lettingt→0, the result follows by continuity.

Theorem 2.2LetA,B∈Rn×n,A≥0 andB≥0. Then

(2.2)

ProofIt is evident that (2.2) is an equality forn=1. We now assume thatn≥2.

Case 1: Suppose thatA°Bis irreducible. ObviouslyAandBare irreducible. Letλbe an eigenvalue ofA°Band satisfyρ(A°B)=λ. By Lemma 2.2, there is a pair (i,j) of positive integers withi≠jsuch that

Thus, we have

That is

Case 2: Now, assume thatA°Bis reducible. If we denote byD=(dij) then×npermutation matrix withd12=d23=…=dn-1,n=dn1=1, the remainingdijzero, then bothA+tDandB+tDare nonsingular irreducible matrices for any chosen positive real numbert. Now we substituteA+tDandB+tDforAandB, respectively in the previous case, and then letting, the result follows by continuity.

RemarkNext, we give a comparison between inequality (2.1) and inequality (2.2). Without loss of generality, fori≠j, we assume that

(2.3)

Thus, (2.3) is equivalent to

(2.4)

From (2.2) and (2.4), we have

Thus, we have

So, the result of Theorem 2.2 is sharper than the result of Theorem 2.1.

3 Example

We consider the following two nonnegative matrices

By calculating with Matlab 7.0, we haveρ(A°B)≤50.1274 (by (1.1)),ρ(A°B)≤31.4611 (by (1.2)),ρ(A°B)≤25.5364 (by (1.3)),ρ(A°B)≤23.2 (by (1.4)),ρ(A°B)≤25.3644 (by (1.5)),ρ(A°B)≤28.446 (by (1.6)),ρ(A°B)≤24 (by (1.7)),ρ(A°B)≤22.1633 (by (1.8)). By Theorem 2.1, we haveρ(A°B)≤23, By Theorem 2.2, we haveρ(A°B)≤21.8816. In factρ(A°B)=20.7439.

The example shows that the bound of Theorem 2.1 and 2.2 are less than the others.

主站蜘蛛池模板: 亚洲日韩在线满18点击进入| 精品无码国产一区二区三区AV| 欧美激情伊人| 国产精品第页| 狠狠亚洲婷婷综合色香| 亚洲综合婷婷激情| 狠狠亚洲婷婷综合色香| 中文字幕资源站| 风韵丰满熟妇啪啪区老熟熟女| 久久女人网| 毛片最新网址| 国产日韩欧美精品区性色| 日韩毛片免费| 亚洲综合色在线| 国产免费a级片| 毛片免费观看视频| 久久a毛片| 秋霞一区二区三区| 亚洲综合片| 亚洲欧洲自拍拍偷午夜色| 人妻丰满熟妇αv无码| 亚洲无码日韩一区| 欧美日韩在线第一页| 精品国产成人国产在线| 亚洲男人天堂久久| 国产粉嫩粉嫩的18在线播放91 | 国产成人无码Av在线播放无广告| 国产精品成人啪精品视频| 88国产经典欧美一区二区三区| 国产第一页亚洲| 日韩精品视频久久| 五月天天天色| 日韩免费成人| 中文字幕在线欧美| 免费国产高清视频| 国产精品流白浆在线观看| 久久这里只有精品66| 成人va亚洲va欧美天堂| 超碰91免费人妻| 国产免费一级精品视频| 国产麻豆精品久久一二三| 伊人久久大香线蕉综合影视| 国产农村妇女精品一二区| 97综合久久| 2021国产精品自产拍在线观看 | 免费看黄片一区二区三区| 91蜜芽尤物福利在线观看| 六月婷婷激情综合| 在线免费a视频| 国产99在线观看| 国产精品19p| 国产丰满大乳无码免费播放| 午夜国产在线观看| 伦伦影院精品一区| 国产精品无码AV中文| 色首页AV在线| 免费人成黄页在线观看国产| 97在线碰| 日本午夜精品一本在线观看| 99视频精品全国免费品| 国产迷奸在线看| 亚洲专区一区二区在线观看| 精品久久久久成人码免费动漫 | 91探花国产综合在线精品| 在线欧美a| 在线不卡免费视频| 国产精品午夜福利麻豆| 国产视频a| 在线观看无码av免费不卡网站| 欧美精品黑人粗大| 国产自在自线午夜精品视频| 18禁影院亚洲专区| 亚洲免费毛片| 2021国产在线视频| 国产女人在线| 亚洲AV成人一区二区三区AV| 国内精品九九久久久精品| 欧美成人综合在线| 亚洲国产精品国自产拍A| 99视频在线看| 波多野结衣视频网站| 国产精品女同一区三区五区|