楊亞楠 夏斌 趙磊 袁文浩



摘 要:為了改善混沌信號的傳輸性能,在相關延遲移位鍵控(CDSK)方案和多載波相關延遲移位鍵控(MCCDSK)方案的基礎上,提出一種多用戶正交相關延遲移位鍵控(MUOCDSK)方案。該方案利用多載波對混沌信號進行調(diào)制,得到的結果相對于CDSK,不僅有更高的頻譜效率,而且誤碼率也得到了一定的改善。對該方案進行了理論仿真和蒙特卡洛仿真,結果表明相對于MCCDSK,該方案不僅提高了1倍的傳輸速率,而且改善了誤碼率;且理論仿真和蒙特卡羅仿真結果一致。
關鍵詞:差分混沌移位鍵控;多載波相關延遲移位鍵控;多用戶;傳輸速率;頻譜效率;誤碼率
中圖分類號:TN911.3
文獻標志碼:A
Abstract: In order to improve the transmission performance of chaotic signals, a MultiUser Orthogonal Correlation Delay Shift Keying (MUOCDSK) scheme was proposed based on Correlation Delay Shift Keying (CDSK) scheme and MultiCarrier Correlation Delay Shift Keying (MCCDSK) scheme. The multicarrier was used to modulate chaotic signals. Compared with CDSK, the proposed scheme not only has higher spectral efficiency, but also improves bit error rate. Theoretical simulation and Monte Carlo simulation show that compared with MCCDSK, the proposed scheme not only doubles the transmission rate, but also improves the bit error rate. The results of theoretical simulation and Monte Carlo simulation are consistent.
英文關鍵詞Key words: Differential Chaos Shift Keying (DCSK); MultiCarrier Correlation Delay Shift Keying (MCCDSK); multiuser; transmission rate; spectrum efficiency; Bit Error Rate (BER)
0 引言
隨著無線通信在現(xiàn)代通信中占據(jù)著越來越重要的地位,不管是以太網(wǎng)、電視廣播、全球定位系統(tǒng)、移動通信系統(tǒng),還是無線網(wǎng)絡連接, 自然界復雜的電磁環(huán)境對信號傳輸存在較大的干擾,不能穩(wěn)定和快速地傳輸信號。在非線性動力學中,混沌在確定性動力學系統(tǒng)中具有長期行為不可預測、初值條件敏感的特點[1]。尤為明顯的是,混沌信號特別適合于擴頻通信,因為其功率譜密度分布情況與白噪聲類似,同樣都有帶寬比較寬的特性。混沌信號還有良好的自相關和互相關特性。
目前在混沌應用中,差分混沌移位鍵控(Differential Chaos Shift Keying, DCSK)系統(tǒng)和相關延遲鍵控(Correlation Delay Shift Keying, CDSK)系統(tǒng)的研究最為廣泛。其中DCSK系統(tǒng)的調(diào)制部分采用的調(diào)制方式為傳輸參考(TransmitReference, TR)模式,所以誤碼性能很好,但是在每比特周期內(nèi)只有一半的時間用于傳輸參考信號,所以存在傳輸效率低的缺點[2-3]。CDSK系統(tǒng)方案的提出克服了信息傳輸速率低的缺點,但CDSK系統(tǒng)誤碼性能卻很差。為了滿足現(xiàn)代通信對于通信系統(tǒng)的傳輸速率、誤碼率和保密性能越來越高的要求,對于混沌鍵控技術的改進與研究一直在進行, 其中,為了提高傳輸速率和降低誤碼率,多進制、多用戶和減少碼間干擾技術被廣泛地采用[4-5]。
多載波技術的出現(xiàn)和使用改善了DCSK系統(tǒng)傳輸速率低的缺點,繼而提出了多載波混沌鍵控(MultiCarrier DCSK, MCDCSK)[6], 然后出現(xiàn)了MUMCDCSK(MultiUser MultiCarrier DCSK)[7]。為了進一步提高多載波混沌鍵控系統(tǒng)的信息比特速率,出現(xiàn)了正交多載波混沌鍵控(Quadrature MultiCarrier DCSK, QMCDCSK)系統(tǒng)[8]和多載波相關延遲鍵控(MultiCarrier CDSK, MCCDSK)[9]。在MCCDSK系統(tǒng)中,載波中的一個子載波用來傳輸參考信號,參考信號是由混沌信號和它的延遲信號相加而來, 其他的子載波作為信息承載信號用來傳輸比特信號。MCCDSK系統(tǒng)在先前系統(tǒng)中提高了信息傳輸速率,也降低了誤碼率:2012年Kaddoum等[10]提出了一種關于安全方面的多載波混沌鍵控方案,2015年,又提出了使用模擬網(wǎng)絡編碼來調(diào)制混沌信號,采用頻域復用技術分離不同用戶的數(shù)據(jù)載波和參考信號來消除干擾[11];2017年Long等[12]和Yang等[13]在多載波混沌通信的基礎上分別設計了改善型和關于噪聲消除消除的通信系統(tǒng)方案;2018年,Duan等[14]提出了一種混沌信號相位正交的相關延遲鍵控方案,提高了混沌信號的傳輸速率;Quyen等[15]又提出一種重復擴頻序列的混沌通信方案,明顯改善了通信系統(tǒng)的誤碼性能。
在傳輸速率和誤碼率這兩個性能指標上進行改善,提出了一種多用戶正交相關延遲鍵控系統(tǒng),該系統(tǒng)在相同的頻帶寬度上相對于MCCDSK系統(tǒng)有2倍的信息傳輸速率,并且誤碼率也有一定的改善。在系統(tǒng)的發(fā)送端,混沌序列和它的延遲序列相加之后再作為參考信號通過子載波進行發(fā)送;信息比特流通過串并變換分別與混沌序列及其延遲序列進行相乘的總和通過子載波發(fā)送。
5 結語
本文設計和分析了多用戶正交相關延遲鍵控系統(tǒng), 該系統(tǒng)的框圖完全可以實現(xiàn)。該方案在混沌信號傳輸系統(tǒng)中解決了傳輸速率慢和誤碼率高的問題,可以應用在無線傳播領域。但是由于使用了較多的延遲線和參考信號的多次使用,不太利于成本和信息安全。在該方案的基礎上可以引入多輸入多輸出技術,進一步提高信息的傳輸性能。
參考文獻 (References)
[1] LARSON L E, LARSON L E, LARSON L E, et al. Digital Communications Using Chaos and Nonlinear Dynamics[M]. Berlin: Springer, 2006:e2958-e2964.
[2] RUSHFORTH C K. Transmittedreference techniques for random or unknown channels[J]. IEEE Transactions on Information Theory, 1964, 10(1): 39-42.
[3] QUYEN N X, DUONG T Q, NALLANATHAN A. Modelling, analysis and performance comparison of two direct sampling DCSK receivers under frequency nonselective fading channels[J]. IET Communications, 2016, 10(11):1263-1272.
[4] YANG H, JIANG G P. Simple intrasignalinterference removing detector for HEDCSK[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20(6):102-108.
[5] COULON M, ROVIRAS D. Multiuser adaptive receivers for a multipleaccess system based on random permutations on timevarying frequencyselective channels with unknown delays and coefficients[J]. IET Communications, 2012, 6(11): 1562-1572.
[6] KADDOUM G, RICHARDSON F D, GAGNON F. Design and analysis of a multicarrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8):3281-3291.
[7] KADDOUM G. Design and performance analysis of a multiuser OFDM based differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2016, 64(1):249-260.
[8] QUYEN N X, PHAM C K. Quadrature multicarrier DCSK: a highefficiency scheme for radio communications[C]// Proceedings of the 2017 International Conference on Advanced Technologies for Communications. Piscataway, NJ: IEEE, 2017: 186-191.
[9] QUYEN N X. On the design of a multicarrier correlation delayshift keying system[J]. Physical Communication, 2017, 22(22):49-57.
[10] KADDOUM G, GAGNON F, RICHARDSON F D. Design of a secure multicarrier DCSK system[C]// Proceedings of the 2012 International Symposium on Wireless Communication Systems. Piscataway, NJ: IEEE, 2012: 964-968.
[11] KADDOUM G, SHOKRANEH F. Analog network coding for multiuser multicarrier differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(3):1492-1505.
[12] LONG N H, QUYEN N X, YEM V V. Design of an improved multicarrier DCSK system for digital communications[C]// Proceedings of the 2017 International Conference on Recent Advances in Signal Processing, Telecommunications & Computing. Piscataway, NJ: IEEE, 2017: 211-216.
[13] YANG H, JIANG G P, TANG W K S, et al. Multicarrier differential chaos shift keying system with subcarriers allocation for noise reduction[J]. IEEE Transactions on Circuits & Systems II: Express Briefs, 2018, 65(11): 1733-1737.
[14] DUAN J Y, YANG H. Phaseorthogonality CDSK: a reliable and effective chaotic communication scheme[J]. IET Communications, 2018, 12(9):1116-1122.
[15] QUYEN N X. Multicarrier differential chaosshift keying with repeated spreading sequence[J]. Journal of Communications & Networks, 2018, 20(3):299-308.