999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector?

2019-08-06 02:07:44YongWang王勇HaoLi李浩LiXingYou尤立星ChaoLinLv呂超林
Chinese Physics B 2019年7期

Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(呂超林),

He-Qing Wang(王河清)1,2,3, Xing-Yu Zhang(張興雨)1,2,3, Wei-Jun Zhang(張偉君)1,3, Hui Zhou(周慧)1,3,

Lu Zhang(張露)1,2,3, Xiao-Yan Yang(楊曉燕)1,3, and Zhen Wang(王鎮)1,3

1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),

Chinese Academy of Sciences,Shanghai 200050,China

2University of Chinese Academy of Sciences,Beijing 100049,China

3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

Keywords: niobium nitride,superconducting nanowire single-photon detectors,detection mechanism

1. Introduction

Superconducting nanowire single-photon detectors(SNSPDs) have the advantages of high detection efficiency,low dark count rate, and low timing jitter, which have led to their wide used in various applications, such as quantum key distribution,[1-3]laser communication and ranging,[4-9]fluorescence spectroscopy,[10]and single photon imaging.[11]The detector performance has been considerably improved in recent years. For example, the system detection efficiency(SDE) at the wavelength of 1550 nm was raised to 93%(90%) for WSi (NbN) SNSPDs by adopting lossless optical cavities.[12,13]In the case of the timing jitter,[14-16]a timing resolution of less than 5 ps was achieved by using cryogenic amplifiers and optimizing the nanowire structures.[17]Nevertheless, the intrinsic detection mechanism of SNSPDs is not well comprehended, even though many theoretical and experimental studies have been conducted.[18-23]

When one photon is absorbed by a superconductor, it leads to the breaking up of Cooper pairs, forming a cloud of quasi-particles. Many models, such as the hot-spot model,[24]quasi-particles diffusion,[18]and vortex crossing model,[19,20,25]were applied to describe the behavior of these quasi-particles. One important technique to verify the detection model is determining the relation between the responding photon energy and bias current (Ib) at a certain responding probability. This relation is commonly referred to as the energy-current relation. A linear energy-current relation indicates that quasiparticle diffusion plays a critical role in photon response, while a nonlinear relation implies that a model considering only the quasiparticle diffusion is unsuitable and that a vortex-related detection model should be taken into consideration.[25]The linear relation was first determined for NbN-based detectors over a large range of photon energies(0.75-8.26 eV)by using quantum detector tomography(QDT).[26]Subsequently,similar results were reported for WSi-based detectors with a slight deviation from the linear behavior at low energies (0.75-0.85 eV).[27]However, other experimental results have shown nonlinear energy-current relations for WSi[25]and MoSi[28]SNSPDs. In the case of NbN SNSPDs, a nonlinear energy-current relation was also observed over a photon energy range from 0.8 eV to 2.76 eV.[25]The reported inconsistent results make the detection mechanism uncertain and thus more investigations on energy-current relations are required.

In this work,the energy-current relation of NbN SNSPDs with different linewidths(30-140 nm)was studied with varying photon wavelengths (energy) from 510 nm to 1700 nm(0.73 eV to 2.43 eV).All the extracted energy-current curves show apparent nonlinear relations over the measured photon energy range. These results imply that a detection model that considers only quasiparticle diffusion is inappropriate. Our results may serve as an interesting reference for further investigation on the detection mechanism of SNSPD.

2. Device design and fabrication

We fabricated the detectors on a Si substrate with oxidized layers on both sides. A NbN thin film with a nominal thickness of 7.0 nm was deposited on the substrate at room temperature via reactive DC magnetron sputtering in a mixture of Ar(79%)and N2(21%)gas at a total pressure of 0.273 Pa.The sputtering current and corresponding voltage were 2.19 A and 264 V, respectively. The film thickness was controlled by the deposition time based on the calculated sputtering rate.Meander nanowire structures,covering an active circular area of diameter 5 μm, were patterned by electron beam lithography on the NbN film. The film was then reactively etched in CF4plasma.Finally,a bridge was etched using reactive ions to form the co-plane waveguide to enable the readout of the electrical signals. Figure 1(a)shows the schematic of the SNSPD,and the structures from top to bottom are NbN,SiO2,and the Si substrate. As shown in Fig.1(b)and the inset,the nanowire was patterned as meander type with width and pitch of 60 nm and 150 nm,respectively.The resulting device shows a critical temperature of 7.6 K and a square resistance 125 Ω/sq.

Fig.1. (a)Schematic of a superconducting nanowire single-photon detector.(b) Scanning electron microscopy image of the surface topography of the NbN device. The active diameter of the device is 5μm. The inset shows a magnified image of a nanowire with width and pitch of 60 nm and 150 nm,respectively.

3. Results and discussion

The device was illuminated by a HI 1060 FLEX fiber(core diameter: 6.0±0.5 μm) placed in front of the device and packed in a copper sampling mount. Then,the device was installed in a Gifford-McMahon cryocooler with a working temperature of 2.100±0.005 K.The bias current was applied via a quasi-constant current source,[24]and a bias-tee was utilized to separate the high-frequency detection pulses from a DC port. The device bonding with the transmission line was connected to the DC plus RF port of the bias-tee. The voltage pulse generated by the SNSPD was then amplified by a room-temperature, 50-dB gain, low noise amplifier (RF Bay Inc. LNA-650). In the optical module, the incident light was generated by a bromine-tungsten lamp. This light was passed through a grating monochromator for a series of wavelengths from 510 nm to 1700 nm. Subsequently,two attenuators were utilized to control the incident photon flux on the device.

In the experiment,we varied the incident wavelength and recorded the photon count as a function of the bias current.For each bias current, the input fiber connected with the system was blocked,and dark counts were collected for 10 s using a commercial counter. Then,the light was unblocked,and the output pulse counts were collected for another 10 s. We thus obtained the photon counts by subtracting the dark counts from the pulse counts.

The intrinsic detection efficiency (IDE) represents the pulse generation probability of the nanowire after photon absorption,which is written as IDE=PCR/ABR,where PCR is the measured photon count rate and ABR is the absorbed photon count rate. Due to the saturated SDE at high bias current,we may assume that the maximum IDE reaches unity and ABR is independent of the bias current,after which the IDE curves as a function of bias current were obtained by normalizing the SDE curves.

Figure 2 shows the dependence of IDE on the bias current for wavelengths ranging from 510 nm to 1700 nm. We observed that the nanowire starts registering photons at a bias current of approximately 4.5 μA. All of the curves show a plateau near the switching current at around ISW=10.0 μA.At the same current,the high photon energy results in a higher IDE,and thus,the IDE curves of short wavelengths saturated more rapidly than those of long wavelengths.

Fig. 2. Intrinsic detection efficiency as a function of bias current for wavelengths ranging from 510 nm to 1700 nm for an SNSPD linewidth of 60 nm.

We then extracted the energy-current relations from Fig. 2, as shown in Fig. 3, in which the IDE values are determined to be 1%, 30%, 50%, and 80% in comparison with previous reported works.[21,28]The curves showed nonlinear energy-current relations,which were different from the linear relation observed in the case of QDT measurements for the NbN nanodetector.[26]Furthermore, apparent nonlinear relations were observed in the low-energy region unlike the results of a previous experimental work,[25]where only a slightly deviation from the linear relation was observed at a 50% responding probability. This result indicates that a detection mechanism model that considers only quasiparticle diffusion is incompatible with our observations.

Fig.3.Bias current as a function of incident photon energy at a response probability of 1%(green triangle), 30%(dark triangle), 50%(blue triangle),and 80%(red triangle)for an SNSPD linewidth of 60 nm. The red lines represent the fitting curves with the equation I=I0+Ae-E/E0.

To quantitatively characterize the nonlinear relations,we fitted our data using the function I =I0+Ae-E/E0, where I represents the bias current, E is the photon energy of excitation,I0is the reference current,and A and E0are constants.As shown in Fig.3,the fitted curves coincide well with the experimental results for the IDE of 1%,30%,50%,and 80%,where I0=4.7μA,5.8μA,6.2μA,6.7μA,A=2.7μA,11.3μA,62.3 μA, 98.1 μA, and E0=0.5 eV, 0.3 eV, 0.2 eV, 0.2 eV,respectively. However, this formula does not fit the existing physical models.[26]Consequently,we have to admit here that this is an empirical fitting and the underlying mechanism is unclear yet.

This observation was further verified by measuring the energy-current relations of SNSPDs with linewidths of 30 nm,80 nm, 100 nm, and 140 nm. Figure 4 shows the relation curves at 1%IDE which are all nonlinear and in good agreement with the above mentioned empirical formula. Note that for SNSPDs with linewidths of 80 nm, 100 nm, and 140 nm,PCR did not saturate at higher bias currents for long wavelengths and a sigmoid function fitting was applied to obtain the normalized IDE curve. We also noted that Ibs in the energy-current curves vary greatly for different linewidths.The smaller the nanowire width,the lower bias current at 1%response probability under the same photon energy. Indeed,various detection models of SNSPD agree with each other(at least qualitatively) on this point. For the hot-spot model, the same photon energy means the same hot-spot size. The wider nanowire needs a higher bias current to guarantee that the redistributed bias current density exceeds the critical current density and thus generate the detection event.[24]In the quasiparticles diffusion model,the current carrying capacity of the wire is proportional to the number of remaining Cooper pairs.A wider nanowire indicates a smaller quasiparticles density across the nanowire,which needs a larger bias current to guarantee that the Cooper pairs exceed the critical velocity.[18]For the vortex-crossing model, the vortex barrier is proportional to the wire width. To overcome the energy barrier, the wider nanowire needs a higher bias current to reduce the barrier.[20]

Fig.4.Plot of bias current versus incident photon energy at 1%response probability for wire widths of 30 nm,80 nm,100 nm,and 140 nm.Both the experimental data and the fitting curves(red lines)follow a nonlinear energy-current relation. The fitting parameters are I0 =1.6 μA,2.2μA,3.9μA,9.7μA;A=0.7μA,10.6μA,14.4μA,10.7μA;and E0=0.5 eV,1.0 eV,0.8 eV,0.7 eV,respectively.

In previous works, linear energy-current relations were found by using QDT[26]for different types of NbN devices such as nanodetectors,nanobridges,and meanders.Similar results were also found in WSi nanobridge detectors along with a slight deviation for the range between 0.75 eV to 0.85 eV.[27]On the contrary, nonlinear relations were also observed in MoSi,[28]WSi,[25]and NbN[25]meander detectors. While the conclusion of non-linear relationship of energy-current in this paper has been drawn in previous work,[25]our work here further confirms the non-linear relationship under different nanowire widths and adds the experimental data at the width of 60 nm in the long wavelength range. In Ref.[25],the data was obtained by using extrapolation (sigmoid curve fitting)instead. Moreover, the fitting function is given in our work to quantitatively characterize the nonlinear relations. Our results indicate the nonlinear relation in NbN SNSPDs using various nanowire widths, provide additional experimental data,and may serve as an interesting reference for further investigation. Finally,it is worth noting that those discrepancies in the reported experimental results may be explained by the different photon energy range, different structures,and/or different materials and more systematically comparison is necessary before making the conclusion whether the quasiparticle diffusion model dominates the detection mechanism of SNSPD.

4. Conclusion

We studied the IDE-bias current relation of SNSPDs for different photon energies from 0.73 eV to 2.43 eV and derived the energy-current relation.A clear nonlinear relation was observed for SNSPDs with different linewidths. The results are consistent with previous reports on MoSi[28]and WSi,[25]but different from the initial results in the QDT measurements for the NbN nanodetector. However, the conclusion drawn from the linear relation may not be suitable for the detection mechanism of SNSPDs. Therefore, more systematical experimental work is necessary to determine the detection model of the SNSPDs.

Acknowledgment

The authors would like to thank L. Ma, H. Jin, and Z.Chen for the fabrication support, J. Huang and C. Zhang for the measurement instruction.

主站蜘蛛池模板: 亚洲国产精品一区二区第一页免| 波多野结衣亚洲一区| 高清无码一本到东京热| 日韩在线成年视频人网站观看| 色噜噜综合网| 久青草免费在线视频| 在线观看国产精品一区| 毛片大全免费观看| 亚洲天堂网站在线| 国产老女人精品免费视频| 欧美一区二区三区欧美日韩亚洲| 在线毛片免费| 国产在线视频导航| 精品福利国产| 免费又黄又爽又猛大片午夜| 国内精品91| 茄子视频毛片免费观看| 真实国产精品vr专区| 亚洲无码37.| 凹凸国产熟女精品视频| 国产va视频| 91精品啪在线观看国产| 国产人成乱码视频免费观看| 亚洲人妖在线| 国产成人久视频免费| 福利视频久久| 亚洲国产成人超福利久久精品| 亚洲第一中文字幕| 91麻豆精品国产91久久久久| 欧美日本不卡| 91在线视频福利| 少妇人妻无码首页| 国产乱子伦精品视频| 91麻豆精品国产高清在线| 国产免费a级片| 在线精品视频成人网| 亚洲中字无码AV电影在线观看| 麻豆国产原创视频在线播放| 99国产精品一区二区| 高清不卡毛片| 婷婷六月综合网| 欧美无专区| 四虎影院国产| 成人免费午夜视频| 亚洲欧美精品日韩欧美| 久久久久国产一区二区| 97无码免费人妻超级碰碰碰| 亚洲最新在线| 欧美激情一区二区三区成人| 91人人妻人人做人人爽男同| 久久综合激情网| 99色亚洲国产精品11p| 国产亚洲精久久久久久久91| 本亚洲精品网站| 在线播放国产一区| 黄色一及毛片| 超清无码一区二区三区| 国产亚洲精品97AA片在线播放| 无码高潮喷水在线观看| 好紧太爽了视频免费无码| 久草热视频在线| 国产久操视频| 欧美三级日韩三级| 亚洲视频无码| 国产99免费视频| 四虎成人免费毛片| 国产97视频在线观看| 孕妇高潮太爽了在线观看免费| 久久综合色天堂av| 欧美性爱精品一区二区三区| 国产成人av大片在线播放| 青草免费在线观看| 九九久久精品免费观看| 性网站在线观看| 中文国产成人久久精品小说| 91久久偷偷做嫩草影院电| 国产欧美视频在线| 在线色国产| 久久福利片| 久久激情影院| 无码中字出轨中文人妻中文中| 香蕉网久久|