999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義空間調(diào)制中的高效天線選擇算法

2019-08-12 06:15:44祁婷田紅心杜文叢方旭愿
現(xiàn)代電子技術(shù) 2019年15期

祁婷 田紅心 杜文叢 方旭愿

摘 ?要: 天線選擇技術(shù)是一種能夠提供高分集增益的有效手段。廣義空間調(diào)制(GSM)系統(tǒng)可以與天線選擇相結(jié)合使BER性能和系統(tǒng)容量得到提升。文中首先研究了GSM系統(tǒng)中基于歐氏距離的天線選擇算法;然后提出一種低復(fù)雜度的基于模值排序準(zhǔn)則的天線選擇算法;為了取得復(fù)雜度和傳輸性能的折中,最后提出一種結(jié)合模值排序和歐氏距離的天線選擇算法。仿真分析結(jié)果表明,提出的新型結(jié)合模值排序和歐氏距離的算法是一種更有效的系統(tǒng)優(yōu)化算法。

關(guān)鍵詞: 廣義空間調(diào)制; 天線選擇; 多輸入多輸出技術(shù); 歐氏距離; 信息傳輸; 模值排序準(zhǔn)則

中圖分類號: TN925?34 ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)15?0021?04

Efficient antenna selection algorithm used in generalized spatial modulation

QI Ting1, 2, TIAN Hongxin1, DU Wencong1, FANG Xuyuan1

(1. School of Telecommunications Engineering, XIDIAN University, Xian 710071, China;

2. Department of Command Information Systems and Networks, Air?force Communication NCO Academy, Dalian 116600, China)

Abstract: Antenna selection technique is an effective means to provide high diversity gain. The generalized spatial modulation (GSM) systems can be combined with antenna selection to improve BER performance and system capacity. The antenna selection algorithm based on Euclidean distance in GSM system is studied in this paper, and then a low?complexity antenna selection algorithm based on modulus?sorting criterion is proposed. In order to achieve the trade?off between complexity and performance, an antenna selection algorithm combining modulus sorting and Euclidean distance is proposed. The simulation results show that the new algorithm combining modular value sorting and Euclidean distance is a more effective system optimization algorithm.

Keywords: generalized spatial modulation; antenna selection; multi?input multi?output technology; Euclidean distance; information transmission; modulus?sorting criterion

0 ?引 ?言

多輸入多輸出(Multiple Input Multiple Output,MIMO)技術(shù)因為其能夠成倍地提高系統(tǒng)傳輸速率且不需要增加額外的帶寬而成為未來移動通信系統(tǒng)的核心技術(shù)之一[1]。特別地,大規(guī)模的MIMO系統(tǒng)的發(fā)射天線和接收天線數(shù)目遠(yuǎn)高于傳統(tǒng)的MIMO系統(tǒng),從而可以成倍地提升傳輸性能和通信容量。然而,隨著天線數(shù)量的大幅度增長,傳統(tǒng)MIMO技術(shù)空時分組碼(Space?Time Block Code,STBC)和垂直分層空時碼(Vertical?Bell Laboratories Layered Space?Time,V?BLAST)需要龐大的射頻鏈路數(shù)量,這將消耗更多的成本[2?3]。此外,隨著收發(fā)天線數(shù)量的增加,STBC和V?BLAST的空間信道數(shù)量將顯著增長,若對每條信道進行信道估計和時頻同步將消耗巨大的系統(tǒng)資源。隨著天線數(shù)量的增長,接收端檢測的復(fù)雜度呈指數(shù)級增長。因此,設(shè)計新型、能夠兼顧容量優(yōu)勢和突破傳統(tǒng)限制的MIMO傳輸方案是無線通信領(lǐng)域的熱點研究方向。

廣義空間調(diào)制(Generalized Spatial Modulation,GSM)作為一種全新的MIMO傳輸技術(shù)被提出[4?7]。相比傳統(tǒng)MIMO,其特征在于,在每個時隙利用被激活的多根天線索引,即空間維度攜帶的信息,對激活天線進行幅度相位調(diào)制[8?9]。GSM在保持傳輸效率和性能的同時,能夠降低MIMO系統(tǒng)的復(fù)雜度和硬件開銷。相比傳統(tǒng)MIMO,利用GSM的MIMO系統(tǒng)在信號傳輸過程中僅激活少量發(fā)射天線,從而系統(tǒng)的發(fā)射端僅需要少量的射頻鏈路用于傳輸,這種簡化結(jié)構(gòu)有利于降低大規(guī)模MIMO系統(tǒng)成本。天線選擇技術(shù)是一種能夠提供高分集增益的有效手段。GSM系統(tǒng)的檢測方法大體上分為兩大類[10?12],即天線序號判定與星座映射獨立進行和天線序號與星座聯(lián)合檢測。研究證明,聯(lián)合檢測算法具有更好的性能[13?16]。

本文著眼于系統(tǒng)性能和實現(xiàn)復(fù)雜度,結(jié)合GSM和天線選擇,首先,基于最小歐氏距離最大化準(zhǔn)則,提出GSM系統(tǒng)中的最優(yōu)天線選擇算法;然后,分析得出最優(yōu)天線選擇算法需要遍歷所有可能的發(fā)射符號,具有較高的復(fù)雜度的結(jié)論。在此基礎(chǔ)上為了降低系統(tǒng)復(fù)雜度,提出一種基于模值排序的算法,即取發(fā)射天線對應(yīng)的信道列向量模值較大的幾列發(fā)射天線作為選擇的發(fā)射天線;最后,還提出一種結(jié)合模值排序和歐氏距離的算法,即先利用模值排序得到一個較小的備選天線集合,然后在備選天線集合里利用最小歐氏距離最大化選擇天線。

1 ?系統(tǒng)模型

考慮一個有[Nt]根發(fā)射天線和[Nr]根接收天線的廣義空間調(diào)制系統(tǒng)。天線選擇是從[Nt]根發(fā)射天線中自適應(yīng)地選擇[nt]根進行數(shù)據(jù)傳輸。在發(fā)射端,[P]([P

式中:[Ik=(k1,k2,…,kP)∈II],表示激活的天線組合;調(diào)制符號[sk=sk1,sk2,…,skPT∈S],是激活天線上對應(yīng)的星座符號,[S]表示所有[P]維的星座符號的集合。

假設(shè)發(fā)射天線和接收天線通過頻率選擇性慢衰落信道進行通信,信道矩陣為[H=[h1,h2,…,hNt]∈C?Nr×Nt],其服從復(fù)高斯分布[CN(0,1)]。令[IAS=linti=1]表示備選天線集合,其中天線[li]來自集合[T=1,2,…,Nt]。[HIAS=hl1,hl2,…,hlnt]表示實際選擇的天線和接收天線之間的信道矩陣。令[Δ]表示所有[CntNt]種可能的天線組合的集合。

因此,接收信號[Y∈C?Nr×1]可以表示為:

式中:[n∈C?nt×1]表示隨機復(fù)噪聲向量,服從分布[CN(0,σ2)]。

2 ?廣義空間調(diào)制系統(tǒng)中天線選擇設(shè)計準(zhǔn)則

2.1 ?基于最小歐氏距離最大化準(zhǔn)則的天線選擇算法

定義發(fā)射符號經(jīng)過信道得到的接收信號的差值[dmin]的2范數(shù)為:

通過最小化[dmin],可以最小化條件成對錯誤概率。因此[dmin]可以作為選擇最優(yōu)天線組合的決策指標(biāo)。這樣廣義空間調(diào)制系統(tǒng)的天線選擇設(shè)計標(biāo)準(zhǔn)為:

2.2 ?基于模值排序準(zhǔn)則的天線選擇算法

上述天線選擇算法雖然有最優(yōu)的性能,但其需要遍歷所有可能的發(fā)射符號,具有較高的復(fù)雜度。為了降低復(fù)雜度,本節(jié)提出一種基于模值排序的天線選擇算法。具體過程如下,計算信道矩陣[H]的[Nt]列的模值如下所示:

2.3 ?結(jié)合模值和距離的新型天線選擇算法

上述基于模值排序準(zhǔn)則的天線選擇算法雖然易于實現(xiàn),復(fù)雜度低,但它的性能不太好。為了進一步提升性能,下面給出一種結(jié)合模值排序和歐氏距離的天線選擇算法。具體過程如下:先通過模值排序得到[H]模值排序[k=[k1,k2,…,kNt]],如式(6)所示,然后取[k]的前[nt+m]個值作為備選天線集合:

2.4 ?復(fù)雜度分析

下面分析基于最小歐氏距離最大化準(zhǔn)則、基于模值排序準(zhǔn)則和基于結(jié)合模值排序和歐氏距離準(zhǔn)則三種天線選擇算法的復(fù)雜度。本文使用flop數(shù)來度量三種算法的復(fù)雜度。一個flop表示一次實數(shù)乘法或加法運算。

基于最小歐氏距離最大化準(zhǔn)則天線選擇算法的復(fù)雜度為:

3 ?仿真分析

下面比較廣義空間調(diào)制系統(tǒng)中基于最小歐氏距離最大化準(zhǔn)則、基于模值排序準(zhǔn)則以及結(jié)合模值排序和歐氏距離三種天線選擇算法的性能。仿真中假設(shè)在接收端已知理想的信道狀態(tài)信息。

圖1表示在不同信噪比下,三種檢測算法的誤碼率(Bit Error Rate,BER)和復(fù)雜度。仿真條件是發(fā)射天線數(shù)目[Nt=6],選擇的天線數(shù)目[nt=4],激活天線數(shù)目[P=2]。接收天線數(shù)目[Nr=4],控制備選集合大小參數(shù)[m=1]。從仿真結(jié)果可以看出,基于最小歐氏距離最大化準(zhǔn)則算法有最好的性能,但它的算法復(fù)雜度也是最高的。結(jié)合模值和歐氏距離的算法擁有與基于歐氏距離算法相似的性能,并且它的復(fù)雜度只有基于歐氏距離的[13]。另一方面,結(jié)合模值和歐氏距離的算法性能比基于模值算法的性能好。

圖2的仿真參數(shù)是發(fā)射天線數(shù)目[Nt=12],選擇的天線數(shù)目[nt=4],激活天線數(shù)目[P=2],控制備選集合大小參數(shù)[m=2]。接收天線數(shù)目[Nr=4],仿真結(jié)果與圖1的類似。由圖2可以看出,本文所提出的新的結(jié)合模值排序和歐氏距離的天線選擇算法可以在計算復(fù)雜度和傳輸性能之間取得更好的折中,因此是一種更高效的系統(tǒng)優(yōu)化算法。

4 ?結(jié) ?語

本文提出廣義空間調(diào)制系統(tǒng)中基于最小歐氏距離最大化準(zhǔn)則、基于模值排序準(zhǔn)則以及結(jié)合模值排序和歐氏距離混合準(zhǔn)則的三種天線選擇算法,并通過理論分析和計算機仿真比較它們的性能和復(fù)雜度。經(jīng)過仿真結(jié)果表明,所提出的新型混合準(zhǔn)則算法能夠在計算復(fù)雜度和性能之間取得更好的折中,是一種更具有應(yīng)用價值的新型天線選擇算法。

圖1 ?6選4的情況下三種檢測算法的誤碼率和復(fù)雜度

圖2 ?12選4的情況下三種檢測算法的誤碼率和復(fù)雜度

參考文獻

[1] NGO H Q, LARSSON E G, MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems [J]. IEEE transactions on communications, 2015, 11(2): 87?105.

[2] ALAMOUTI S M. A simple transmit diversity technique for wireless communications [J]. IEEE journal on selected areas in communications, 1998, 16(8): 1451?1458.

[3] WANG J, JIA S, SONG J. Generalised spatial modulation with multiple active transmit antennas and low complexity detection scheme [J]. IEEE transactions on wireless communications, 2012, 11(4): 1605?1615.

[4] DI RENZO M, HAAS H, GHRAYEB A, et al. Spatial modulation for generalized MIMO: challenges, opportunities and implementation [J]. IEEE proceedings, 2014, 102(1): 56?103.

[5] YANG P, RENZO M D, HANZO L, et al. Single?carrier SM?MIMO: a promising design for broadband large?scale antenna systems [J]. IEEE communications surveys tutorials, 2016, 18(3): 1687?1716.

[6] ZHANG J, WANG Y, DING L, et al. Bit error probability of spatial modulation over measured indoor channel [J]. IEEE tran?saction on wireless communications, 2014, 13(3): 1380?1387.

[7] WANG S C, LI Y Z, WANG J, et al. Low complexity multiuser detection in massive spatial modulation MIMO [C]// Procee?dings of 2014 IEEE Globecom Workshop. Austin: IEEE, 2014: 784?789.

[8] NARASIMHAN T L, RAVITEJA P, CHOCKALINGAM A. Generalized spatial modulation in large?scale multiuser MIMO system [J]. IEEE transactions on wireless communications, 2015, 14(7): 3764?3799.

[9] BASAR E. Multiple?input multiple?output OFDM with index modulation [J]. IEEE signal processing letters, 2015, 22(13): 2259?2263.

[10] FAN R, YU Y J, GUAN Y L. Generalization of OFDM with index modulation [J]. IEEE transactions on wireless communication, 2015, 14(10): 5350?5359.

[11] BASAR E. On multiple?input multi?output OFDM with index modulation for next generation wireless networks [J]. IEEE transactions on signal processing, 2016, 64(15): 3868?3878.

[12] TANG Q, XIAO Y, YANG P, et al. A new low?complexity near?ML detection algorithm for spatial modulation [J]. IEEE wireless communications letters, 2013, 2(1): 90?93.

[13] MEN H, JIN M. A low?complexity ML detection algorithm for spatial modulation system with PSK constellation [J]. IEEE communications letters, 2014, 18(8): 1375?1378.

[14] ZHANG W, YIN Q, DENG H. Differential full diversity spatial modulation and its performance analysis with two transmit antennas [J]. IEEE communications letters, 2015, 19(4): 677?680.

[15] XIAO L, YANG P. A low?complexity detection scheme for differential spatial modulation [J]. IEEE communications letters, 2015, 19(9): 1516?1519.

[16] RAJASHEKAR R, ISHIKAWA N, SUGIURA S, et al. Full?diversity dispersion matrices from algebraic field extensions for differential spatial modulation [J]. IEEE transactions on vehicular technology, 2016, 66(1): 385?394.

主站蜘蛛池模板: 色悠久久久久久久综合网伊人| 欧美黄网在线| 国产成人1024精品下载| 蜜芽国产尤物av尤物在线看| 亚洲无码高清免费视频亚洲| 国产精品成人AⅤ在线一二三四| 亚洲成A人V欧美综合天堂| 国产91成人| 欧美、日韩、国产综合一区| 日韩第九页| 亚洲色图另类| 国产日韩丝袜一二三区| 国产成人艳妇AA视频在线| 国产精品一区二区国产主播| 久久亚洲中文字幕精品一区| 亚洲第一区欧美国产综合| 国产日韩AV高潮在线| 国产免费看久久久| 日韩天堂视频| www.亚洲国产| 一区二区三区国产| 天堂成人在线视频| 九色视频最新网址| 国产永久在线视频| 国产福利观看| 一区二区自拍| 丰满少妇αⅴ无码区| 91精品国产无线乱码在线| 免费av一区二区三区在线| 美女被操91视频| 日韩视频免费| 日韩精品高清自在线| 精久久久久无码区中文字幕| 久久久久久久久久国产精品| 99成人在线观看| 国产福利在线观看精品| 日本草草视频在线观看| 亚洲国产成人在线| 天堂岛国av无码免费无禁网站 | 国产成a人片在线播放| 国产精欧美一区二区三区| 久久96热在精品国产高清| 美女国产在线| 制服丝袜 91视频| 国产经典在线观看一区| 国产成人乱码一区二区三区在线| 免费福利视频网站| 99激情网| 91人妻在线视频| 国产啪在线91| 久久香蕉国产线| 亚洲精品无码在线播放网站| 久久精品国产91久久综合麻豆自制| 亚洲男人的天堂在线| 91啦中文字幕| 国产一级在线观看www色| 色偷偷男人的天堂亚洲av| 四虎成人精品在永久免费| 一区二区自拍| 免费中文字幕一级毛片| 亚洲一级毛片| 亚洲欧美一区在线| 香蕉网久久| 99久久无色码中文字幕| 国产精彩视频在线观看| 国产成人综合在线观看| 亚洲精品成人片在线播放| 欧美成人免费一区在线播放| 红杏AV在线无码| 日韩视频福利| 精品91自产拍在线| 制服丝袜 91视频| 欧美一级在线播放| 久久网欧美| 色综合成人| 久久国产精品无码hdav| 国产在线观看高清不卡| 香蕉久久国产精品免| 午夜影院a级片| www.99在线观看| 国产剧情无码视频在线观看| 国产成人a毛片在线|