喻露 胡劍鋒 姚磊岳



摘 要:針對現有的多流形人臉識別算法大多直接使用帶有噪聲的原始數據進行處理,而帶有噪聲的數據往往會對算法的準確率產生負面影響的問題,提出了一種基于最大間距準則的魯棒多流形判別局部圖嵌入算法(RMMDLGE/MMC)。首先,通過引入一個降噪投影對原始數據進行迭代降噪處理,提取出更加純凈的數據;其次,對數據圖像進行分塊,建立多流形模型;再次,結合最大間隔準則的思想,尋求最優的投影矩陣使得不同流形上的樣本距離盡可能大,同時相同流形上的樣本距離盡可能小;最后,計算待識樣本流形到訓練樣本流形的距離進行分類識別。實驗結果表明,與表現較好的最大間距準則框架下的多流形局部圖嵌入算法(MLGE/MMC)相比,所提算法在添加噪聲的ORL、Yale和FERET庫上的分類識別率分別提高了1.04、1.28和2.13個百分點,分類效果明顯提高。
關鍵詞:多流形;降噪投影;圖嵌入;最大間隔準則;分類識別
中圖分類號:TP391.4
文獻標志碼:A
Abstract: In most existing multimanifold face recognition algorithms, the original data with noise are directly processed, but the noisy data often have a negative impact on the accuracy of the algorithm. In order to solve the problem, a Robust MultiManifold Discriminant Local Graph Embedding algorithm based on the Maximum Margin Criterion (RMMDLGE/MMC) was proposed. Firstly, a denoising projection was introduced to process the original data for iterative noise reduction, and the purer data were extracted. Secondly, the data image was divided into blocks and a multimanifold model was established. Thirdly, combined with the idea of maximum margin criterion, an optimal projection matrix was sought to maximize the sample distances on different manifolds while to minimize the sample distances on the same manifold. Finally, the distance from the test sample manifold to the training sample manifold was calculated for classification and identification. The experimental results show that, compared with MultiManifold Local Graph Embedding algorithm based on the Maximum Margin Criterion (MLGE/MMC) which performs well, the classification recognition rate of the proposed algorithm is improved by 1.04, 1.28 and 2.13 percentage points respectively on ORL, Yale and FERET database with noise and the classification effect is obviously improved.
英文關鍵詞Key words: multimanifold; denoising projection; graph embedding; maximum margin criterion; classification and identification
0 引言
在過去十幾年中,流形學習已經成為機器學習與數據挖掘領域的一個重要的研究課題[1-5]。目前,局部線性嵌入 (Locally Linear Embedding,LLE)[6]、局部保持投影 (Locality Preserving Projection, LPP)[7]、等距特征映射(ISOmetric MAPping, ISOMAP) [8]和拉普拉斯特征映射(Laplacian Eigenmap, LE)[9]等經典流形學習算法已在人臉識別和基因分類等領域得到廣泛應用。之后,又有學者通過加入樣本類別信息,提出了正交鑒別投影(Orthogonal Discriminant Projection, ODP)[10]、邊界費舍爾分析(Margin Fisher Analysis, MFA)[11]和鑒別的局部保持投影(Discriminant Locality Preserving Projections, DLPP)[12]等算法。實際上,不同類別的樣本數據差異明顯,而在傳統的流形學習算法中,都默認假設它們位于同一流形內,這顯然是不合適的。為此,文獻[13]用局部散布和類間散布來描述子流形和多流形信息,并在Fisher框架下計算投影,提出了約束最大方差映射(Constrained Maximum Variance Mapping, CMVM)算法; 文獻[14]則將子流形和多流形的信息分別用類內圖和類間圖來表示,提出了多流形判別分析(MultiManifold Discriminant Analysis, MMDA)算法; 文獻[15]提出了最大間距準則框架下的多流形局部圖嵌入(MultiManifold Locally Graph Embedding based on Maximum Margin Criterion, MLGE/MMC)算法,利用圖像分塊的思想,對分塊的小圖像構建多流形,來處理小樣本問題。
但是,上述多流形算法的識別性能均受到原始數據中噪聲帶來的影響。本文針對多流形人臉識別算法處理帶有噪聲的真實數據的魯棒性問題,提出了一種基于最大間距準則的魯棒多流形判別局部圖嵌入(Robust MultiManifold Discriminant Local Graph Embedding based on Maximum Margin Criterion, RMMDLGE/MMC)算法。首先對原始數據進行迭代降噪處理,提取出更加純凈的數據;再結合多流形的思想,對數據圖像進行分塊,建立多流形模型;接著在最大間隔準則(Maximum Margin Criterion, MMC)的框架下,尋求最優的投影矩陣使位于不同流形上的數據樣本之間的距離盡可能大,同時位于同一流形上的數據樣本之間的距離盡可能小;最后通過計算待識樣本流形到訓練樣本流形的距離進行分類識別。在ORL、Yale和FERET庫上的實驗,驗證了所提算法的有效性。
3.6 實驗結果分析
1) 在三個人臉數據集ORL、Yale和FERET的實驗結果表明,隨著訓練樣本數的增加,本文算法RMMDLGE/MMC的平均識別率均優于其他幾種算法。由圖5~7和圖9~11可以看出,當添加噪聲后,RMMDLGE/MMC的識別效果優勢更加明顯。
2) 在未加入噪聲的Yale人臉庫上,當訓練樣本數為2時,RMMDLGE/MMC算法的識別率比排在第二位的MLGE/MMC算法高出2.66%;在未加入噪聲的FERET人臉庫上,當訓練樣本數為3時,RMMDLGE/MMC算法的識別率比排在第二位的MLGE/MMC算法高出3.55%。因此,在訓練樣本數量較少時,本文所提算法RMMDLGE/MMC可以取得很好的識別效果。
3) 由表2和表3可以看出,本文算法RMMDLGE/MMC相對于其他算法在添加噪聲的ORL、Yale和FERET庫上的分類識別率分別提高了1.04、1.28和2.13個百分點,算法RMMDLGE/MMC的最高識別率受噪聲的影響最小,充分表明它對噪聲具有較強的魯棒性。
4 結語
為了解決多流形算法對噪聲的魯棒性問題,本文提出了一種基于最大間距準則的魯棒多流形判別局部圖嵌入算法RMMDLGE/MMC。首先,通過引入一個降噪投影對原始數據進行迭代降噪處理,提取出更加純凈的數據; 再結合多流形的思想,對數據圖像進行分塊,建立多流形模型; 接著在最大間隔準則的框架下,尋求最優的投影矩陣使得不同流形上的樣本距離盡可能大,同時相同流形上的樣本距離盡可能小; 最后通過計算待識樣本流形到訓練樣本流形的距離進行分類識別。在標準人臉圖像庫上的實驗結果驗證了本文算法的有效性。然而,在運用到實際的過程中,算法中過多的可調參數將造成參數選擇問題,進一步減少算法中的可調參數將是下一步研究和改進的方向。
參考文獻 (References)
[1] SEUNG H S, LEE D D. The manifold ways of perception [J]. Science, 2000, 290(5500): 2268-2269.
[2] ??? MIN W L, LU K, HE X F. Locality pursuit embedding [J]. Pattern Recognition, 2004, 37(4): 781-788.
[3] ??? GUI J, SUN Z N, JIA W, et al. Discriminant sparse neighborhood preserving embedding for face recognition [J]. Pattern Recognition, 2012, 45(8): 2884-2893.
[4] ??? WAN M H, LI M, YANG G W, et al. Feature extraction using twodimensional maximum embedding difference [J]. Information Sciences, 2014, 274: 55-69.
[5] ??? AI Z H, WONG W K, XU Y, et al. Approximate orthogonal sparse embedding for dimensionality reduction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 723-735.
[6] ??? ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
[7] ??? HE X F, YAN S C, HU Y X, et al. Face recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
[8] ??? TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323.
[9] ??? BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396.
[10] ?? LI B, WANG C, HUANG D S. Supervised feature extraction based on orthogonal discriminant projection [J]. Neurocomputing, 2009, 73(1):191-196.
[11] ?? YAN S, XU D, ZHANG B, et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1):40-51.
[12] ?? LIN K Z, RONG Y H, WU D, et al. Discriminant locality preserving projections based on neighborhood maximum margin [J]. International Journal of Hybrid Information Technology, 2014, 7(6): 165-174.
[13] ?? LI B, HUANG D S, WANG C, et al. Feature extraction using constrained maximum variance mapping [J]. Pattern Recognition, 2008, 41(11): 3287-3294.
[14] ?? YANG W K, SUN C Y, ZHANG L. A multimanifold discriminant analysis method for image feature extraction [J]. Pattern Recognition, 2011, 44(8): 1649-1657.
[15] ?? WAN M H, LAI Z H. Multimanifold Locality Graph Embedding based on the Maximum Margin Criterion (MLGE/MMC) for face recognition [J].IEEE Access, 2017, 5: 9823-9830.
[16] ?? LI H, JIANG T, ZHANG K. Efficient and robust feature extraction by maximum margin criterion [J]. IEEE Transactions on Neural Networks, 2006, 17(1):157-165.
[17] ?? HOU C, NIE F, LI X, et al. Joint embedding learning and sparse regression: a framework for unsupervised feature selection [J]. IEEE Transactions on Cybernetics, 2014, 44(6): 793-804.
[18] ?? SHI J, MALIK J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 22(8):888-905.
[19] ?? LU J, TAN Y, WANG G. Discriminative multimanifold analysis for face recognition from a single training sample per person [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 39-51.
[20] ?? TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1):72-86.
[21] ?? 董西偉,堯時茂,王玉偉,等.基于虛擬樣本圖像集的多流形鑒別學習算法[J].計算機應用研究, 2018,35(6):1871-1878.(DONG X W, YAO S M, WANG Y W, et al. Virtual sample image set based multi manifold discriminant learning algorithm [J]. Application Research of Computers, 2018, 35(6): 1871-1878.)
[22] ?? WITTEN I H, HALL M A. Data Mining Practical Machine Learning Tools and Techniques [M]. 3nd ed. San Francisco, CA: Morgan Kaufmann Publishers, 2011: 340-345.