999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

非線性系統(tǒng)的多擴(kuò)展目標(biāo)跟蹤算法

2019-08-01 01:48:57韓玉蘭韓崇昭
計(jì)算機(jī)應(yīng)用 2019年5期

韓玉蘭 韓崇昭

摘 要:目前擴(kuò)展目標(biāo)跟蹤算法大都假設(shè)其系統(tǒng)為線性高斯系統(tǒng),針對(duì)非線性系統(tǒng)的多擴(kuò)展目標(biāo)跟蹤問(wèn)題,提出了采用粒子濾波技術(shù)對(duì)目標(biāo)狀態(tài)和關(guān)聯(lián)假設(shè)進(jìn)行聯(lián)合估計(jì)的多擴(kuò)展目標(biāo)跟蹤算法。首先,提出了將多擴(kuò)展目標(biāo)狀態(tài)和關(guān)聯(lián)假設(shè)進(jìn)行聯(lián)合估計(jì)的思想,解決了在估計(jì)目標(biāo)狀態(tài)和數(shù)據(jù)關(guān)聯(lián)時(shí)相互牽制的問(wèn)題;其次,根據(jù)擴(kuò)展目標(biāo)演化模型、量測(cè)模型建立多擴(kuò)展目標(biāo)狀態(tài)和關(guān)聯(lián)假設(shè)的聯(lián)合建議分布函數(shù),并利用粒子濾波技術(shù)實(shí)現(xiàn)聯(lián)合估計(jì)的Bayes框架;最后,為解決直接采用粒子濾波實(shí)現(xiàn)時(shí)存在的維數(shù)災(zāi)難問(wèn)題,將目標(biāo)聯(lián)合狀態(tài)粒子的產(chǎn)生和演化分解為各個(gè)目標(biāo)狀態(tài)粒子的產(chǎn)生和演化,對(duì)每個(gè)目標(biāo)的粒子集根據(jù)與其相關(guān)的權(quán)重單獨(dú)進(jìn)行重抽樣,這樣在抑制目標(biāo)狀態(tài)估計(jì)較差部分的同時(shí)使每個(gè)目標(biāo)都保留了對(duì)其狀態(tài)估計(jì)較好的粒子。仿真實(shí)驗(yàn)結(jié)果表明,與擴(kuò)展目標(biāo)概率假設(shè)密度濾波器的高斯混合實(shí)現(xiàn)方式和序貫蒙特卡洛實(shí)現(xiàn)方式相比,所提算法的狀態(tài)估計(jì)精度較高,形狀估計(jì)的Jaccard距離分別降低了30%、20%左右,更適合于非線性系統(tǒng)的多擴(kuò)展目標(biāo)跟蹤。

關(guān)鍵詞:擴(kuò)展目標(biāo)跟蹤;非線性系統(tǒng);Bayes框架;聯(lián)合估計(jì);粒子濾波;建議分布函數(shù)

中圖分類號(hào):TN273

文獻(xiàn)標(biāo)志碼:A

Abstract: Most of current extended target tracking algorithms assume that its system is linear Gaussian system. To track multiple extended targets for nonlinear Gaussian system, an multiple extended target tracking algorithm using particle filter to jointly estimate target state and association hypothesis was proposed. Firstly, the idea of joint estimation of the multiple extended target state and association hypothesis was proposed, which avoided mutual constraints in estimating target state and data association. Then, based on extended target state evolution model and measurement model, a joint proposal distribution function for multiple extended target and association hypothesis was established, and the Bayesian framework for the joint estimation was implemented by particle filtering. Finally, to avoid the dimension disaster problem in the implementation of the particle filter, the generation and evolution of the multiple extended target combined state particles were decomposed into that of the individual target state particles, and the particle set of each target was resampled according to the weight association with it, so that each target retained the particles with better state estimation while suppressing the poor part of target state estimation. Simulation results show that, in comparison with the Gaussianmixture implementation of extended target probability hypothesis density filter and the sequential Monte Carlo implementation of that, the estimation accuracy of the target state is improved, and the Jaccard distance of shape estimation is reduced by approximately 30% and 20% respectively. The proposed algorithm is more suitable for multiple extended target tracking of the nonlinear system.

英文關(guān)鍵詞Key words: extended target tracking; nonlinear system; Bayesian framework; joint estimation; particle filter; proposal distribution function

0 引言

擴(kuò)展目標(biāo)在每個(gè)時(shí)刻可產(chǎn)生多個(gè)量測(cè),因此傳統(tǒng)多點(diǎn)目標(biāo)跟蹤算法無(wú)法應(yīng)用于多擴(kuò)展目標(biāo)跟蹤。目前多擴(kuò)展目標(biāo)跟蹤算法大致有兩類: 一類是通過(guò)修改假設(shè)條件將點(diǎn)目標(biāo)跟蹤算法的數(shù)據(jù)關(guān)聯(lián)方法如聯(lián)合概率數(shù)據(jù)關(guān)聯(lián)(Joint Probabilistic Data Association, JPDA)、概率多假設(shè)方法(Probabilistic MultiHypothesis, PMHT)等,推廣到多擴(kuò)展目標(biāo)跟蹤[1-3];另一類是基于隨機(jī)有限集,將概率假設(shè)密度(Probability Hypothesis Density, PHD)濾波器、勢(shì)概率假設(shè)密度(Cardinalized PHD, CPHD)濾波器、高斯混合概率假設(shè)密度(Gaussian Mixture PHD, GMPHD)濾波器、序貫蒙特卡洛概率假設(shè)密度(Sequential Monte Carlo PHD, SMCPHD)濾波器等應(yīng)用到多擴(kuò)展目標(biāo)跟蹤算法[4-7],但這類算法理論上需要考慮每一時(shí)刻量測(cè)集的所有可能劃分,因此計(jì)算量較大,計(jì)算量會(huì)隨著擴(kuò)展目標(biāo)個(gè)數(shù)或量測(cè)個(gè)數(shù)急劇增加。文獻(xiàn)[6-8]為減少計(jì)算量只考慮了一部分劃分算法,但擴(kuò)展目標(biāo)跟蹤性能嚴(yán)重依賴于劃分算法,在目標(biāo)相距較近時(shí)難以獲得理想的效果。

目前已存在非線性系統(tǒng)的單擴(kuò)展目標(biāo)跟蹤算法,如文獻(xiàn)[9]中將RaoBlackwellised粒子濾波器應(yīng)用到擴(kuò)展目標(biāo)跟蹤,線性狀態(tài)部分采用卡爾曼濾波器,非線性部分采用粒子濾波器進(jìn)行估計(jì);文獻(xiàn)[10]中將非線性量測(cè)函數(shù)線性化,利用基于隨機(jī)矩陣的擴(kuò)展目標(biāo)跟蹤算法擴(kuò)展到非線性系統(tǒng)。現(xiàn)有的多擴(kuò)展目標(biāo)跟蹤算法一般是針對(duì)線性高斯系統(tǒng),為解決非線性問(wèn)題通常將處理非線性系統(tǒng)的方法如無(wú)跡卡爾曼濾波器(Unscented Kalman Filter, UKF)、粒子濾波器(Particle Filter, PF)與線性系統(tǒng)的多擴(kuò)展目標(biāo)濾波器相結(jié)合,如文獻(xiàn)[11]中將UKF應(yīng)用于擴(kuò)展目標(biāo)GMPHD(Extended Target GMPHD, ETGMPHD)濾波器,采用非線性量測(cè)模型實(shí)現(xiàn)狀態(tài)估計(jì)的更新,但是這種處理非線性的方式的濾波性能會(huì)隨著非線性程度的增加急速下降。

本文針對(duì)多擴(kuò)展目標(biāo)跟蹤的數(shù)據(jù)關(guān)聯(lián)和非線性問(wèn)題,由擴(kuò)展目標(biāo)狀態(tài)演化模型、量測(cè)模型建立目標(biāo)狀態(tài)和數(shù)據(jù)關(guān)聯(lián)的聯(lián)合建議分布函數(shù),采用粒子濾波對(duì)多個(gè)擴(kuò)展目標(biāo)狀態(tài)和數(shù)據(jù)關(guān)聯(lián)進(jìn)行聯(lián)合估計(jì),提出了非線性系統(tǒng)的多擴(kuò)展目標(biāo)跟蹤算法。在此基礎(chǔ)上,提出了順序采樣粒子濾波器來(lái)解決維數(shù)災(zāi)難的問(wèn)題。

5 結(jié)語(yǔ)

針對(duì)非線性多擴(kuò)展目標(biāo)跟蹤,本文采用粒子濾波對(duì)多擴(kuò)展目標(biāo)狀態(tài)和數(shù)據(jù)關(guān)聯(lián)進(jìn)行聯(lián)合跟蹤,提出了多擴(kuò)展目標(biāo)粒子濾波器, 解決了目標(biāo)狀態(tài)估計(jì)和數(shù)據(jù)關(guān)聯(lián)相互牽制的問(wèn)題,減小了非線性和關(guān)聯(lián)假設(shè)的不確定性帶來(lái)的估計(jì)誤差。仿真結(jié)果表明,在初始時(shí)刻、目標(biāo)出現(xiàn)時(shí)刻以及目標(biāo)相距較近時(shí)對(duì)位置跟蹤效果較好,目標(biāo)狀態(tài)演化模型與目標(biāo)實(shí)際狀態(tài)演化相差較大時(shí)位置估計(jì)精度明顯較高,而形狀估計(jì)的性能明顯優(yōu)越。本文并未對(duì)形狀的表示方式進(jìn)行研究,下一步的研究方向是在建立復(fù)雜形狀的表示和量測(cè)源模型建立的基礎(chǔ)上,研究本文算法的適用性。

參考文獻(xiàn) (References)

[1] ??? BAUM M, HANEBECK U D. Shape tracking of extended objects and group targets with starconvex RHMs [C]// Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 338-345.

[2] ??? DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(3):197-208.

[3] ??? 韓玉蘭, 朱洪艷, 韓崇昭. 采用隨機(jī)矩陣的多擴(kuò)展目標(biāo)濾波器[J]. 西安交通大學(xué)學(xué)報(bào), 2015, 49(7): 98-104. (HAN Y L, ZHU H Y, HAN C Z. A multitarget filter based on random matrix[J]. Journal of Xian Jiaotong University, 2015, 49(7): 98-104.)

[4] ??? MAHLER R. PHD filters for nonstandard targets,I: extended targets[C]// Proceedings of the 12th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2009: 915-921.

[5] ??? ORGUNER U, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized probability hypothesis density filter [C]// Proceedings of the 14th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 1-8.

[6] ??? GRANSTROM K,LUNDQUIST C,ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286.

[7] ??? GRANSTROM K, ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671.

[8] ??? HIRSCHER T, SCHEEL A, REUTER S, et al. Multiple extended object tracking using Gaussian processes [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 868-875.

[9] ??? OZKAN E, WAHLSTROM N, GODSILL S J. RaoBlackwellised particle filter for starconvex extended target tracking models [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 1193-1199.

[10] ?? LAN J, LI X R. Extended object or group target tracking using random matrix with nonlinear measurements [C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2016: 901-908.

[11] ?? 韓玉蘭, 朱洪艷, 韓崇昭. 多擴(kuò)展目標(biāo)的高斯混合概率假設(shè)密度濾波器[J].西安交通大學(xué)學(xué)報(bào), 2014, 48(4): 95-101. (HAN Y L, ZHU H Y, HAN C Z. Gaussianmixture probability hypothesis density filter for multiple extended target[J]. Journal of Xian Jiaotong University, 2014, 48(4): 95-101.)

[12] ?? 王雪, 李鴻艷, 孔云波,等. 基于星凸RHM的擴(kuò)展目標(biāo)SMCPHD濾波[J]. 計(jì)算機(jī)應(yīng)用研究, 2017, 34(7):2144-2147.(WANG X, LI H Y, KONG Y B, et al. SMCPHD filter for extended target tracking based on starconvex random hypersurface models[J]. Application Research of Computers, 2017, 34(7):2144-2147.)

[13] ?? VERMAAK J, GODSILL S J, PEREZ P. Monte Carlo filtering for multitarget tracking and data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 309-332.

[14] LIU J S. Metropolized independent sampling with comparisons to rejection sampling and importance sampling[J]. Statistics and Computing, 1996, 6(2):113-119.

[15] DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3):197-208.

[16] ?? GRANSTROM K, LUNDQUIST C, ORGUNER U. Tracking rectangular and elliptical extended targets using laser measurements [C]// Proceedings of the International Conference on Information Fusion. Piscataway, NJ: IEEE, 2011: 592-599.

主站蜘蛛池模板: 国产精品亚洲片在线va| 精品国产中文一级毛片在线看| 在线观看国产精品日本不卡网| 2020国产在线视精品在| 婷婷六月综合网| 91亚瑟视频| 在线观看国产精品一区| 91精品在线视频观看| 全部免费特黄特色大片视频| 成人免费黄色小视频| 99精品热视频这里只有精品7| 精品国产三级在线观看| av午夜福利一片免费看| 黄色免费在线网址| 亚洲色图欧美一区| 国产白浆在线| 欧美日韩导航| 亚洲无码视频图片| 亚洲,国产,日韩,综合一区 | 无码乱人伦一区二区亚洲一| 亚洲AV永久无码精品古装片| 野花国产精品入口| 亚洲丝袜第一页| 日本五区在线不卡精品| 丝袜高跟美脚国产1区| 97久久免费视频| 激情综合网激情综合| 国产手机在线ΑⅤ片无码观看| 亚洲嫩模喷白浆| 青青国产视频| 亚洲美女一区| 欧美高清三区| 夜色爽爽影院18禁妓女影院| 国产一区成人| 亚洲精品波多野结衣| 久久精品中文无码资源站| 99偷拍视频精品一区二区| 香蕉在线视频网站| 国产成在线观看免费视频| 无码内射中文字幕岛国片| 亚洲日韩精品欧美中文字幕 | 香蕉视频国产精品人| 国产欧美亚洲精品第3页在线| 国产va视频| 亚洲国产成人精品青青草原| 日韩免费成人| 成人在线视频一区| 在线国产资源| 日韩123欧美字幕| 亚洲区一区| 国产丝袜无码一区二区视频| 亚洲AV成人一区国产精品| 亚洲天堂成人在线观看| 99资源在线| 成人a免费α片在线视频网站| 精品免费在线视频| 亚洲色欲色欲www在线观看| 亚洲三级a| 99视频精品在线观看| 无码综合天天久久综合网| 久久毛片基地| 日韩欧美国产综合| 亚洲精品无码在线播放网站| 国产导航在线| 精品国产成人三级在线观看 | 日本日韩欧美| 99九九成人免费视频精品| 成年网址网站在线观看| 亚洲中文字幕久久精品无码一区| 国产 在线视频无码| 欧美日韩午夜视频在线观看| 综合色亚洲| 白浆免费视频国产精品视频| 国产精品页| 国产农村精品一级毛片视频| 玖玖精品在线| 亚洲自偷自拍另类小说| 日韩精品一区二区深田咏美| 欧美成人影院亚洲综合图| 狠狠色狠狠综合久久| 无遮挡国产高潮视频免费观看| 福利一区在线|